
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Lorna Jane Mitchell

PHP Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

PHP Web Services
by Lorna Jane Mitchell

Copyright © 2013 Lorna Jane Mitchell. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Maria Gulick and Rachel Roumeliotis
Production Editor: Marisa LaFleur
Proofreader: Marisa LaFleur

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

April 2013: First Edition

Revision History for the First Edition:

2013-04-19: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449356569 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. PHP Web Services, the image of an Alpine Accentor, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-35656-9

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449356569
http://www.it-ebooks.info/

Table of Contents

Preface. vii

1. HTTP. 1
Clients and Servers 3
Making HTTP Requests 4

Curl 4
Browser Tools 6
PHP 8

2. HTTP Verbs. 11
Making GET Requests 11
Making POST Requests 13
Using Other HTTP Verbs 15

3. Headers. 19
Request and Response Headers 20
Common HTTP Headers 20

User-Agent 21
Headers for Content Negotiation 22
Securing Requests with the Authorization Header 26

Custom Headers 27

4. Cookies. 29
Cookie Mechanics 29
Working with Cookies in PHP 31

5. JSON. 33
When to Choose JSON 34
Handling JSON with PHP 35

iii

www.it-ebooks.info

http://www.it-ebooks.info/

JSON in Existing APIs 36

6. XML. 39
When to Choose XML 40
XML in PHP 41
XML in Existing APIs 41

7. RPC and SOAP Services. 45
RPC 45
SOAP 47

WSDL 48
PHP SOAP Client 48
PHP SOAP Server 49
Generating a WSDL File from PHP 50
PHP Client and Server with WSDL 52

8. REST. 55
RESTful URLs 55
Resource Structure and Hypermedia 56
Data and Media Types 60
HTTP Features in REST 60

Create Resources 61
Read Records 61
Update Records 62
Delete Records 63

Additional Headers in RESTful Services 63
Authorization Headers 63
Caching Headers 64

RESTful versus Useful 65

9. Debugging Web Services. 67
Debug Output 68
Logging 68
Debugging from Outside Your Application 70

Wireshark 70
Charles Proxy 73

Finding the Tool for the Job 77

10. Making Service Design Decisions. 79
Service Type Decisions 80
Consider Data Formats 80
Customizable Experiences 81

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Pick Your Defaults 83

11. Building a Robust Service. 85
Consistency Is Key 85

Consistent and Meaningful Naming 86
Common Validation Rules 86
Predictable Structures 87

Making Design Decisions for Robustness 88

12. Error Handling in APIs. 89
Output Format 89
Meaningful Error Messages 92
What to Do When You See Errors 93

13. Documentation. 95
Overview Documentation 95
API Documentation 96
Interactive Documentation 97
Tutorials and the Wider Ecosystem 99

A. A Guide to Common Status Codes. 101

B. Common HTTP Headers. 103

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this age, when it can sometimes seem like every system is connected to every other
system, dealing with data has become a major ingredient in building the Web. Whether
you will be delivering services or consuming them, web service is a key part of all
modern, public-facing applications, and this book is here to help you navigate your way
along the road ahead. We will cover the different styles of service—from RPC, to SOAP,
to REST—and you will see how to devise great solutions using these existing approaches,
as well as examples of APIs in the wild. Whether you’re sharing data between two internal
systems, using a service backend for a mobile application, or just plain building an API
so that users can access their data, this book has you covered, from the technical sections
on HTTP, JSON, and XML to the “big picture” areas such as creating a robust service.

Why did we pick PHP for this book? Well, PHP has always taken on the mission to
“solve the web problem.” Web services are very much part of that “problem” and PHP
is ideally equipped to make your life easy, both when consuming external services and
when creating your own. As a language, it runs on many platforms and is the technology
behind more than half of the Web, so you can be sure that it will be widely available,
wherever you are. This book does not adopt any particular frameworks; instead, it aims
to give you the tools you will need to understand the topic as a whole and apply that
knowledge to whichever frameworks, libraries, or other wrappers you choose to use.

The book walks you through everything you need to know in three broad sections. We
begin by covering HTTP and the theory that goes with it, including detailed chapters
on the request/response cycle, HTTP verbs and headers, and cookies. There are also
chapters on JSON and XML: when to choose each data format, and how to handle them
from within PHP. The second section aims to give very practical advice on working with
RPC and SOAP services, with RESTful services, and on how to debug almost anything
that works over HTTP, using a variety of tools and techniques. In the final section, we
look at some of the wider issues surrounding the design of top-quality services, choosing
what kind of service will work for your application, and determining how to make it
robust. Another chapter is dedicated to handling errors and giving advice on why and

vii

www.it-ebooks.info

http://www.it-ebooks.info/

how to document your API. Whether you dip into the book as a reference for a specific
project, or read it in order to find out more about this area of technology, there’s some‐
thing here to help you and your project to be successful. Enjoy!

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “PHP Web Services by Lorna Jane Mitchell
(O’Reilly). Copyright 2013 Lorna Jane Mitchell, 978-1-449-35656-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/php-web-services.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

Preface | ix

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/php-web-services
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
While this is quite a small book on the scale of things, a great many people gave their
input to make it happen and they deserve to be acknowledged for the contributions they
made.

Several people reviewed early drafts of the book from a technical standpoint and asked
many difficult questions at a stage when there was scope for answering them. Thanks
to Sean Coates, Jon Phillips, Michele Davis, and Chris Willcock for all their input.

My editors Maria Gulick and Rachel Roumeliotis have been patient and supportive
throughout, something I’m sure gets tiring with such a large number of titles coming
past at high speed. Their advice and support were invaluable, and I thank them for their
gracious help. The rest of the O’Reilly staff have been rockstars also, in particular Josette
Garcia, who always makes me believe, and the team that supports the tools I broke so
regularly.

My wider “geek support network” has been at once encouraging and providers of prac‐
tical help. Many people rescued me from my own code samples, gave advice where my
own experience fell short, and pointed me to further reading on a variety of topics that
made it into this book (and many others that did not). This was very much a hive effort
and I consider myself lucky to be part of a community from which help can be requested
and given so readily.

Finally, thanks are due to my mystified, but fantastically supportive, family and friends.
Chief among these, of course, is my husband, Kevin, who served as cheerleader, proof‐
reader, and head technical support consultant throughout this project and so many
others.

x | Preface

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

CHAPTER 1

HTTP

HTTP stands for HyperText Transfer Protocol, and is the basis upon which the Web is
built. Each HTTP transaction consists of a request and a response. The HTTP protocol
itself is made up of many pieces: the URL at which the request was directed, the verb
that was used, other headers and status codes, and of course, the body of the responses,
which is what we usually see when we browse the Web in a browser.

When surfing the Web, ideally we experience a smooth journey between all the various
places that we’d like to visit. However, this is in stark contrast to what is happening
behind the scenes as we make that journey. As we go along, clicking on links or causing
the browser to make requests for us, a series of little “steps” is taking place behind the
scenes. Each step is made up of a request/response pair; the client (usually your browser
or phone if you’re surfing the Web) makes a request to the server, and the server pro‐
cesses the request and sends the response back. At every step along the way, the client
makes a request and the server sends the response.

As an example, point a browser to http://oreilly.com/ and you’ll see a page that looks
something like Figure 1-1; either the information desired can be found on the page, or
the hyperlinks on that page direct us to journey onward for it.

1

www.it-ebooks.info

http://oreilly.com/
http://www.it-ebooks.info/

Figure 1-1. O’Reilly home page

The web page arrives in the body of the HTTP response, but it tells only half of the story.
The rest is elsewhere in the HTTP traffic. Consider the following examples.

Request header:

GET / HTTP/1.1
User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.8 (KHTML, like Gecko)
Chrome/23.0.1246.0 Safari/537.8
Host: oreilly.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

Response header:

HTTP/1.1 200 OK
Date: Thu, 15 Nov 2012 09:36:05 GMT
Server: Apache
Last-Modified: Thu, 15 Nov 2012 08:35:04 GMT
Accept-Ranges: bytes
Content-Length: 80554
Content-Type: text/html; charset=utf-8
Cache-Control: max-age=14400
Expires: Thu, 15 Nov 2012 13:36:05 GMT
Vary: Accept-Encoding

2 | Chapter 1: HTTP

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, there are plenty of other useful pieces of information being exchanged
over HTTP that are not usually seen when using a browser. Understanding this sepa‐
ration between client and server, and the steps taken by the request and response pairs,
is key to understanding HTTP and working with web services. Here’s an example of
what happens when we head to Google in search of kittens:

1. We make a request to http://www.google.com/ and the response contains a Location
header and a 301 status code sending us to a regional search page; for me that’s
http://www.google.co.uk/.

2. The browser follows the redirect instruction (without confirmation from the user,
browsers follow redirects by default) and makes a request to http://
www.google.co.uk/ and recceives the page with the search box (for fun, view the
source of this page. There’s a lot going on!). We fill in the box and hit search.

3. We make a request to https://www.google.co.uk/search?q=kittens (plus a few other
parameters) and get a response showing our search results.

In the story shown here, all the requests were made from the browser in response to a
user’s actions, although some occur behind the scenes, such as following redirects or
requesting additional assets. All the assets for a page, such as images, stylesheets, and
so on are all fetched using separate requests that are handled by a server. Any content
that is loaded asynchronously (by JavaScript, for example) also creates more requests.
When we work with APIs, we get closer to the requests and make them in a more
deliberate manner, but the mechanisms are the same as those we use to make very basic
web pages. If you’re already making websites, then you already know all you need to
make web services!

Clients and Servers
Earlier in this chapter we talked about a request and response between a client and a
server. When we make websites with PHP, the PHP part is always the server. When
using APIs, we build the server in PHP, but we can consume APIs from PHP as well.
This is the point where things can get confusing. We can create either a client or a server
in PHP, and requests and responses can be either incoming or outgoing—or both!

When we build a server, we follow patterns similar to the way that we build web pages.
A request arrives, and we use PHP to figure out what was requested and craft the correct
response. For example, if we built an API for customers so they could get updates on
their orders programmatically, we would be building a server.

Using PHP to consume APIs means we are building a client. Our PHP application makes
requests to external services over HTTP, and then uses the responses for its own pur‐
poses. An example of a client would be a page that fetches your most recent tweets and
displays them.

Clients and Servers | 3

www.it-ebooks.info

http://www.google.com/
http://www.google.co.uk/
http://www.google.co.uk/
http://www.google.co.uk/
https://www.google.co.uk/search?q=kittens
http://www.it-ebooks.info/

It isn’t unusual for an application to be both a client and a server, as shown in
Figure 1-2. An application that accepts a request, and then calls out to other services to
gather the information it needs to produce the response, is acting as both a client and
a server.

When working on applications like this, take care with how you name
variables involving the word “request” to avoid confusion!

Figure 1-2. Web application acting as a server to the user, but also as a client to access
other APIs

Making HTTP Requests
There are a few different ways to communicate over HTTP. In this section, three of them
will be covered: Curl, tools in your browser, and PHP itself. The tool you choose depends
entirely on your experience and on what it is that you’re trying to achieve. We’ll also
look at tools for inspecting and debugging HTTP in Chapter 9.

The examples here use a site that is set up to log requests made to it, which is perfect
for exploring how different API requests are seen by a server. To use it, visit the site and
create a new “request bin.” You will see the URL needed to make requests to and be
redirected to a page showing the history of requests made to the bin. Another excellent
way to try making different kinds of requests is to use the reserved endpoints (http://
example.com, http://example.net, and http://example.org) established by the Internet
Assigned Numbers Authority.

Curl
Curl is a command-line tool available on all platforms. It allows us to make any web
request imaginable in any form, repeat those requests, and observe in detail exactly what
information is exchanged between client and server. In fact, Curl produced the example
output at the beginning of this chapter. It is a brilliant, quick tool for inspecting what’s

4 | Chapter 1: HTTP

www.it-ebooks.info

http://requestb.in
http://example.com
http://example.com
http://example.net
http://example.org
http://www.iana.org/domains/special
http://www.iana.org/domains/special
http://curl.haxx.se
http://www.it-ebooks.info/

going on with a web request, particularly when dealing with those outside the usual
scope of a browser.

In its most basic form, a Curl request can be made like this (replace the URLs with your
own):

curl http://requestb.in/example

We can control every aspect of the request to send; some of the most commonly used
features are outlined here and used throughout this book to illustrate and test the various
APIs shown.

If you’ve built websites before, you’ll already know the difference between GET and POST
requests from creating web forms. Changing between GET, POST, and other HTTP verbs
using Curl is done with the -X switch, so a POST request can be specifically made by
using the following:

curl -X POST http://requestb.in/example

To get more information from Curl than just the body response, there are a couple of
useful switches. Try the -v switch since this will show everything: request headers, re‐
sponse headers, and response body in full! It splits the response up, though, sending the
header information to STDERR and the body to STDOUT.

When the response is fairly large, it can be hard to find a particular piece of information
while using Curl. To help with this, it is possible to combine Curl with other tools such
as less or grep; however, Curl shows a progress output bar in normal operation, which
is confusing to these other tools. To silence the progress bar, use the -s switch (but
beware that it also silences Curl’s errors). It can be helpful to use -s in combination with
-v to create output that you can send to a pager such as less in order to examine it in
detail, using a command like this:

curl -s -v http://requestb.in/example 2>&1 | less

The extra 2>&1 is there to send the STDERR output to STDOUT so that you’ll see both
headers and body; by default, only STDOUT would be visible to less.

Working with the Web in general, and APIs in particular, means working with data.
Curl lets us do that in a few different ways. The simplest way is to send data along with
a request in key/value pairs—exactly as when a form is submitted on the Web—which
uses the -d switch. The switch is used as many times as there are fields to include:

curl -X POST http://requestb.in/example -d name="Lorna" -d email="lorna@exam-
ple.com" -d message="this HTTP stuff is rather excellent"

APIs accept their data in different formats; sometimes the data cannot be POSTed as a
form, but must be created in JSON or XML format, for example. In such instances, the
entire body of a request can be assembled in a file and passed to Curl. Inspect the
previous request, and you will see that the body of it is sent as:

Making HTTP Requests | 5

www.it-ebooks.info

http://www.it-ebooks.info/

name=Lorna&email=lorna@example.com&message=this HTTP stuff is excellent

Instead of sending the data as key/value pairs on the command line, it can be placed
into a file called data.txt (for example). This file can then be supplied each time the
request is made. This technique is especially useful for avoiding very long command
lines when working with lots of fields, and when sending non-form data, such as JSON
or XML. To use the contents of a file as the body of a request, we give the filename
prepended with an @ symbol as a single -d switch to Curl:

curl -X POST http://requestb.in/example -d @data.txt

Working with the extended features of HTTP requires the ability to work with various
headers. Curl allows sending of any desired header (this is why, from a security stand‐
point, the header can never be trusted!) by using the -H switch, followed by the full
header to send. The command to set the Accept header to ask for an HTML response
becomes:

curl -H "Accept: text/html" http://requestb.in/example

Before moving on from Curl to some other tools, let’s take a look at one more feature:
how to handle cookies. Cookies will be covered in more detail in a later chapter, but for
now it is just important to know that cookies are stored by the client and sent with
requests, and that new cookies may be received with each response. Browsers send
cookies with requests as default behavior, but in Curl we need to do this manually by
asking Curl to store the cookies in a response and then use them on the next request.
The file that stores the cookies is called the “cookie jar”; clearly, even HTTP geeks have
a sense of humor.

To receive and store cookies from one request:

curl -c cookiejar.txt http://requestb.in/example

At this point, cookiejar.txt can be amended in any way you see fit (again, never trust
information that came from outside the application!), and then sent to the server with
the next request you make. To do this, use the -b switch and specify the file to find the
cookies in:

curl -b cookiejar.txt http://requestb.in/example

To capture cookies and resend them with each request, use both -b and -c switches,
referring to the same cookiejar file. This way, all incoming cookies are captured and sent
to a file, and then sent back to the server on any subsequent request, behaving just as
they do in a browser.

Browser Tools
All the newest versions of the modern browsers (Chrome, Firefox, Opera, Safari, In‐
ternet Explorer) have built-in tools or available plug-ins for helping to inspect the HTTP
that’s being transferred, and for simple services you may find that your browser’s tools

6 | Chapter 1: HTTP

www.it-ebooks.info

http://www.it-ebooks.info/

are an approachable way to work with an API. These tools vary between browsers and
are constantly updating, but here are a few favorites to give you an idea.

In Firefox, this functionality is provided by the Developer Toolbar and various plug-
ins. Many web developers are familiar with FireBug, which does have some helpful tools,
but there is another tool that is built specifically to show you all the headers for all the
requests made by your browser: LiveHTTPHeaders. Using this, we can observe full
details of each request, as seen in Figure 1-3.

Figure 1-3. LiveHTTPHeaders showing HTTP details

All browsers offer some way to inspect and change the cookies being used for requests
to a particular site. In Chrome, for example, this functionality is offered by an extension
called “Edit This Cookie,” and other similar extentions. This shows existing cookies and
lets you edit and delete them—and also allows you to add new cookies. Take a look at
the tools in your favorite browser and see the cookies sent by the sites you visit the most.

Sometimes, additional headers need to be added to a request, such as when sending
authentication headers, or specific headers to indicate to the service that we want some
extra debugging. Often, Curl is the right tool for this job, but it’s also possible to add the
headers into your browser. Different browsers have different tools, but for Chrome try
an extension called ModHeader, seen in Figure 1-4.

Making HTTP Requests | 7

www.it-ebooks.info

http://getfirebug.com/
http://livehttpheaders.mozdev.org/
http://www.it-ebooks.info/

Figure 1-4. The ModHeader plug-in in Chrome

PHP
Unsurprisingly, there is more than one way to handle HTTP requests using PHP, and
each of the frameworks will also offer their own additions. This section focuses on plain
PHP and looks at three different ways to work with APIs: using the built-in Curl ex‐
tension for PHP, using the pecl_http extension, and making HTTP calls using PHP’s
stream handling.

Earlier in this chapter, we discussed a command-line tool called Curl (see “Curl” on
page 4). PHP has its own wrappers for Curl, so we can use the same tool from within
PHP. A simple GET request looks like this:

<?php

$url = "http://oreilly.com";
$ch = curl_init($url);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

The previous example is the simplest form, setting the URL, making a request to its
location (by default this is a GET request), and capturing the output. Notice the use of
curl_setopt(); this function is used to set many different options on Curl handles and
it has excellent and comprehensive documentation on http://php.net. In this example,
it is used to set the CURLOPT_RETURNTRANSFER option to true, which causes Curl to return
the results of the HTTP request rather than output them. In most cases, this option
should be used to capture the response rather than letting PHP echo it as it happens.

We can use this extension to make all kinds of HTTP requests, including sending custom
headers, sending body data, and using different verbs to make our request. Take a look

8 | Chapter 1: HTTP

www.it-ebooks.info

http://php.net
http://www.it-ebooks.info/

at this example, which sends some form fields and a Content-Type header with the POST
request:

<?php

$url = "http://requestb.in/example";
$data = array("name" => "Lorna", "email" => "lorna@example.com");

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data));

curl_setopt($ch, CURLOPT_HTTPHEADER,
 array('Content-Type: application/json')
);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

Again, curl_setopt() is used to control the various aspects of the request we send.
Here, a POST request is made by setting the CURLOPT_POST option to 1, and passing the
data we want to send as an array to the CURLOPT_POSTFIELDS option. We also set a
Content-Type header, which indicates to the server what format the body data is in; the
various headers are covered in more detail in Chapter 3.

The PHP Curl extension isn’t the easiest interface to use, although it does have the
advantage of being reliably available. A great alternative if you control your own plat‐
forms is to add the pecl_http extension from PECL. This offers a much more intuitive
way of working and has both function and object-oriented interfaces. For example,
here’s the previous example, this time using pecl_http:

<?php

$url = "http://requestb.in/example";

$data = array("name" => "Lorna", "email" => "lorna@example.com");

$request = new HTTPRequest($url, HTTP_METH_POST);
$request->setPostFields($data);
$request->setHeaders(array("Content-Type" => "application/json"));

$request->send();
$result = $request->getResponseBody();

This extension works more elegantly by creating an HTTPRequest object, and then
working with the properties on that object, before calling its send() method. Once the
request has been sent, the body of the response is fetched by calling the getResponse
Body() method.

Making HTTP Requests | 9

www.it-ebooks.info

http://pecl.php.net/package/pecl_http
http://www.it-ebooks.info/

Finally, let’s look at one more way of making HTTP requests from PHP: using PHP’s
stream-handling abilities with the file functions. In its simplest form, this means that,
if allow_url_fopen is enabled (see the PHP manual), it is possible to make a GET request
using file_get_contents():

<?php

$result = file_get_contents("http://oreilly.com");

We can take advantage of the fact that PHP can handle a variety of different protocols
(HTTP, FTP, SSL, and more) and files using streams. The simple GET requests are easy,
but what about something more complicated? Here is an example that makes the same
POST request with headers, illustrating how to use various aspects of the streams
functionality:

<?php

$url = "http://requestb.in/example";
$data = array("name" => "Lorna", "email" => "lorna@example.com");

$context = stream_context_create(array(
 'http' => array(
 'method' => 'POST',
 'header' => array('Accept: application/json',
 'Content-Type: application/x-www-form-urlencoded'),
 'content' => http_build_query($data)
)
));

$result = file_get_contents($url, false, $context);

Options are set as part of the context that we create to dictate how the request should
work. Then, when PHP opens the stream, it uses the information supplied to determine
how to handle the stream correctly—including sending the given data and setting the
correct headers.

As you can see, there are a few different options for dealing with HTTP, both from PHP
and the command line, and you’ll see all of them used throughout this book. These
approaches are all aimed at “vanilla” PHP, but if you’re working with a framework, it
will likely offer some functionality along the same lines; all the frameworks will be
wrapping one of these methods so it will be useful to have a good grasp of what is
happening underneath the wrappings. After trying out the various examples, it’s com‐
mon to pick one that you will work with more than the others; they can all do the job,
so the one you pick is a result of both personal preference and which tools are available
(or can be made available) on your platform.

10 | Chapter 1: HTTP

www.it-ebooks.info

http://www.php.net/manual/en/filesystem.configuration.php#ini.allow-url-fopen
http://www.it-ebooks.info/

CHAPTER 2

HTTP Verbs

HTTP verbs such as GET and POST let us send our intention along with the URL so we
can instruct the server what to do with it. Web requests are more than just a series of
addresses, and verbs contribute to the rich fabric of the journey.

I mentioned GET and POST because it’s very likely you’re already familiar with those.
There are many verbs that can be used with HTTP—in fact, we can even invent our own
—but we’ll get to that later in the chapter (see “Using Other HTTP Verbs” on page 15).
First, let’s revisit GET and POST in some detail, looking at when to use each one and what
the differences are between them.

Making GET Requests
URLs used with GET can be bookmarked, they can be called as many times as needed,
and the request should not affect change to the data it accesses. A great example of using
a GET request when filling in a web form is when using a search form, which should
always use GET. Searches can be repeated safely, and the URLs can be shared.

Consider the simple web form in Figure 2-1, which allows users to state which category
of results they’d like and how many results to show. The code for displaying the form
and the (placeholder) search results on the page could be something like this:

<?php

if(empty($_GET)) {

?>

<form name="search" method="get">
 Category:
 <select name="category">
 <option value="entertainment">Entertainment</option>
 <option value="sport">Sport</option>

11

www.it-ebooks.info

http://www.it-ebooks.info/

 <option value="technology">Technology</option>
 </select>

 Rows per page: <select name="rows">
 <option value="10">10</option>
 <option value="20">20</option>
 <option value="50">50</option>
 </select>

 <input type="submit" value="Search" />
</form>

<?php
} else {
 echo "Wonderfully filtered search results";
}

Figure 2-1. An example search form

You can see that PHP simply checks if it has been given some search criteria (or indeed
any data in the $_GET superglobal) and if not, it displays the empty form. If there was
data, then it would process it (although probably in a more interesting way than this
trivial example does). The data gets submitted on the URL when the form is filled in
(GET requests typically have no body data), resulting in a URL like this:

http://localhost/book/get-form-page.php?category=technology&rows=20

The previous example showed how PHP responds to a GET request, but how does it
make one? Well, as discussed in Chapter 1, there are many ways to approach this. For
a very quick solution, and a useful approach to use when working with GET requests in
particular, use PHP’s stream handling to create the complete request to send:

<?php

$url = 'http://localhost/book/get-form-page.php';
$data = array("category" => "technology", "rows" => 20);

$get_addr = $url . '?' . http_build_query($data);

12 | Chapter 2: HTTP Verbs

www.it-ebooks.info

http://www.it-ebooks.info/

$page = file_get_contents($get_addr);
echo $page;

In a real system, it is prudent to be cautious of the data coming in from external APIs;
it is best to filter the contents of $page before outputting it or using it anywhere else. As
an alternative to using PHP’s stream features, you could use whatever functionality your
existing frameworks or libraries offer, or make use of the Curl extension that is built in
to PHP. Using Curl, our code would instead look like this:

<?php

$url = 'http://localhost/book/get-form-page.php';
$data = array("category" => "technology", "rows" => 20);

$get_addr = $url . '?' . http_build_query($data);
$ch = curl_init($get_addr);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$page = curl_exec($ch);
echo $page;

Either of these approaches work well when you want to fetch data into your PHP script
from an external API or page. The examples here show web pages, but they apply when
working with HTML, XML, JSON, or anything else.

Making POST Requests
In contrast to GET requests, a POST request is one that does cause change on the server
that handles the request. These requests shouldn’t be repeated or bookmarked, which
is why your browser warns you when it is resubmitting data. Let’s use a POST form when
the request changes data on the server side. Figure 2-2, for example, involves updating
a bit of user profile information.

Figure 2-2. Simple form that updates data, sending content via a POST request

When a form is submitted via GET, we can see the variables being sent on the URL. With
POST, however, the data goes into the body of the request, and the Content-Type header

Making POST Requests | 13

www.it-ebooks.info

http://www.it-ebooks.info/

denotes what kind of data can be found in the body. When we fill in the form in
Figure 2-2, the request looks like this:

POST /book/post-form-page.php HTTP/1.1
Host: localhost
Content-Length: 48
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

email=lorna%40example.com&display_name=LornaJane

In this example, you can see the data in the body, with the Content-Type and Content-
Length headers set appropriately so a client could decode the response (more about
content negotiation in Chapter 3). PHP knows how to handle form data, so it can parse
this out and place the fields into $_POST, so it will be ready for use in the script. Here is
the code behind this page, showing the form without any incoming data; if data existed,
it would be displayed:

<?php

if(empty($_POST)) {

?>

<form name="user" method="post">
 Email:
 <input type="text" length="60" name="email" />

 Display name:
 <input type="text" length="60" name="display_name" />

 <input type="submit" value="Go" />
</form>

<?php
} else {
 echo "New user email: " . filter_input(INPUT_POST,
 "email", FILTER_VALIDATE_EMAIL);
}

It is very common to build PHP forms and parse data in this way, but when handling
HTTP requests, it is also important to consider how the requests can be made and
responded to. This is not dissimilar to the way that GET requests are made. For example,
to POST data to this form using streams (as in “Making GET Requests” on page 11), the
same basic approach can be used, but some context should be added to the stream, so
it will know which methods, headers, and verbs to use:

14 | Chapter 2: HTTP Verbs

www.it-ebooks.info

http://www.it-ebooks.info/

<?php

$url = 'http://localhost/book/post-form-page.php';
$data = array("email" => "lorna@example.com", "display_name" => "LornaJane");
$options = array(
 "http" => array(
 "method" => "POST",
 "header" => "Content-Type: application/x-www-form-urlencoded",
 "content" => http_build_query($data)
)
);

$page = file_get_contents($url, false, stream_context_create($options));
echo $page;

When POST data is sent to the page created, the data sent appears in the output rather
than in the form, so it shows “New user email: lorna@example.com.” This code looks
very similar to the previous streams example, but this example uses stream_con
text_create() to add some additional information to the stream.

You can see that we added the body content as a simple string, formatted it as a URL
using http_build_query(), and indicated which content type the body is. This means
that other data formats can very easily be sent by formatting the strings correctly and
setting the headers.

Here is an example that does the exact same thing, but uses the pecl_http extension:

<?php

$url = 'http://localhost/book/post-form-page.php';
$data = array("email" => "lorna@example.com", "display_name" => "LornaJane");

$request = new HttpRequest($url, HTTP_METH_POST);
$request->setPostFields($data);
$request->send();
$page = $request->getResponseBody();
echo $page;

Because this is a POST request, PHP assumes that a form is being posted; but different
Content-Type headers can be set if appropriate, and another format of string data can
be sent. This approach is illustrated in many different ways as this book progresses.
When working with non-standard verbs (as seen in the next section) or with data that
isn’t from a form post, it isn’t possible to access the data by grabbing it from $_POST.
Instead, PHP’s own stream of raw body data can be accessed at php://input.

Using Other HTTP Verbs
There are many specifications relating to HTTP, as well as protocols based upon it, and
between them they define a wide selection of verbs that can be used with HTTP. Even

Using Other HTTP Verbs | 15

www.it-ebooks.info

http://www.it-ebooks.info/

better, there is always room to invent new HTTP verbs; so long as your client and server
both know how to handle a new verb, it is valid to use it. However, be aware that not all
elements of network infrastructure between these two points will necessarily know how
to handle every verb. Some pieces of network infrastructure do not support PATCH, for
example, or the verbs used by the WebDAV protocol. When working with APIs, par‐
ticularly RESTful ones, it is normal to make use of two additional verbs: PUT and DE
LETE. REST is covered in detail in Chapter 8, but for now it is useful to examine some
examples of how to use these less common verbs in applications.

The simplest of these two is DELETE, because it doesn’t have any body data associated
with it. It is possible to see what kind of request was made to a PHP script acting as a
server by inspecting the $_SERVER["REQUEST_METHOD"] value, which indicates which
verb was used in the request.

To make the request from PHP, it is necessary to set the verb and then make the request
as normal. Here’s an example using the Curl extension:

<?php

$url = 'http://localhost/book/example-delete.php';

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
curl_exec($ch);

This example simply issues a request to the $url shown using a DELETE verb.

Using PUT is slightly more involved because, like POST, it can be accompanied by data
and the data can be in a variety of formats. In “Making POST Requests” on page 13, I
mentioned that for incoming form data, PHP reads form-encoded values for POST and
creates a $_POST array for us. There is no equivalent to $_PUT superglobal, but we can
still make use of the php://input stream to inspect the body data of the request to which
the script is sending a response at that time.

When using PHP to respond to PUT requests, the code runs along the lines of this
example:

<?php

if($_SERVER['REQUEST_METHOD'] == "PUT") {
 $data = array();
 $incoming = file_get_contents("php://input");
 parse_str($incoming, $data);
 echo "New user email: " . filter_var($data["email"], FILTER_VALIDATE_EMAIL);
} else {
 echo "um?";
}

16 | Chapter 2: HTTP Verbs

www.it-ebooks.info

http://www.it-ebooks.info/

This example inspects the $_SERVER superglobal to see which verb was used, and then
responds accordingly. The data coming into this example is form style, meaning it uses
file_get_contents() to grab all the body data, then parse_str() to decode it.

Be careful with parse_str()—if the second argument is omitted, the
variables will be extracted as local variables, rather than contained in
an array.

In order to use PHP to make a request that the previous script can handle, it is necessary
to create the contents of the body of the request and specify that it is a PUT request. Below
is an example built using the pecl_http extension:

<?php

$url = 'http://localhost/book/put-form-page.php';
$data = array("email" => "lorna@example.com", "display_name" => "LornaJane");

$request = new HttpRequest($url, HTTP_METH_PUT);
$request->setHeaders(array(
 "Content-Type" => "application/x-www-form-urlencoded"));
$request->setPutData(http_build_query($data));
$request->send();
$page = $request->getResponseBody();
echo $page;

The PUT verb is specified in this example, and the correct header for the form-encoded
data is set. We dictate the data to PUT (manually building the form elements into a string)
and then send the request. We will discuss more about other data formats in Chap‐
ter 5 and Chapter 6, which cover JSON and XML specifically, but the basic principles
of preparing the data and setting the Content-Type header accordingly still stand.

Armed with this knowledge of how to handle GET, POST, DELETE, and PUT verbs, we are
able to work with many different kinds of API acting as both a client and as a server.
When using other verbs, either those that already exist as part of the HTTP spec or those
that are custom to your application, you can use the approaches described here for PUT
and DELETE.

Using Other HTTP Verbs | 17

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Headers

So far, we’ve seen various presentations of the HTTP format, and examined the idea
that there is a lot more information being transferred in web requests and responses
than what appears in the body of the response. The body is certainly the most important
bit, and often is the meatiest, but the headers provide key pieces of information for both
requests and responses, which allow the client and the server to communicate effectively.
If you think of the body of the request as a birthday card with a check inside it, then the
headers are the address, postmark, and perhaps the “do not open until…” instruction
on the outside (see Figure 3-1).

This additional information gets the body data to where it needs to go and instructs the
target on what to do with it when it gets there.

Figure 3-1. Envelope with stamp, address, and postmark

19

www.it-ebooks.info

http://www.it-ebooks.info/

Request and Response Headers
Many of the headers you see in HTTP make sense in both requests and responses. Others
might be specific to either a request or a response. Here’s a sample set of real request
and response headers from when I request my own site from a browser (I’m using
Chrome).

Request headers:

GET / HTTP/1.1
Host: www.lornajane.net
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.19 (KHTML, like
Gecko) Chrome/25.0.1323.1 Safari/537.19
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
Accept-Charset: ISO-8859-1,utf-8;q=0.7,+;q=0.3

Response headers:

HTTP/1.1 200 OK
Server: Apache/2.2.14 (Ubuntu)
X-Powered-By: PHP/5.3.2-1ubuntu4.11
X-Pingback: http://www.lornajane.net/xmlrpc.php
Last-Modified: Thu, 06 Dec 2012 14:46:05 GMT
Cache-Control: no-cache, must-revalidate, max-age=0
Content-Type: text/html; charset=UTF-8
Content-Length: 25279
Date: Thu, 06 Dec 2012 14:46:05 GMT
X-Varnish: 2051611642
Age: 0
Via: 1.1 varnish
Connection: keep-alive

Here, you see Content-Type set in the body of the response, but it would also be used
when POSTing data with a request. Such multiple-use headers are called entity headers
and relate to the body being sent with the HTTP request or response. Specific headers
that are sent with requests are User-Agent, Accept, Authorization, and Cookie, and
Set-Cookie is returned with responses.

Common HTTP Headers
The previous examples showed off a selection of common headers, while the next sec‐
tions move on to take a look at the headers most often encountered when working with
APIs. The following examples show how to send and receive various types of headers
from PHP so that you can handle headers correctly in your own applications.

20 | Chapter 3: Headers

www.it-ebooks.info

http://www.lornajane.net/
http://www.it-ebooks.info/

User-Agent
The User-Agent header gives information about the client making the HTTP request
and usually includes information about the software client. Take a look at the header
here:

User-Agent Mozilla/5.0 (Linux; U; Android 2.3.4; en-gb; SonyEricssonSK17i Build/
4.0.2.A.0.62) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/
533.1

What device do you think made this request? You would probably guess that it was my
Sony Ericsson Android phone…and perhaps you would be right. Or perhaps I used a
Curl command:

curl -H "User-Agent: Mozilla/5.0 (Linux; U; Android 2.3.4; en-gb; SonyErics-
sonSK17i Build/4.0.2.A.0.62) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0
Mobile Safari/533.1" http://requestb.in/example

We simply have no way of knowing, when a request is received with a User-Agent like
this, if it really came from an Android phone, or if it came from something else pre‐
tending to be an Android phone. This information can be used to customize the response
we send—after all, if someone wants to pretend to be a tiny Android phone, then it is
reasonable to respond with the content that would normally be sent to this phone. It
does mean, however, that the User-Agent header cannot be relied upon for anything
more important, such as setting a custom header and using it as a means of authenti‐
cating users. Just like any other incoming data, it is wide open to abuse and must be
treated with suspicion.

In PHP, it is possible both to parse and to send the User-Agent header, as suits the task
at hand. Here’s an example of sending the header using streams:

<?php

$url = 'http://localhost/book/user-agent.php';
$options = array(
 "http" => array(
 "header" => "User-Agent: Advanced HTTP Magic Client"
)
);

$page = file_get_contents($url, false , stream_context_create($options));
echo $page;

We can set any arbitrary headers we desire when making requests, all using the same
approach. Similarly, headers can be retrieved using PHP by implementing the same
approach throughout. The data of interest here can all be found in $_SERVER, and in
this case it is possible to inspect $_SERVER["HTTP_USER_AGENT"] to see what the User-
Agent header was set to.

To illustrate, here’s a simple script:

Common HTTP Headers | 21

www.it-ebooks.info

http://www.it-ebooks.info/

<?php

echo "This request made by: "
 . filter_var($_SERVER['HTTP_USER_AGENT'], FILTER_SANITIZE_STRING);

It’s common when developing content for the mobile web to use headers such as User-
Agent in combination with WURFL to detect what capabilities the consuming device
has, and adapt the content accordingly. With APIs, however, it is better to expect the
clients to use other headers so they can take responsibility for requesting the correct
content types, rather than allowing the decision to be made centrally.

Headers for Content Negotiation
Commonly, the Content-Type header is used to describe what format the data being
delivered in the body of a request or a response is in; this allows the target to understand
how to decode this content. Its sister header, Accept, allows the client to indicate what
kind of content is acceptable, which is another way of allowing the client to specify what
kind of content it actually knows how to handle. As seen in the earlier example showing
headers, here’s the Accept header Google Chrome usually sends:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

To read an Accept header, consider each of the comma-separated values as an individual
entity. This client has stated a preference for (in order):

• text/html
• application/xhtml+xml
• application/xml
• */*

This means that if any of these formats are supplied, the client will understand our
meaning. The second two entries, however, include some additional information: the q
value. This is an indication of how much a particular option is preferred, where the
default value is q=1.

Here, Chrome claims to be able to handle a content type of */*. The asterisks are wild‐
cards, meaning it thinks it can handle any format that could possibly exist—which seems
unlikely. If an imaginary format is implemented that both our client and server under‐
stand, for example, Chrome won’t know how to parse it, so */* is misleading.

Using the Accept and Content-Type headers together to describe what can be under‐
stood by the client, and what was actually sent, is called “Content Negotiation.” Using
the headers to negotiate the usable formats means that meta-information is not tangled
up with actual data as it would be when sending both kinds of parameters with the body
or URL of the request. Including the headers is generally a better approach.

22 | Chapter 3: Headers

www.it-ebooks.info

http://wurfl.sourceforge.net/
http://www.it-ebooks.info/

We can negotiate more than just content, too. The earlier example contained these lines:

Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
Accept-Charset: ISO-8859-1,utf-8;q=0.7,+;q=0.3

These headers show other kinds of negotiation, such as declaring what encoding the
client supports, which languages are preferred, and which character sets can be used.
This enables decisions to be made about how to format the response in various ways,
and how to determine which formats are appropriate for the consuming device.

Parsing an Accept header

Let’s start by looking at how to parse an Accept header correctly. All Accept headers
have a comma-separated list of values, and some include a q value that indicates their
level of preference. If the q value isn’t included for an entry, it can be assumed that q=1
for that entry. Using the Accept header from my browser again, I can parse it by taking
all the segments, working out their preferences, and then sorting them appropriately.
Here’s an example function that returns an array of supported formats in order of
preference:

<?php

function parseAcceptHeader() {
 $hdr = $_SERVER['HTTP_ACCEPT'];
 $accept = array();
 foreach (preg_split('/\s*,\s*/', $hdr) as $i => $term) {
 $o = new \stdclass;
 $o->pos = $i;
 if (preg_match(",^(\S+)\s*;\s*(?:q|level)=([0-9\.]+),i", $term, $M)) {
 $o->type = $M[1];
 $o->q = (double)$M[2];
 } else {
 $o->type = $term;
 $o->q = 1;
 }
 $accept[] = $o;
 }
 usort($accept, function ($a, $b) {
 /* first tier: highest q factor wins */
 $diff = $b->q - $a->q;
 if ($diff > 0) {
 $diff = 1;
 } else if ($diff < 0) {
 $diff = -1;
 } else {
 /* tie-breaker: first listed item wins */
 $diff = $a->pos - $b->pos;
 }
 return $diff;
 });

Common HTTP Headers | 23

www.it-ebooks.info

http://www.it-ebooks.info/

 $accept_data = array();
 foreach ($accept as $a) {
 $accept_data[$a->type] = $a->type;
 }
 return $accept_data;
}

The headers sent by your browser may differ slightly and result in dif‐
ferent output when you try the previous code snippet.

When using the Accept header sent by my browser, I see the following output:

array(4) {
 ["text/html"]=>
 string(9) "text/html"
 ["application/xhtml+xml"]=>
 string(21) "application/xhtml+xml"
 ["application/xml"]=>
 string(15) "application/xml"
 ["*/*"]=>
 string(3) "*/*"
}

We can use this information to work out which format it would be best to send the data
back in. For example, here’s a simple script that calls the parseAcceptHeader() function,
then works through the formats to determine which it can support, and sends that
information:

<?php

$data = array ("greeting" => "hello", "name" => "Lorna");

$accepted_formats = parseAcceptHeader();
$supported_formats = array("application/json", "text/html");
foreach($accepted_formats as $format) {
 if(in_array($format, $supported_formats)) {
 // yay, use this format
 break;
 }
}

switch($format) {
 case "application/json":
 header("Content-Type: application/json");
 $output = json_encode($data);
 break;
 case "text/html":
 default:
 $output = "<p>" . implode(',', $data) . "</p>";

24 | Chapter 3: Headers

www.it-ebooks.info

http://www.it-ebooks.info/

 break;
}

echo $output;

There are many, many ways to parse the Accept header (and the same techniques apply
to the Accept-Language, Accept-Encoding, and Accept-Charset headers), but it is vital
to do so correctly. The importance of Accept header parsing can be seen in Chris Shi‐
flett’s blog post, The Accept Header; the parseAcceptHeader() example shown previ‐
ously came mostly from the comments on this post. You might use this approach, an
existing library such as the PHP mimeparse port, a solution you build yourself, or one
offered by your framework. Whichever you choose, make sure that it parses these head‐
ers correctly, rather than using a string match or something similar.

Demonstrating Accept headers with Curl
Using Curl from the command line, here are some examples of how to call exactly the
same URL by setting different Accept headers and seeing different responses:

curl http://localhost/book/hello.php
hello,Lorna

curl -H "Accept: application/json" http://localhost/book/hello.php
{"greeting":"hello","name":"Lorna"}

curl -H "Accept: text/html;q=0.5,application/json"
http://localhost/book/hello.php
{"greeting":"hello","name":"Lorna"}

To make these requests from PHP rather than from Curl, it is possible to simply set the
desired headers as the request is made. Here’s an example that uses PHP’s curl extension
to make the same request as the previous example:

<?php

$url = "http://localhost/book/hello.php";

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_HEADER, array(
 "Accept: text/html;q=0.5,application/json",
));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
echo $response;
curl_close($ch);

The number of headers you need to support in your application will vary. It is common
and recommended to offer various content types such as JSON, XML, or even plain
text. The selection of supported encodings, languages, and character sets will depend
entirely on your application and users’ needs. If you do introduce support for variable
content types, however, this is the best way to do it.

Common HTTP Headers | 25

www.it-ebooks.info

http://shiflett.org/blog/2011/may/the-accept-header
https://github.com/ramsey/mimeparse
http://www.it-ebooks.info/

Securing Requests with the Authorization Header
Headers can provide information that allows an application to identify users. Again,
keeping this type of information separate from the application data makes things simpler
and, often, more secure. The key thing to remember when working on user security for
APIs is that everything you already know about how to secure a website applies to web
services. There’s no need for anything new or inventive, and in fact I’ve seen some mis‐
takes made because new wheels were invented instead of existing standards being
embraced.

HTTP basic authentication
One of the simplest ways to secure a web page is to use HTTP basic authentication. This
means that an encoded version of the user’s credentials is sent in the Authorization
header with every request. The underlying mechanics of this approach are simple: the
client is given a username and password, and they do the following:

1. Arrange the username and password into the format username:password.
2. Base64 encode the result.
3. Send it in the header, like this: Authorization: Basic base64-encoded string.
4. Since tokens are sent in plain text, HTTPS should be used throughout.

We can either follow the steps here and manually create the correct header to send, or
we can use the built-in features of our toolchain. Here’s PHP’s curl extension making
a request to a page protected by basic authentication:

<?php

$url = "http://localhost/book/basic-auth.php";

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC) ;
curl_setopt($ch, CURLOPT_USERPWD, "user:pass");
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
echo $response;
curl_close($ch);

In PHP, these details can be found on the $_SERVER superglobal. When basic authenti‐
cation is in use, the username and password supplied by the user can be found in
$_SERVER["PHP_AUTH_USER"] and $_SERVER["PHP_AUTH_PASSWORD"], respectively.
When a request is made without credentials, or with invalid credentials, a 401 Unau‐
thorized status code can be sent to tell the client why the server is not sending him the
content requested.

26 | Chapter 3: Headers

www.it-ebooks.info

http://www.it-ebooks.info/

OAuth
Another alternative for securing web services, especially when you have a third party
consumer accessing data that belongs to a user, is OAuth. OAuth sets up a standard way
for a consumer to gain access to anoher user’s data that is held by a provider with whom
the user already has a relationship, without the user giving away her password. The user
visits the main provider’s site to verify her identity and grant access to the consumer,
and can also revoke that access at any time. Using this approach, the provider can dis‐
tinguish between requests made by the user and requests made by something or some‐
one else on behalf of the user.

The OAuth approach is beyond the scope of this book (Getting Started with OAuth
2.0 [O’Reilly] is an excellent reference), but it does make use of the Authorization header
and is widely used with APIs, so it is well worth a mention.

Custom Headers
As with almost every aspect of HTTP, the headers that can be used aren’t set in stone.
It is possible to invent new headers if there’s more information to convey for which there
isn’t a header. Headers that aren’t “official” can be used, but they should be prefixed
with X-.

A good example, often seen on the Web, is when a tool such as Varnish has been involved
in serving a response, and it adds its own headers. I have Varnish installed in front of
my own site, and when I request it, I see:

HTTP/1.1 302 Found
Server: Apache/2.2.14 (Ubuntu)
Location: http://www.lornajane.net/
Content-Type: text/html; charset=iso-8859-1
Content-Length: 288
Date: Tue, 11 Dec 2012 15:53:46 GMT
X-Varnish: 119643096 119643059
Age: 5
Via: 1.1 varnish
Connection: keep-alive

That additional X-Varnish header shows me that Varnish served the request. It isn’t an
official header, but these X-* headers are used to denote all kinds of things in APIs and
on the Web. A great example comes from GitHub. Here’s what happens when I make a
request to fetch a list of the repositories associated with my user account:

HTTP/1.1 200 OK
Server: nginx
Date: Tue, 11 Dec 2012 16:01:00 GMT
Content-Type: application/json; charset=utf-8
Connection: keep-alive
Status: 200 OK
X-Content-Type-Options: nosniff

Custom Headers | 27

www.it-ebooks.info

http://oauth.net/
http://oreil.ly/gsoauth
http://oreil.ly/gsoauth
https://www.varnish-cache.org/
http://developer.github.com
https://api.github.com/users/lornajane/repos
http://www.it-ebooks.info/

Cache-Control: public, max-age=60, s-maxage=60
X-GitHub-Media-Type: github.beta
X-RateLimit-Limit: 60
Content-Length: 106586
Last-Modified: Sat, 01 Dec 2012 11:23:32 GMT
Vary: Accept
X-RateLimit-Remaining: 59
ETag: "8c0bde8e577f52c7f68de5d7099e041b"

There are a few custom headers in this example but the X-RateLimit-* headers are
particularly worth noting, which check whether too many requests are being made.
Using custom headers like these, any additional data can be transferred between client
and server that isn’t part of the body data, which means all parties can stay “on the same
page” with the data exchange.

28 | Chapter 3: Headers

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Cookies

The HTTP protocol is stateless. This means that every request made must include all
the information needed in order for the web server to serve the correct response. At
least, in theory! In practice, that isn’t how we experience the Web as users. As we browse
around a shopping site, the website “remembers” which products we already viewed
and which we placed in our basket—we experience our journeys on the Web as con‐
nected experiences.

So how does this work? Additional information is being saved and sent with our web
requests through the use of cookies. Cookies are just key/value pairs; simple variables
that can be stored on the client and sent back to us with future requests. A user’s choice
of theme or accessibility settings could be stored, or a cookie could be dropped to record
something as simple as whether the user has visited the site before, or dismissed a par‐
ticular alert message that was shown.

Cookie Mechanics
This isn’t the moment where I tell you how to bake cookies, although the instructions
do read a little bit like a recipe. What happens when we work with cookies goes some‐
thing like this (see Figure 4-1):

1. A request arrives from the client, without cookies.
2. Send the response, including cookie(s).
3. The next request arrives. Since cookies were already sent, they will be sent back to

us in these later requests.
4. Send the next response, also with cookies (either changed or unchanged).
5. Steps 3–4 are repeated indefinitely.

29

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-1. Cookies exchanged in a series of requests

The main thing to remember is that, for a first visit from a new client (or someone who
clears their cookies), there will be no cookies, so it is not possible to rely on them being
present. This is easy to miss in testing unless you consciously make the effort to also
test the case in which a user arrives without cookies; by default, your browser will keep
sending the cookies.

Another thing to note is that cookies are only sent back with subsequent requests by
convention; not all clients will do this automatically. Once a cookie is received by a client,
even if it isn’t sent again in any later responses, most clients will send that cookie with
each and every subsequent request. The most important thing to remember about
cookies is that you cannot trust the data. When a cookie is sent to a client, it will be
stored in plain text on that computer or device. Users can edit cookies as they please,
or add and remove cookies, very easily. This makes incoming cookie data about as
trustworthy as data that arrives on the URL with a GET request.

To put that a little more plainly: do not trust cookie data.

How do users edit their data? Well, there are a couple of options. First of all, let’s look
at using cookies with Curl. We can capture cookies into a “cookie jar” by using the -c
switch. Take a look at what a well known site like amazon.com sets for a new visitor:

curl -c cookies.txt http://www.amazon.com/

The cookie jar file that was saved will look something like this:

Netscape HTTP Cookie File
http://curl.haxx.se/rfc/cookie_spec.html
This file was generated by libcurl! Edit at your own risk.

.amazon.com TRUE / FALSE 1355305311 skin noskin

.amazon.com TRUE / FALSE 2082787201 session-id-time 2082787201l

.amazon.com TRUE / FALSE 2082787201 session-id 000-0000000-0000000

The format here contains the following elements:

• Domain the cookie is valid for

30 | Chapter 4: Cookies

www.it-ebooks.info

http://www.it-ebooks.info/

• Whether it is valid for all machines on this domain (usually TRUE)
• Path within the domain that this cookie is valid for
• Whether this cookie is only to be sent over a secure connection
• When this cookie will expire
• Name of the cookie
• Value of the cookie

Note the phrase “Edit at your own risk,” which translates to developers as “Edit, and
interesting things may happen.” Whether working with a browser or Curl, it is possible
to change these values wherever the cookies are stored, and they will be sent back to the
server with a later request. With Curl, change the -c switch to a -b switch to send the
cookies back with a request (use them both together to also capture incoming ones back
into the file).

In the browser, your options will vary depending on which browser you use, but all of
the modern browsers have developer tools either built in or available via a plug-in that
enables you to see and to change the cookies that are being sent, as was mentioned in
“Browser Tools” on page 6.

Working with Cookies in PHP
Cookies are key/value pairs, as I’ve mentioned, that are sent to the browser along with
some other information, such as which paths the cookie is valid for and when it expires.
Since PHP is designed to solve “the Web problem,” it has some great features for working
with cookies. To set a cookie, use a function helpfully called setcookie():

<?php

setcookie("visited", true);

We can use this approach to show a welcome message to a visitor when he first comes
to the site—because without any previous cookies, he won’t have the “visited” cookie
set. Once he has received one response from this server, his “visited” cookie will be seen
on future requests. In PHP, cookies that arrived with a request can be found in the
$_COOKIE superglobal variable. It is an array containing the keys and values of the cook‐
ies that were sent with the request.

When working with APIs, the same facilities are available to us. When PHP is a server,
the techniques of using setcookie and checking for values in $_COOKIE are all that are
needed, exactly like when we are working with a standard web application. When con‐
suming external services in PHP, it is possible to send cookie headers with our requests
in the usual way.

Working with Cookies in PHP | 31

www.it-ebooks.info

http://www.it-ebooks.info/

There’s some nice support for sending cookies in PHP’s curl extension, which has a
specific flag for setting cookies rather than just adding headers. With PHP’s curl ex‐
tension, it is possible to do something like this:

<?php

$url = "http://requestb.in/example";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_COOKIE, "visited=true");
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

A selection of other options can be set using cookies, as seen when we discussed cap‐
turing them into the cookie jar in the code examples in “Cookie Mechanics” on page
29. The expiry date is probably the most-used setting. The expiry information is used
to let the client know how long this cookie is valid for. After this time, the cookie will
expire and not be sent with any later requests. This relies on the client and server clocks
being vaguely in sync, which is often not the case. Having exactly matching clocks is
rare, and in some cases clients can have their clocks set incorrectly by a number of years,
so beware.

The expiry can be set in the past to delete a cookie that is no longer needed. If an expiry
has not been set for a cookie, it becomes a “session cookie,” which means that it is valid
until the user closes the browser. This is why you should always close your browser in
an Internet cafe, even after logging out of your accounts.

Don’t confuse the “session cookie” with the cookies PHP uses to track user sessions
within a web application. You can use traditional PHP sessions in a web service, but it
is unusual to do so—usually API requests are more self-contained and stateless than
their web equivalents.

32 | Chapter 4: Cookies

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

JSON

JSON stands for JavaScript Object Notation, but don’t be fooled by the name. Although
it sounds as if it’s a JavaScript-specific format, it is easily readable and writeable by a
wide range of scripting languages today. It’s a very simple, lightweight format, which
can represent nested, structured data.

For example, if there were a data set that looked like this:

• message
— en: “hello friend”
— es: “hola amigo”

In JSON, that data would look like this:

{"message":{"en":"hello friend","es":"hola amigo"}}

If a piece of data is represented by a scalar value, then it is presented plainly. If it is
structured (as shown in the previous example), such as an associative array or an object
with properties in PHP, a curly brace is used to indicate a new level of depth in the data
structure. The keys and values are separated by colons, and each record at a given level
is separated with a comma.

It is also possible to show a list of items quite elegantly using JSON. Take this imaginary
shopping list:

• eggs
• bread
• milk
• bananas
• bacon

33

www.it-ebooks.info

http://www.it-ebooks.info/

• cheese

A JSON representation of this would simply be:

["eggs","bread","milk","bananas","bacon","cheese"]

As you can see here, many of the keys in the previous example are optional, and multiple
values are enclosed with the simple square brackets. If this list was in fact the value of
a property, then both kinds of brackets would be seen:

{"list":["eggs","bread","milk","bananas","bacon","cheese"]}

This example shows that our data contained a key/value pair, with the key “list.”

When to Choose JSON
JSON gives a very clear indication of the original data structure and conveys the values
within, but doesn’t give us any specific information about the exact data types that were
originally in use. Often, this isn’t important; HTTP is entirely string-based anyway so
it is usual to deal with this type of data in web-based applications.

JSON’s strongest point is that it a simple data format. It doesn’t take much storage space
in comparison to XML and isn’t too large to transfer “over the wire” or, in the case of
mobile applications, over a potentially slow and patchy data connection! Since it is quite
small and simple, it is inexpensive in processor terms to decode the JSON format, which
makes it ideal for less powerful devices such as phones.

Use JSON when information about the exact data format isn’t critical, and the effort
needed to decode it must stay light. It’s great for casual web or mobile applications—
and of course it’s absolutely ideal if you are supplying data to a JavaScript consumer,
since it handles this data format natively and quickly.

Content negotiation over HTTP using headers has already been covered earlier in the
book (see Chapter 3); this is how it is ascertained that the client would like a JSON
response format. As an example, here are the headers for a request/response pair in
which the consumer is requesting JSON and the API provides exactly that:

> GET /header.php HTTP/1.1
> Accept: application/json, text/html;=0.5

< HTTP/1.1 200 OK
< Content-Type: application/json

{"message":"hello there"}

You can see that the final entry in the example is the body of the response. The format
of this is the same JSON that was covered earlier in this chapter. Setting the headers
correctly is absolutely key, since without the correct Content-Type header, any
application receiving this request will not know how to decode it. If it requested JSON,

34 | Chapter 5: JSON

www.it-ebooks.info

http://www.it-ebooks.info/

it might hope that’s what was returned, but the Content-Type should always match. If
it isn’t specified, many web servers will default to sending a Content-Type of “text/html”,
which is not only inaccurate, but also dangerous because a browser will try to display
the content as HTML and allow embedded JavaScript—so do take care to set those
headers correctly.

Handling JSON with PHP
This is very simple, which is another reason to choose JSON as a preferred output
format! In PHP, you can use json_encode() to turn either an array or an object into
valid JSON.

For example, the previous example showed some JSON that looked like this:

{"message":"hello you"}

To generate that from PHP (which is exactly how I generated the previous examples),
I simply used this line:

echo json_encode(array("message" => "hello you"));

This shows a very simple array wrapped in json_encode() and using echo to output it
so I can see it when I request the page.

To handle incoming JSON data and turn it into a structure you can use, simply use
json_decode(), passing the string containing the JSON as the first argument. Sticking
with our existing simple example, the code could look something like this:

$data = json_decode('{"message":"hello you"}');
var_dump($data);

This example includes var_dump() to show exactly what actually happens when the
json_decode() function is used: by default, an object is returned. Here’s the output of
that script:

object(stdClass)#1 (1) {
 ["message"]=>
 string(9) "hello you"
}

Because there is no data-type information, JSON cannot tell whether this was an array
with keys and values, or an object with properties, before it was turned into JSON; there
is no difference between the two. We would get identical output from a script that looked
like this instead:

$obj = new stdClass();
$obj->message = "hello you";
echo json_encode($obj) . "\n";

Handling JSON with PHP | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, the same output would be shown if an object of any other class were used; the
object-type information just isn’t included in JSON so it can’t be retrieved at the other
end. When calling the json_decode(), it is possible to convert the data to an associative
array rather than an object—by passing true as the optional second argument:

$data = json_decode('{"message":"hello you"}', true);
var_dump($data);

This time around, our output is subtly different:

array(1) {
 ["message"]=>
 string(9) "hello you"
}

Whether you choose to work with objects or arrays is up to you, and really depends on
the application and also the language. PHP objects are a little bit heavier than arrays,
particularly in older versions of PHP (PHP 5.3 and earlier), so you will sometimes see
better performance when using simple arrays for simple data.

JSON in Existing APIs
As an example of working with an API that uses JSON, let’s take a look at a little piece
of the GitHub API and use JSON for our examples. The examples here work with
gists, which are similar to “pastebins”—places where you can put code or other text to
share with others.

Our example is very simple; it creates a gist using PHP:

// grab the access token from an external file (to avoid oversharing)
require("github-creds.php");

$data = json_encode(array(
 'description' => 'Gist created by API',
 'public' => 'true',
 'files' => array(
 'text.txt' => array(
 'content' => 'Some riveting text'
)
)
));

$url = "https://api.github.com/gists";
$ch = curl_init($url);

curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
curl_setopt($ch, CURLOPT_HTTPHEADER,
 array('Content-Type: application/json',
 'Authorization: token ' . $access_token)
);

36 | Chapter 5: JSON

www.it-ebooks.info

http://gist.github.com
http://www.it-ebooks.info/

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

There are a few things going on here that bear closer examination: sending JSON in
requests, working with an Authorization header, and using credentials to gain access.
You will notice that a variable $access_token is referenced, which isn’t set in the code.
This is set in the github-creds.php file, kept separate to stop access keys being leaked in
this text. In a real development project, I’d still keep this separate, but for a different
reason—using a separate file means I can exclude it from source control and avoid
publicizing my access keys to the world! Of course it does happen, and if it does, you
can always revoke your token and generate a new one. If you ever suspect that a token
has been leaked, then do destroy it and generate another (something to bear in mind if
your tokens are visible when demonstrating APIs).

A POST request is used to create a new gist (GitHub has a RESTful API—these examples
will come up again in Chapter 8) and send JSON-formatted data along with it. In fact,
this is a PHP array (because those are easy to understand and work with), which is then
converted to JSON using json_encode(). The resulting output is given as the value for
CURLOPT_POSTFIELDS and PHP sends it as the body of the request.

This example also sets some headers using the CURLOPT_HTTPHEADER option. The first
one is Content-Type, which we have already seen in many examples, and the second
one is Authorization. The Authorization header here includes the “token” and the
access token within it, because the GitHub API uses OAuth2 for authorization. We
discussed OAuth in Chapter 3.

If all goes well with the previous request, a 200 status code will arrive with the response
and the new gist will be created. The gist will also be visible on the Web. Alternatively,
the gist can be requested over the API: one of the things included in the response when
requesting the new gist is a link to it, so we can extend the example to also fetch the gist.
Since this is a public gist, no authorization is needed and it is possible to just grab the
data using file_get_contents(), then json_decode() it. Here’s the previous example
again, with a few more lines added to illustrate grabbing the gist that was created:

// grab the access token from an external file
require("github-creds.php");

$data = json_encode(array(
 'description' => 'Gist created by API',
 'public' => 'true',
 'files' => array(
 'text.txt' => array(
 'content' => 'Some riveting text'
)
)
));

JSON in Existing APIs | 37

www.it-ebooks.info

https://gist.github.com/
http://www.it-ebooks.info/

$url = "https://api.github.com/gists";
$ch = curl_init($url);

curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $data);
curl_setopt($ch, CURLOPT_HTTPHEADER,
 array('Content-Type: application/json',
 'Authorization: token ' . $access_token)
);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($ch);
curl_close($ch);

$gist = json_decode($result, true);
if($gist) {
 echo file_get_contents($gist['url']);
}

You can easily try this yourself, or for an even simpler way to interact with the GitHub
API, simply request all your own gists using https://api.github.com/user/user
name/gists and replacing username with your own GitHub username. Many APIs use
JSON in a similar way to exchange information with consumers, and this chapter has
covered how you can do that with PHP.

38 | Chapter 5: JSON

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

XML

XML is another very common data format used with APIs, and should feel familiar to
us as developers. Anyone who has spent much time with the Web will understand the
“pointy brackets” style of XML and will be able to read it. XML is a rather verbose format;
the additional punctuation and scope for attributes, character data, and nested tags can
make for a slightly bigger data size than other formats.

XML has many more features than JSON, and can represent a great many more things.
You’ll see more of this in Chapter 7, where complex data types and namespaces will
come into play. XML doesn’t have to be complicated; simple data can also be easily
represented, just as it is with JSON. Consider our shopping list again:

• eggs
• bread
• milk
• bananas
• bacon
• cheese

The XML representation of this list would be:

<?xml version="1.0"?>
<list>
 <item>eggs</item>
 <item>bread</item>
 <item>milk</item>
 <item>bananas</item>
 <item>bacon</item>
 <item>cheese</item>
</list>

39

www.it-ebooks.info

http://www.it-ebooks.info/

Working with XML in PHP isn’t as easy as working with JSON. To produce the previous
example, the code in Example 6-1 was used.

Example 6-1. Example of working with XML
<?php

$list = array(
 "eggs",
 "bread",
 "milk",
 "bananas",
 "bacon",
 "cheese"
);

$xml = new SimpleXMLElement("<list />");
foreach($list as $item) {
 $xml->addChild("item", $item);
}

// for nice output
$dom = dom_import_simplexml($xml)->ownerDocument;
$dom->formatOutput = true;
echo $dom->saveXML();

The starting point is the array that will be our list, then a SimpleXMLElement object is
instantiated with a root tag that forms the basis for the document. In XML, everything
has to be in a tag so an <item> tag has been introduced in order to contain each list item.

The final block only makes the output prettier, which isn’t usually important because
XML is for machines, not for humans. To get the XML to convert from a SimpleXM
LElement object, call the asXML() method on that object, which returns a string. The
string, however is all on one line!

The previous example instead converted from SimpleXMLElement to DOMElement, and
then grabbed the DOMDocument from that. Set the formatOutput to true, so when a call
is made to DOMDocument::saveXML() (to ask it to return the XML as a string), the re‐
sulting output will be nicely formatted.

When to Choose XML
XML’s abilities to represent attributes, children, and character data all provide a more
powerful and descriptive way to represent data than, for example, JSON. These same
features make XML a great way to represent very detailed information, including data-
type information, so it’s a great choice when those details really do matter. It can include
information about the types of data and custom data types, and each element can have
attributes that cover even more information.

40 | Chapter 6: XML

www.it-ebooks.info

http://www.it-ebooks.info/

The larger data format is less of a concern when working with powerful machines and
fast network connections, so XML is a popular choice when exchanging data between
computers or servers, rather than sending things to phones or web browsers. Do be
aware, however, that bandwidth costs may well still apply and may be a significant cost
factor when large amounts of data are being transferred.

APIs are all about integration between systems and sometimes the choice of data format
will be dictated by whatever is on the other end of the relationship. XML is particularly
popular among many enterprise technology platforms such as Java, Oracle, and .NET,
so users of these technologies will often request XML as a preferred format. If you are
working with products or people that would prefer XML or are more confident handling
this format, then offer XML, even if only as one of multiple data format options in
your API.

XML in PHP
There are many ways we can work with XML in PHP, and they’re all useful in different
situations. There are three main approaches to choose from and they all have their
advantages and disadvantages:

1. SimpleXML is the most approachable, and my personal favorite. It is easy to use
and understand, is well documented, and provides a simple interface (as the name
suggests) for getting the job done. SimpleXML does have some limitations, but it
is recommended for most applications.

2. DOM is handy when a project encounters some of the limitations in SimpleXML.
It’s more powerful and therefore more complicated to use, but there are a small
number of operations that can’t be done with SimpleXML. There are built-in func‐
tions to allow conversion between these two formats, so it’s very common to use a
combination of both in applications, as we saw earlier in Example 6-1.

3. XMLReader, XMLWriter, and their sister XMLParser are lower-level ways of dealing
with XML. In general, these tools are complicated and unintuitive but they have a
major advantage: they don’t load the entire XML document into memory at once.
If very large data sets are involved, then this approach will be your friend.

XML in Existing APIs
There are a wide variety of APIs using XML. This next example looks at the photo-
sharing site Flickr. The Flickr API provides a wide variety of functionality for working
with photos, and every language will have some classes available that you can use with
it, but there’s no reason not to interact with the API directly. Example 6-2 shows how
to find a list of kitten pictures.

XML in PHP | 41

www.it-ebooks.info

http://flickr.com
http://www.it-ebooks.info/

Example 6-2. Fetching data from Flickr’s XMLRPC service
<?php

require("api-key.php");
$animal = "kitten";
$data = file_get_contents('http://api.flickr.com/services/rest/?'
 . http_build_query(array(
 "method" => "flickr.photos.search",
 "api_key" => $api_key,
 "tags" => $animal,
 "format" => "xmlrpc",
 "per_page" => 6
))
);

This requests all the newest photos tagged “kitten” from Flickr. Flickr uses an API key
passed as a URL parameter, which is a different approach to the Authorization header
examples that have been demonstrated so far; each API will implement this in a different
way. Although the header is a better practice, the developers of Flickr were trailblazers
with implementing APIs for users, so there was no best practice when it was built. Since
it’s simply a GET request, this example uses file_get_contents() to fetch the carefully
crafted URL. The resulting response looks something like this:

<?xml version="1.0" encoding="utf-8" ?>
<methodResponse>
 <params>
 <param>
 <value>
 <string>
<photos page="1" pages="131292" perpage="6" to-
tal="787750">
 <photo id="8294579422" owner="9482106@N04" se-
cret="9a3bac5af4" server="8220" farm="9" ti-
tle="Smokey 2012-12-18" ispublic="1" isfriend="0"
isfamily="0" />
 <photo id="8294535628" owner="39066615@N08" se-
cret="90e31d5254" server="8074" farm="9" ti-
tle="Curious Tommy" ispublic="1" isfriend="0" is-
family="0" />
 <photo id="8293485771" owner="28797694@N04" se-
cret="6650f1db57" server="8213" farm="9" ti-
tle="Tiny tooth" ispublic="1" isfriend="0" isfami-
ly="0" />
 <photo id="8294535494" owner="39066615@N08" se-
cret="cc6fd4db0c" server="8351" farm="9" ti-
tle="Tommy" ispublic="1" isfriend="0" isfami-
ly="0" />
 <photo id="8294424628" owner="26742588@N04" se-
cret="b6cd3f3556" server="8224" farm="9" ti-
tle="White Is The New" ispublic="1" isfriend="0"

42 | Chapter 6: XML

www.it-ebooks.info

http://www.it-ebooks.info/

isfamily="0" />
 <photo id="8294402524" owner="33892219@N06" se-
cret="572968b650" server="8356" farm="9" ti-
tle="Cat Angel" ispublic="1" isfriend="0" isfami-
ly="0" />
</photos>
 </string>
 </value>
 </param>
 </params>
</methodResponse>

Because the actual data is sent as an escaped XML string, the XML is parsed in PHP,
then the string is extracted and parsed as a separate step in order to obtain the real data.
Flickr doesn’t supply the actual URL of the image, but gives enough information in the
response that the instructions can be followed to assemble the actual URL. SimpleXML
is used in this example—first to parse the response, then to parse the data inside it. This
library represents child elements as object properties (and each child is a SimpleXM‐
LElement), while attributes are accessed using array notation.

Here’s Example 6-2 again, processing the data and outputting it with titles and
tags:

<?php

require("api-key.php");
$animal = "kitten";
$data = file_get_contents('http://api.flickr.com/services/rest/?'
 . http_build_query(array(
 "method" => "flickr.photos.search",
 "api_key" => $api_key,
 "tags" => $animal,
 "format" => "xmlrpc",
 "per_page" => 6
))
);

$simplexml = new SimpleXMLElement($data);
$data_array = $simplexml->params->param->value->children();

$photos = new SimpleXMLElement($data_array->string);

if($photos) {
 foreach($photos->photo as $photo) {
 echo $photo['title'] . "\n";
 echo '<img src="http://farm' . $photo['farm'] . '.staticflickr.com/'
 . $photo['server'] . '/' .$photo['id'] . '_' . $photo['secret']
 . '.jpg" />
' . "\n";
 }
}

XML in Existing APIs | 43

www.it-ebooks.info

http://www.flickr.com/services/api/misc.urls.html
http://www.it-ebooks.info/

The main body of the data contains a <photos> tag with multiple <photo> tags inside
it—one for each photo. Each <photo> tag has some attributes inside it, so array notation
is used to access these, retrieve the title, and build the image tag.

When working with APIs, different data formats are seen in use in a variety of settings.
This chapter has shown how to create, work with, and parse XML. XML is more com‐
mon on older and larger applications, but the data format will depend on the target
market of the API, and many providers will offer multiple formats. Flickr, for example,
offers the data in both JSON and XML format, but also offers a serialized PHP format.
PHP’s serialized format is very easy to work with and is a great choice for two PHP
applications exchanging data; if you were to integrate Flickr into your own PHP appli‐
cation, this would be good format to choose. When integrating with applications on
other technology platforms, XML is a better-supported choice.

44 | Chapter 6: XML

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

RPC and SOAP Services

In this chapter we’ll be looking at two closely-related types of services: Remote Proce‐
dure Call (RPC) services, and SOAP. These two feel fairly similar, as they both involve
calling functions and passing parameters, but their implementations are in stark con‐
trast as the RPC is a very loose way of describing a service, whereas SOAP is very tightly
specified.

RPC
RPC services quite literally call procedures (i.e., functions) remotely. These types of API
will typically have a single endpoint, so all requests are made to the same URL. Each
request will include the name of the function to call, and may include some parameters
to pass to it. Working with RPC services should feel familiar to us as developers because
we know how to call functions—we simply do so over HTTP.

To start out, consider Example 6-2 when a call was made to Flickr. The URL we made
for that example was:

http://api.flickr.com/services/rest/?method=flickr.photos.search&tags=
kitten&format=xmlrpc

Within the URL, the name of the function can be seen in the “method” parameter
(flickr.photos.search), the particular tags to search for are found in tags=, and the
format parameter asks for the response in XML-RPC format.

There is a distinct difference between using an RPC-style service, with function names
and parameters included in the data supplied, and having a service that is true XML-
RPC, which is a very defined format. The option you choose depends entirely on the
situation you and your application find yourselves in, but whichever it is, be sure to
label it correctly.

45

www.it-ebooks.info

https://en.wikipedia.org/wiki/XML-RPC
https://en.wikipedia.org/wiki/XML-RPC
http://www.it-ebooks.info/

Building an RPC service layer for an application can be achieved very simply by wrap‐
ping a class and exposing it over HTTP. Example 7-1 shows a very basic class that offers
some toy functionality to use in the following examples.

Example 7-1. Example of the library class
<?php

class Library
{
 public function getDwarves() {
 $dwarves = array("Bashful", "Doc", "Dopey", "Grumpy", "Happy",
 "Sneezy", "Sleepy");
 return $dwarves;
 }

 public function greetUser($name) {
 return array("message" => "Hello, " . $name);
 }
}

To make this available via an RPC-style service, a simple wrapper can be written for it,
which looks at the incoming parameters and calls the relevant function. You could use
something along these lines:

<?php

include("library.php");
$lib = new Library();

if(isset($_GET['action'])) {
 switch($_GET['action']) {
 case "getDwarves":
 $data = $lib->getDwarves();
 break;
 case "greetUser":
 $data = $lib->greetUser(
 filter_input(INPUT_GET, 'name', FILTER_SANITIZE_STRING)
);
 break;
 default:
 http_response_code(400);
 $data = array("error" => "bad request");
 }

 header("Content-Type: application/json");
 echo json_encode($data);
}

This example does a very simple switch-case on the incoming “action” parameter and
passes in any variables as required (with validation, of course). We fetch the return data
from the underlying library, then send the appropriate content negotiation headers and

46 | Chapter 7: RPC and SOAP Services

www.it-ebooks.info

http://www.it-ebooks.info/

the data, formatted as JSON. If the request isn’t understood, then a 400 status code is
returned along with some error information.

The previous example shows a very simple RPC-style service using JSON, and illustrates
how easy it is to wrap an existing class of functionality and expose it over HTTP. Some‐
times it’s appropriate to use HTTP within an application to allow different components
to be scaled independently; for example, moving comments to a separate storage area
to be accessed by the original application rather than HTTP. In those scenarios, this
approach of wrapping existing, hardened code can be very useful indeed, and is quick
to implement.

Exactly as the difference between XML over an RPC service and XML-RPC is important
to remember, the same applies here. The example shows JSON being returned by an
RPC service, but JSON-RPC is something much more tightly specified. The *-RPC
services can be a better choice when working with people or technologies that under‐
stand those and are happy implementing them. If the requirements are for something
rather lighter and more approachable, then a simple custom format will work perfectly
well. Standards are always good, especially for externally-available systems, but don’t
feel that they are your only choice.

SOAP
SOAP was once an acronym for Simple Object Access Protocol; however, this has been
dropped and now it is just “SOAP.” SOAP is an RPC-style service that communicates
over a very tightly-specified format of XML. Since SOAP is well-specified when it follows
WSDL conventions, little work is needed to implement it in an application, or to inte‐
grate against it; as of PHP 5.0, PHP has a really excellent set of SOAP libraries for both
client and server.

You will see quite a few providers of SOAP implementations, and some open source
tools such as SugarCRM and Magento also offer SOAP integration points. When looking
at a new SOAP service, a tool called soapUI allows for browsing a service when a Web
Service Description Language (WSDL) file is supplied. In fact, soapUI is excellent and
can do about a hundred other things, including complicated functional testing, but for
now we will look at its SOAP functionality.

As an example, I took the WSDL file from RadioReference and added it into soapUI,
simply creating a new project, naming the project, and giving the URL to the WSDL file
for this service. By default, this will create a request for each of the available methods,
and generate an easy interface in which they can be executed. To run one, pick it from
the list on the left, and then click the green Play button above the sample request. I used
getCountryList as an example, as you can see in Figure 7-1.

SOAP | 47

www.it-ebooks.info

https://en.wikipedia.org/wiki/JSON-RPC
http://www.soapui.org/
http://radioreference.com
http://www.it-ebooks.info/

Figure 7-1. soapUI showing a request to getCountryList

The left half of the main pane shows the request that was sent, and the right half shows
the response that was received. This gives a quick overview of how things look when
using this API from our PHP code.

WSDL
This is a good moment to talk about the WSDL files that always seem to be mentioned
whenever SOAP comes up. When it was first mentioned in this chapter, the acronym
was defined as “Web Service Description Language,” and this is a pretty good description
of what is found in a WSDL file. It describes the location of a particular service, the data
types that are used in it, and the methods, parameters, and return values that are avail‐
able. The WSDL format is rather unfriendly XML, so it is best generated and parsed by
machines rather than humans. If you do find yourself in the situation of needing to read
one, it usually makes more sense to begin at the end of the document and then read
upwards.

WDSL files are commonly used with SOAP, but they can be used with other types of
web services. SOAP can also be used without a WSDL file, known in PHP as “non-
WSDL mode.” This chapter includes examples of SOAP with and without WSDLs, and
an example of generating a WSDL file.

PHP SOAP Client
Returning to the countries list, we can acquire it from PHP quite easily using the SOAP
extension. Take a look at this example, which does exactly that:

48 | Chapter 7: RPC and SOAP Services

www.it-ebooks.info

http://www.it-ebooks.info/

<?php

$client = new SoapClient('http://api.radioreference.com/soap2/?wsdl&v=latest');

$countries = $client->getCountryList();
var_dump($countries);

Simply using var_dump() doesn’t create a very pretty output, but it does illustrate what
these two lines of PHP have produced. The beginning of the output looks like this:

array(236) {
 [0]=>
 object(stdClass)#2 (3) {
 ["coid"]=>
 int(5)
 ["countryName"]=>
 string(11) "Afghanistan"
 ["countryCode"]=>
 string(2) "AF"
 }
 [1]=>
 object(stdClass)#3 (3) {
 ["coid"]=>
 int(8)
 ["countryName"]=>
 string(7) "Albania"
 ["countryCode"]=>
 string(2) "AL"
 }
 [2]=>
 object(stdClass)#4 (3) {
 ["coid"]=>
 int(60)
 ["countryName"]=>
 string(7) "Algeria"
 ["countryCode"]=>
 string(2) "DZ"
 }

Our two lines of PHP connected to a remote service and fetched us an array of objects
containing the country information as requested. This shows the joy of SOAP, which is
that very few lines of code are needed to exchange data between systems. The Soap
Client class in PHP makes consuming data with a WSDL file trivial.

PHP SOAP Server
What about when we want to publish our own services? Well, PHP has a SoapServer
that is almost as easy to use. Using the example library code from Example 7-1, we can
make it available as a SOAP service in non-WSDL mode:

SOAP | 49

www.it-ebooks.info

http://www.it-ebooks.info/

<?php

require('library.php');

$options = array("uri" => "http://localhost");

$server = new SoapServer(null, $options);
$server->setClass('Library');
$server->handle();

Since a WSDL is not used in the previous example, the Uniform Resource Identifier
(URI) for the service must be provided. The example then creates the SoapServer and
tells it which class holds the functionality it should expose. When the call to handle()
is added, everything “just works.” The PHP to call the code looks much like the previous
example, but without a WSDL file, it is necessary to tell the SoapClient where to find
the service by setting the location parameter and passing the URI:

<?php

$options = array("location" => "http://localhost/book/soap-server.php",
 "uri" => "http://localhost");

try {
 $client = new SoapClient(null, $options);
 $dwarves = $client->getDwarves();
 var_dump($dwarves);
} catch (SoapFault $e) {
 var_dump($e);
}

Again, just doing a var_dump() shows the results that are returned very clearly, but it
isn’t particularly pretty! The list of Dwarf names arrives in an array format:

array(7) { [0]=> string(7) "Bashful" [1]=> string(3) "Doc" [2]=> string(5)
"Dopey" [3]=> string(6) "Grumpy" [4]=> string(5) "Happy" [5]=> string(6) "Snee
zy" [6]=> string(6) "Sleepy" }

At this point, a working SOAP service exists, but not the WSDL file that is commonly
used with it. The WSDL file holds the description of the service functionality, which
means a file is created to describe our service, and should be recreated if any of the
functions available change or if anything is added. Many technology stacks, such as Java
and .NET, offer built-in functionality that makes it very easy to work with services that
use WSDL files.

Generating a WSDL File from PHP
There are various solutions for generating a WSDL file from your library class code;
some IDEs such as Eclipse have a button for it, and some frameworks also have this
functionality. The examples here use a tool that will work regardless of the IDE or
framework you use, because it’s written in PHP: the php2wsdl tool.

50 | Chapter 7: RPC and SOAP Services

www.it-ebooks.info

http://www.phpclasses.org/package/3509-PHP-Generate-WSDL-from-PHP-classes-code.html
http://www.it-ebooks.info/

To get set up, the files are extracted and placed in a php2wsdl/ directory. Then a
WSDLCreator object is instantiated and the files are added, along with information about
which endpoint to use for which class, and a WSDL file is generated. Here’s the code:

<?php

require("php2wsdl/WSDLCreator.php");

$wsdlgen = new WSDLCreator("LibraryWSDL", "http://localhost/book/wsdl");
$wsdlgen->addFile("library.php");
$wsdlgen->addURLToClass("Library", "http://localhost/book/soap-server.php");

$wsdlgen->createWSDL();
$wsdlgen->saveWSDL("wsdl");

This writes a file called wsdl to the local directory, and it contains the following:

<!--WSDL file generated by PHP WSDLCreator (http://www.protung.ro)-->
<definitions name="LibraryWSDL" targetNamespace="urn:LibraryWSDL"
xmlns:typens="urn:LibraryWSDL" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:soapenc="http://sche
mas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="getDwarves"/>
 <message name="getDwarvesResponse"/>
 <message name="greetUser">
 <part name="name" type="xsd:anyType"/>
 </message>
 <message name="greetUserResponse"/>
 <portType name="LibraryPortType">
 <operation name="getDwarves">
 <input message="typens:getDwarves"/>
 <output message="typens:getDwarvesResponse"/>
 </operation>
 <operation name="greetUser">
 <input message="typens:greetUser"/>
 <output message="typens:greetUserResponse"/>
 </operation>
 </portType>
 <binding name="LibraryBinding" type="typens:LibraryPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/
http"/>
 <operation name="getDwarves">
 <soap:operation soapAction="urn:LibraryAction"/>
 <input>
 <soap:body namespace="urn:LibraryWSDL" use="encoded" encoding
Style="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body namespace="urn:LibraryWSDL" use="encoded" encoding
Style="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>

SOAP | 51

www.it-ebooks.info

http://www.it-ebooks.info/

 <operation name="greetUser">
 <soap:operation soapAction="urn:LibraryAction"/>
 <input>
 <soap:body namespace="urn:LibraryWSDL" use="encoded" encoding
Style="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body namespace="urn:LibraryWSDL" use="encoded" encoding
Style="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="LibraryWSDLService">
 <port name="LibraryPort" binding="typens:LibraryBinding">
 <soap:address location="http://localhost/book/soap-server.php"/>
 </port>
 </service>
</definitions>

The WSDL as it stands isn’t terribly descriptive, as it can’t guess what data types could
be used or whether the methods should have arguments or return values. This is because
PHP is dynamically typed, data types are not declared when defining variables or passing
them into functions, and data types of return values are not declared either. Some other
languages do declare data types and WSDL files usually contain detailed type
information.

As an aside, look out for WSDL files with data types that PHP doesn’t support—if the
client or server is not in PHP, there can be a mismatch of formats in some cases. This is
the main reason why so many WSDL files have fairly loose types, with strings rather
than anything more specific. In fact, I have also seen an entire web service with a WSDL
file that described a single method and accepted a custom XML format within it, for
exactly this reason—not fun!

In order to make WSDL files more accurate, phpDocumentor comments can be added
to our source code. Where the data types for parameters and return values are specified
in documentation, the WSDL file will change to reflect the additional information.

PHP Client and Server with WSDL
Now there is a WSDL file to use with the Library example class, and the client and
server code can be altered to take advantage of this. First, here’s the server, with only
the constructor needing to change:

<?php

require('library.php');

$server = new SoapServer("wsdl"); // wsdl file name

52 | Chapter 7: RPC and SOAP Services

www.it-ebooks.info

http://www.phpdoc.org/
http://www.it-ebooks.info/

$server->setClass('Library');
$server->handle();

With the WSDL file in use, there’s no need to give any other information. Just give the
filename (this can be remote if appropriate) and all the location and other settings are
picked up from there. The client can do exactly the same:

<?php

try {
 $client = new SoapClient("http://localhost/book/wsdl");
 $dwarves = $client->getDwarves();
 var_dump($dwarves);
} catch (SoapFault $e) {
 var_dump($e);
}

At this point, you’re able to either build or consume RPC-style services in general, and
XML-RPC, JSON-RPC, and SOAP in particular, with the use of handy tools such as
soapUI.

SOAP | 53

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

REST

REST stands for REpresentational State Transfer, and in contrast to protocols such as
SOAP or XML-RPC, it is more a philosophy or a set of principles than a protocol in its
own right. REST is a set of ideas about how data can be transferred elegantly, and al‐
though it’s not tied to HTTP, it is discussed here in the context of HTTP. REST takes
great advantage of the features of HTTP, so the earlier chapters covering this and the
more detailed topics of headers and verbs can all come together to support a good
knowledge of REST.

In a RESTful service, four HTTP verbs are used to provide a basic set of CRUD (Create,
Read, Update, Delete) functionality: POST, GET, PUT and DELETE. It is also possible
to see implementations of other verbs in RESTful services, such as PATCH to allow
partial update of a record, but the basic four provide the platform of a RESTful service.

The operations are applied to resources in a system. The “Representational State Trans‐
fer” name is accurate; RESTful services deal in transferring representations of resources.
A representation might be JSON or XML, or indeed anything else. So what is a resource?
Well, everything is. Each individual data record in a system is a resource. At the first
stage of API design, a starting point could be to consider each database row as an in‐
dividual resource. Think of an imaginary blogging system as an example: resources
might be posts, categories, and authors. Every resource has a URI, which is the unique
identifier for the record.

A collection contains multiple resources (of the same type); usually this is a list of re‐
sources or the result of a search operation. A blog example might have a collection of
posts, and another collection of posts limited to a particular category.

RESTful URLs
RESTful services are often thought of as “pretty URL” services, but there’s more than
prettiness to the structures used here. In Chapter 5, the GitHub API was used as an

55

www.it-ebooks.info

http://www.it-ebooks.info/

example of an API using JSON; it is also a nice example of a RESTful API belonging to
a system that developers may already be familiar with. Take a look at some of the URLs
in this API:

• https://api.github.com/users/lornajane/
• https://api.github.com/users/lornajane/repos
• https://api.github.com/users/lornajane/gists

These delightful, descriptive URLs allow users to guess what will be found when visiting
them, and to easily navigate around a predictable and clearly designed system. They
describe what data will be found there, and what to expect. A key characteristic of
RESTful URLs is that they only contain information about the resource or collection
data—there are no verbs in these URLs. The best of API designs will have URLs that are
“hackable”—that is to say that they are predictable enough to successfully guess where
to find things. This links closely to the idea of hypermedia, which we’ll discuss shortly.

In order to alter how a collection is viewed (for example, to add filtering or sorting to
it), it is common to add query parameters to the URL, like so:

• http://api.joind.in/v2.1/events for all events
• http://api.joind.in/v2.1/events?filter=past for events that happened before today
• http://api.joind.in/v2.1/events?filter=cfp for events with a Call for Papers currently

open

Notice that the URLs are not along the lines of /events/sortBy/Past or any other
format that puts extra variables in the URL, but they use query variables instead. This
data set, in both cases, still utilizes the /events/ collection, but sorted and/or filtered
accordingly.

Resource Structure and Hypermedia
Exactly how the resource is returned can vary hugely; REST doesn’t dictate how to
structure the representations sent. For example, a GitHub gist in JSON format looks like
this:

{
 "created_at": "2012-12-20T15:37:51Z",
 "commits_url": "https://api.github.com/gists/4346013/commits",
 "description": "Gist created by API",
 "public": true,
 "html_url": "https://gist.github.com/4346013",
 "url": "https://api.github.com/gists/4346013",
 "forks_url": "https://api.github.com/gists/4346013/forks",
 "history": [
 {

56 | Chapter 8: REST

www.it-ebooks.info

https://api.github.com/users/lornajane/
https://api.github.com/users/lornajane/repos
https://api.github.com/users/lornajane/gists
http://api.joind.in/v2.1/events
http://api.joind.in/v2.1/events?filter=past
http://api.joind.in/v2.1/events?filter=cfp
http://www.it-ebooks.info/

 "change_status": {
 "additions": 1,
 "total": 1,
 "deletions": 0
 },
 "committed_at": "2012-12-20T15:37:51Z",
 "url": "https://api.github.com/gists/4346013/
f85e23d3443d0547292b202c3cd48881a28ebe9a",
 "version": "f85e23d3443d0547292b202c3cd48881a28ebe9a",
 "user": {
 "type": "User",
 "organizations_url": "https://api.github.com/users/lornajane/orgs",
 "gists_url": "https://api.github.com/users/lornajane/gists{/gist_id}",
 "followers_url": "https://api.github.com/users/lornajane/followers",
 "login": "lornajane",
 "events_url": "https://api.github.com/users/lornajane/events{/privacy}",
 "repos_url": "https://api.github.com/users/lornajane/repos",
 "following_url": "https://api.github.com/users/lornajane/following",
 "received_events_url": "https://api.github.com/users/lornajane/
received_events",
 "gravatar_id": "372a6ef44baaa7291f1a6698348d2e98",
 "subscriptions_url": "https://api.github.com/users/lornajane/subscrip
tions",
 "starred_url": "https://api.github.com/users/lornajane/starred{/owner}{/
repo}",
 "url": "https://api.github.com/users/lornajane",
 "avatar_url": "https://secure.gravatar.com/avatar/
372a6ef44baaa7291f1a6698348d2e98?d=https://a248.e.akamai.net/assets.github.com
%2Fimages%2Fgravatars%2Fgravatar-user-420.png",
 "id": 172607
 }
 }
],
 "forks": [

],
 "user": {
 "type": "User",
 "organizations_url": "https://api.github.com/users/lornajane/orgs",
 "gists_url": "https://api.github.com/users/lornajane/gists{/gist_id}",
 "followers_url": "https://api.github.com/users/lornajane/followers",
 "login": "lornajane",
 "events_url": "https://api.github.com/users/lornajane/events{/privacy}",
 "repos_url": "https://api.github.com/users/lornajane/repos",
 "following_url": "https://api.github.com/users/lornajane/following",
 "received_events_url": "https://api.github.com/users/lornajane/
received_events",
 "gravatar_id": "372a6ef44baaa7291f1a6698348d2e98",
 "subscriptions_url": "https://api.github.com/users/lornajane/subscriptions",
 "starred_url": "https://api.github.com/users/lornajane/starred{/owner}{/
repo}",
 "url": "https://api.github.com/users/lornajane",

Resource Structure and Hypermedia | 57

www.it-ebooks.info

http://www.it-ebooks.info/

 "avatar_url": "https://secure.gravatar.com/avatar/
372a6ef44baaa7291f1a6698348d2e98?d=https://a248.e.akamai.net/assets.github.com
%2Fimages%2Fgravatars%2Fgravatar-user-420.png",
 "id": 172607
 },
 "updated_at": "2012-12-20T15:37:51Z",
 "git_pull_url": "https://gist.github.com/4346013.git",
 "comments": 0,
 "id": "4346013",
 "comments_url": "https://api.github.com/gists/4346013/comments",
 "files": {
 "text.txt": {
 "type": "text/plain",
 "filename": "text.txt",
 "size": 18,
 "language": null,
 "raw_url": "https://gist.github.com/raw/
4346013/336516c8e23e55265245bf589ae56aafa9cbbcf2/text.txt",
 "content": "Some riveting text"
 }
 },
 "git_push_url": "https://gist.github.com/4346013.git"
}

Whereas a talk from Joind.in, also in JSON, would look like this:

{
 "talks": [
 {
 "talk_title": "Everything You Ever Wanted to Know About Deployment
But Were Afraid to Ask",
 "talk_description": "Deployment can be a real bugbear for many web
developers. From building something easy to deploy and manage; to coming up
with a repeatable, consistent process; to continuous deployment… deployment can
keep you up at night for months on end. In this talk I’ll cover the following
topics:\n- The deployment maturity model\n- How to build a deployable applica
tion, from technology choice to instrumentation\n- Deployment velocity: Why
your process matters more than how often you deploy\n- Deployment tools and pro
cesses: How to automate your troubles away\n- CI/Automated testing: Know you’re
deploying something good, or at least how worried you should be about it\n- Auto
mated testing vs monitoring: How they converge\n- When are you ready to deploy
continuously? How do you make the jump?",
 "start_date": "2012-11-08T13:00:00-05:00",
 "average_rating": 5,
 "comments_enabled": 1,
 "comment_count": 4,
 "speakers": [
 {
 "speaker_name": "Laura Thomson",
 "speaker_uri": "http://api.joind.in/v2.1/users/20041"
 }
],
 "tracks": [],

58 | Chapter 8: REST

www.it-ebooks.info

http://www.it-ebooks.info/

 "uri": "http://api.joind.in/v2.1/talks/7660",
 "verbose_uri": "http://api.joind.in/v2.1/talks/7660?verbose=yes",
 "website_uri": "http://joind.in/talk/view/7660",
 "comments_uri": "http://api.joind.in/v2.1/talks/7660/comments",
 "verbose_comments_uri": "http://api.joind.in/v2.1/talks/7660/
comments?verbose=yes",
 "event_uri": "http://api.joind.in/v2.1/events/1056"
 }
],
 "meta": {
 "count": 1,
 "this_page": "http://api.joind.in/v2.1/talks/7660?start=0&resultsper
page=20"
 }
}

The two formats are quite different, and in fact the fields and formats available in a
RESTful service will differ between each and every kind of service you could wish to
encounter, but there are some common features, as can be seen even from this small
sample size. Both responses include some nested information and some links out to
other resources or collections.

The links to other resources/collections are called hypermedia and are an excellent in‐
clusion in RESTful services; since every resource is identified by its URI, this data can
be given as part of the response data. In this way, consuming clients can follow links,
rather like a user clicking links on the Web, instead of assembling the next URL from
the instructions and concatenating ID fields into it. Hypermedia makes the whole ex‐
perience smoother and easier for consumers by offering the ability to find their way
around easily. For example, using the previous data set, the following actions are
available:

1. Look at this resource, and then visit the comments_uri to see the comments made
on this talk.

2. See more information about the event this talk belongs to by visiting the
events_uri.

3. From there, follow another piece of hypermedia in the talks_uri field to see a list
of other talks at the event.

Another consideration when designing and working with RESTful APIs is whether or
not it is useful to send additional nested data with the response to avoid a consumer
having to make too many calls to the server. While GitHub and Joind.in both offer user
information at their own locations, they also include some nested data in the responses
shown here, which the consumer is likely to need.

On the other hand, sometimes too much information can lead to unnecessarily large
amounts of data to transfer, and different APIs handle this in different ways. One

Resource Structure and Hypermedia | 59

www.it-ebooks.info

http://api.joind.in/v2.1/talks/7660
http://api.joind.in/v2.1/events/1056
http://api.joind.in/v2.1/events/1056/talks
http://api.joind.in/v2.1/events/1056/talks
http://www.it-ebooks.info/

common pattern is that, by default, a subset of the information is returned, but func‐
tionality to retrieve more information is also offered—this is what the Joind.in ver
bose_uri offers. Alternatively, the extra information may be made available as a separate
resource, such as offering /article/42 as the data about a blog post, but excluding the
(potentially large) body of the post, which can then be found at /article/42/body.
Either approach shows consideration to the consumer, but which one is the right fit will
depend on any particular scenario.

Data and Media Types
A RESTful service can offer a selection of data types, and it’s very common to offer
multiple types. Often, these will be JSON or XML, but there can be others; for example,
Joind.in will respond to GET requests with an HTML data type if the Accept header
requests it. The format decision will be made on the server, usually on the basis of the
Accept header (you can read more about content negotiation in “Headers for Content
Negotiation” on page 22).

Some services will allow a content indicator to be present in the URL itself, but this
mixes up the identification of the resource with information about the representation
desired. In general, the Accept header is the “right” way to indicate the preferred format,
and a URL parameter may lower the barrier of entry, depending on your consumers.

Including a version number in your URL is a matter of taste. It is a very practical way
to offer a service while identifying the current version of that service and opening the
door to offering new versions of the service in the future. However, there are alternatives,
and an elegant alternative is to use media types. These are invented content types that
specifically describe the structure of the resource that will be returned, and can also
include version information, so if the structure of a particular resource changes between
versions, that change can be conveyed without a URL change.

Not all APIs will support media types, but they can be a good way to version represen‐
tation structures for users who have a requirement to keep them predictable, and are
happy to work with such specific content negotiations. GitHub does have some media
type support (their reference page explains the detail very well) that goes beyond the
usual application/json levels. They support media types specific to GitHub (appli
cation/vnd.github+json) and also support using the media type to specify the version
of representation that should be returned (application/vnd.github.v3).

HTTP Features in REST
REST makes the most of HTTP’s best features, placing all the metadata about the request
and response into the headers, and reserving the main body of the communications for
the actual content. This means that a correctly-implemented RESTful service will make

60 | Chapter 8: REST

www.it-ebooks.info

http://developer.github.com/v3/media/
http://www.it-ebooks.info/

use of verbs, status codes, and headers so that all the extra information goes in the
“envelope” of the request, and only the content is in the body. See Appendix A and
Appendix B for tables of common status codes and headers. To look at how these various
pieces go together, the next few sections take a walk through some examples of actual
CRUD operations.

Create Resources
Resources are created by making a POST request to the collection to which the new
resource will belong. The body of the request will contain a representation of the new
resource, with the Content-Type header set appropriately so that the server will know
how to understand it. When the resource has been successfully created, a successful
status code will be included with the response.

It’s common to choose a status code of 201 (which means “Created”) when a new re‐
source has been made, and to either return a representation of the new resource in the
body, or to set a Location header, redirecting the consumer to the URI of the new record.
It’s perfectly valid to return a 200 (“Accepted, but not completed”), however, and helpful
to return a representation of the resource (appropriately formatted according to the
Accept header) including information about the URI of this new item.

In the event that the resource cannot be created, an informative status code and error
message should be returned to the user. There is more in-depth discussion of error
handling appropriate status codes in Chapter 12. In general, a 400 “Bad request” or 406
“Not acceptable” status code would be appropriate for a request that either wasn’t un‐
derstood, or didn’t pass validation rules. There are also a very large number of other
status codes to choose from (see Appendix A), depending on what exactly went wrong.

An alternative approach to using POST on a collection to create a new resource is ap‐
propriate in the situation when the consumer, rather than the server, sets the identifier
of the new record. In this scenario, the representation of the new resource can instead
be sent in a PUT request directly to the new URI. Care must be taken, when designing a
system like this, to ensure that multiple consumers do not pick the same URIs, either
causing conflicts or overwrites. At least make sure that these are dealt with in a sane
way, perhaps using the 409 status code, which means “Conflict.”

Read Records
To fetch representations of resources, use the GET verb applied to either a collection or
an individual resource without sending any body content with the GET request. The
resources will usually appear with exactly the same structure, regardless of whether they
were requested within a collection or on their own. The status code will be 200 if the
record(s) were successfully retrieved, although other “good” status codes may also be

HTTP Features in REST | 61

www.it-ebooks.info

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.it-ebooks.info/

used here such as 302 “Found” or 304 “Not modified” (more about caching in the next
section when we discuss how to update records).

If, however, the record isn’t successfully found, a status code describing the problem
will be returned. In a vast number of cases, this will be a 404 status code, to indicate that
the record wasn’t found or doesn’t exist. If the user isn’t authenticated, a 401 “Not Au‐
thorized” status code may be returned; a user who has identified herself but doesn’t have
permissions to see this item may receive a 403 “Forbidden” instead. Any one of a number
of other possible failure cases could also occur, and these should have the appropriate
status codes associated with them.

If your API implements rate limiting, then it might be that the resource exists and the
user has permission to see it, but she has exceeded her allotted number of requests in a
given time frame. In this situation, either a 420 “Enhance your calm” or 429 “Too many
requests” would be good statuses to return.

Some APIs (this includes GitHub) will return a 404 to indicate that the record exists but
the requesting user does not have access to it. This makes it impossible to deduce the
existence (or nonexistence) of a record without the rights to see it! Exposing such details
is known as “leaking information” and in many settings it is something of which to be
wary.

Update Records
To edit records RESTfully is a multistep process. First, the resource should be retrieved
by GET. Then, the representation of the resource can be altered as needed, and that
resource should be PUT back to its original URI. Even if only a small part of the record
needs to be changed, REST deals with representations of resources so the whole resource
will be fetched and sent back for the update. Identical to when a resource was created
using POST, the PUT request will include the resource representation in the body and the
appropriate Content-Type in the header.

It’s quite common to include some identifying information for the contents of the re‐
source, such as a Last-Modified header or an ETag, to allow for checking of whether
the resource changed as a result of something else between the GET and PUT, as this isn’t
an atomic operation. This is closely linked to how cacheable different URIs are, which
we’ll cover later in this chapter (see “Caching Headers” on page 64).

For a newcomer to REST, updating a representation of a whole resource can seem cum‐
bersome when only a tiny part of it is actually changing, but don’t be tempted to diverge
from this approach and break the RESTfulness of the design. If it really does seem like
an alternative approach would be better, then you have two options: either create a sub-
resource or use the PATCH verb.

62 | Chapter 8: REST

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a sub-resource is simplest, if you want to change one field of a resource, and
make that field available at its own URI. For example, if it seems like overkill to update
a whole user record just to change an email address, then instead create a resource /
user/42/email. This smaller resource can then be subject to GET, change, and PUT
instead of fetching and then pushing back a whole user profile.

The alternative is to use PATCH to make a small change to an existing record. This isn’t
commonly-supported (support for PATCH is relatively uncommon even in modern
APIs, but is also uncommon at an infrastructure layer, so beware that not all networks
will allow PATCH), but an example is available because once again, GitHub has it. Git‐
Hub allows the user to make changes to individual fields, in a record by supplying the
data you want to change and making a PATCH request instead of a PUT request to the
existing resource’s URI.

Delete Records
This is the most damaging move but it’s also the simplest. The DELETE verb is sent with
a request to the URI of the item to be deleted, with no body content necessary. Many
services will return 200 for “OK”—or simply a 204 for “No content”—when an item was
successfully deleted, and a 404 “Not found” if the item didn’t exist. However, if the
request was made to delete something, and the record doesn’t exist, many services see
that as “success” and will return 200 or 204, regardless of what really happened (unless
the record couldn’t be deleted for some reason, such as the user does not have the proper
permission). This idea of always behaving in the same way each time the action is called
is known as idempotency and is expected behavior for both GET and DELETE requests.

Additional Headers in RESTful Services
As seen in Chapter 3, it is possible to convey a wide selection of information using HTTP
headers. There are a couple things that are relevant to the majority of RESTful services,
which will now be examined in more detail: authorization and caching. These are both
areas in which best practice for APIs differs very little from the best practices when
building websites, but they bear revisiting in an API context.

Authorization Headers
A common header that has been seen earlier in this book is the Authorization header.
This can be used with a variety of different techniques for authenticating users, all of
which will be familiar to web developers.

The simplest approach to authorization is HTTP Basic authentication (for more detail,
see the RFC), which requires the user to supply a username and password to identify
himself. Since this approach is so widespread, it is well supported in most platforms,
both client and server. Do beware, though, that these credentials can easily be inspected

Additional Headers in RESTful Services | 63

www.it-ebooks.info

http://tools.ietf.org/html/rfc1945#section-11
http://www.it-ebooks.info/

and reused maliciously, so this approach is appropriate only on trusted networks or over
SSL. When the user tries to access a protected resource using basic authentication, he
will receive a 401 status code in response, which includes a WWW-Authenticate header
with the value Basic followed by a realm for which to authenticate. As users, we see an
unstyled pop up for username and password in our browser; this is basic authentication.
When we supply the credentials, the client will combine them in the format user
name:password and Base64 encode the result before including it in the Authorization
header of the request it makes.

Similar to basic authentication, but rather more secure, is HTTP Digest authentication
(the Wikipedia page includes a great explanation with examples). This process combines
the username and password with the realm, a client nonce (a nonce is a cryptographic
term meaning “Number Used Once”), a server nonce, and other information, and hashes
them before sending. It may sound complicated to implement but this standard is well
understood and widely implemented by both clients and servers.

Other applications may have alternative approaches, including using cookies and ses‐
sions to record a user’s information after he has supplied credentials to a login endpoint,
for example. Others will implement solutions of their own making, and many of these
will use a simple API key approach. In this approach, the user acquires a key, often via
a web interface or other means, that she can use when accessing the API. A major
advantage of this approach is that the keys can be deleted by either party, or can expire,
removing the likelihood that they can be used with malicious intent. This is nicer than
passing actual user credentials, as the details used can be changed. Sometimes API keys
will be passed simply as a query parameter, but the Authorization header would also be
an appropriate place for such information.

An even better solution has emerged in the last few years: OAuth (version 2 is much
better than version 1). OAuth arises as a solution to a very specific and common prob‐
lem: how do we allow a third party (such as an external application on a mobile device)
to have secure access to a user’s data? This problem is solved by establishing a three-
way relationship, so that requests coming to the providing API from the third-party
consumer have access to the user’s data, but do not impersonate that user. For every
combination of application and user, the external application will send the user to the
providing API to confirm that she wants access to be granted. Once the relationship is
established, the user can, at any time, visit the providing API (with which she originally
had the relationship of trust) to revoke that access. Newer versions of OAuth are simple
to implement but once again should always be used over SSL.

Caching Headers
Issues of caching are not specific to REST, or even to APIs, but they can help enormously
when an API server needs to handle a lot of traffic. Requests that perform actions cannot
be cached, as they must be processed by the server each time, but GET requests certainly

64 | Chapter 8: REST

www.it-ebooks.info

https://en.wikipedia.org/wiki/Digest_access_authentication
http://oauth.net/
http://www.it-ebooks.info/

can be, in the right situation. Caching can either be done by the server, which makes a
decision about whether to serve a previous version of a resource, or by clients storing
the result of previous requests and allowing us to compare versions.

Giving version information along with a resource is a key ingredient in client-side
caching, and also links with the non-atomic update procedures in REST as was men‐
tioned in “Update Records” on page 62. When returning a resource, either an ETag
(usually a hash of the representation itself) or a Last-Modified (the date this record
last changed) is included with the response. Clients that understand these systems can
then store these responses locally, and when making the same request again at a later
point, they can tell us which version of a resource they already have. This is very similar
to the way that web browsers cache assets such as stylesheets and images.

When a resource is served with an ETag header, some textual representation of the
resource, perhaps a hash of the resource or a combination of file size and timestamp.
When requesting the resource at a later date, the client can send an If-None-Match
header with the value of the ETag in it. If the current version of the resource has a non-
matching ETag, then the new resource will be returned with its ETag header. However
if the ETag values do match, the server can simply respond with a 304 “Not modified”
status code and an empty body, indicating to the client that it can use the version it
already has without saving transferring the new version. This can help reduce server
load and network bandwidth.

In exactly the same way, a resource that is sent with a Last-Modified header can be
stored with that header information by the client. A subsequent request would then
have an If-Modified-Since header, with the current Last-Modified value in it. The
server compares the timestamp it receives with the last update to the resource, and again
either serves the resource with new metadata, or with the much smaller 304 response.

RESTful versus Useful
REST is truly an elegant way to build services, and a nice way to work with data over
HTTP. Not every application has requirements that are best met by a RESTful service,
so don’t be tempted to make architectural decisions based on the current fashionable
technologies. Standards are always an excellent thing to follow; they’ve been created by
people who have implemented this several times and learned from their mistakes. That
said, don’t be afraid to break the rules just as you would for any other architectural
decision in software engineering. Many APIs are criticized because they are deemed
“not RESTful.” While I recommend that you follow the strategies in this chapter, it’s
acceptable for you to take inspiration from REST, rather than implementing it to the
letter. Do make sure, though, that your API is still well documented, robust, and most
of all: useful.

RESTful versus Useful | 65

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Debugging Web Services

Anyone with extensive development experience has, by default, extensive debugging
experience. Many of the skills learned as a PHP developer on more traditional web
applications are very useful when working with APIs. Understanding how the pieces go
together is probably the most important part of the puzzle. When you see a problem,
you must answer several questions to determine the solution. Is that something that
happened in the server? During transfer? Did the client not understand the response it
received? And, if you have an application consuming an API, is it the application or the
remote API with the problem? Narrowing down where exactly to look when things go
wrong will save time and sanity.

Particularly with complex projects, it’s easy for the problem of “it’s not working” to be
blamed on an API, especially if different teams take responsibility for different system
components. In one such situation, the team providing the API created a requirement
that all bug reports be provided with a replication case using only Curl. This caused
grumbling from the developers of the consuming application, but at the end of the
project, it emerged that half of the “bugs” in the API were in fact bugs in the consuming
application code, and the developers had been able to track down and squash the bugs
in their own system without interrupting the work of the API team. To this day I rec‐
ommend Curl or other very simple replication cases, excluding as many other compo‐
nents as possible.

Whether Curl gives you a great example of how to replicate the bug or not, it is very
useful. Re-running a request through Curl is very quick and very simple; most of the
data to send can be stored in a file and shared between collaborators, giving everyone
a very easy way to see the problem. Seeing the problem is half the challenge—actually
fixing it is the other half.

If a team isn’t familiar with Curl, or would prefer to work with GUI tools, then the same
principle applies, but do try to keep as many dependencies out of the equation as pos‐
sible. A bug that is impossible to replicate (or that seems complicated from its

67

www.it-ebooks.info

http://www.it-ebooks.info/

description) probably won’t get fixed quickly. In some scenarios, Curl won’t do the job.
For example, a system that uses OAuth1 would require much hashing of variables on
the client side, which is very tricky to do with Curl, so in this case a different tool would
be more appropriate.

Debug Output
Every PHP developer will have used print_r() or var_dump() at some point to return
some additional information to the client during the course of the server processing a
request. This technique is quick, easy, approachable, and can often be all that is needed
to spot a typo or missing value.

When working with APIs, this can still sometimes be useful, but it does carry health
warnings! If standard debug output is included with a response, and the client is ex‐
pecting valid JSON, XML, or some other format, then your client will not be able to
parse the response. For requests made from Curl, or in situations when the response is
viewed as it is rather than parsed, the debug output technique is great. For other sce‐
narios, other approaches may be a better fit.

Logging
When it is important to continue returning clean responses, more information can be
acquired from an API, as it processes requests, by adding logging. This just means that,
rather than sending debug information along with the output, it is sent somewhere else
to be inspected (usually in a file on the server).

By default, PHP will write errors to the location specified in the configuration directive
error_log in php.ini. If this is left empty, then PHP defaults to writing to Apache’s
error log (or stderr, if you’re not using Apache). It is possible to write other information
to this log, as well as the errors generated by PHP itself, using the error_log() function:

<?php

error_log("this is an error!");

Perhaps this looks like a rather oversimplified example, but at its most basic level this
is all that is needed to add logging. When I look in the Apache error log on the server
(the exact file location varies between platforms), I see this:

[Wed Dec 26 14:49:36 2012] [error] [client 127.0.0.1] this is an error!, refer-
er: http://localhost/book/
[Wed Dec 26 14:49:36 2012] [error] [client 127.0.0.1] File does not
exist: /var/www/favicon.ico

A couple of errors can be seen in the previous output. The first was sent by the code
sample, which deliberately wrote a message to the error log, and the other is what

68 | Chapter 9: Debugging Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

happened when my browser requested a favicon, but none existed. Using this approach,
error_log() calls can be added into a project to help debug a particular issue. The
output from the error log can then be checked to discover the additional information
needed, rather than sending the additional error information back to the client.

Logging is a powerful technique; there are many more tricks available to make it even
more effective. Log messages can be directed to a specific file, for example, rather than
to the generic error log. To do this, use the error_log() function but with some addi‐
tional arguments. The first argument is the message, as before, the second argument is
where to send the message (3 means “to a file;” for more detail see PHP’s error log
documentation), and the final argument is the file name to use:

<?php

error_log("all gone wrong", 3, "log.txt");

The file should be writeable by the user that the web server represents, and then the
error message will appear in the file (beware: it doesn’t add a new line after each mes‐
sage). Specifying a file means that all the debug information can be kept in one place
and will be easy to follow. The file could be truncated between test runs to make it even
clearer exactly what happened in any given scenario.

There are lots of excellent libraries around to make logging easier, and if you’re using a
framework, it will probably offer some great logging functionality. There are some great
features in dedicated logging tools or modules that will help keep track of what’s hap‐
pening in your application without resorting to a var_dump() call in the middle of your
JSON output:
Multiple storage options

Many logging libraries support more ways to store log entries than just email or
files. Usually it’s possible to log into many different kinds of databases, various file
formats, and other options. Depending on how you want to use the data, this can
be very useful indeed.

Configurable logging levels
Logging libraries usually allow you to state the level of error that is being logged;
this is comparable to the PHP approach of having ERROR, WARN, NOTICE, and so on.
The application allows you to set what level of logging should be performed. This
means you can change the logging levels on a lower-traffic test platform when you
want to see more detail, or increase them temporarily to see more detail during a
particular set of operations. As a result, the log files don’t become too huge when
things are going well, but more detail can be obtained when required.

Sending error messages to email is very useful at times, particularly in situations when
you want to immediately draw attention to the event. This might be because an event
has occurred that must be reacted to urgently, such as a major and unusual failure case.

Logging | 69

www.it-ebooks.info

http://php.net/error_log
http://php.net/error_log
http://www.it-ebooks.info/

Another very useful situation when you might want to have your code email some details
to you is if a bug can’t be easily reproduced. Instead, set up your code to collect lots of
information; should the bug manifest, then the application can let you know and send
information alongside it. This gives more specific information about the problem than
watching the general logs, and can be a great way to deal with elusive or edge-case bugs.

Debugging from Outside Your Application
Getting into your application to add debugging has all kinds of downsides. First, it
requires that you have access to edit the code in both client and server, which often won’t
be the case. Making changes to your application to add debug information can cause
the bug to disappear (this is known as a “heisenbug”) or introduce other unintended
effects.

A better alternative, particularly if you want to only observe the traffic arriving and
leaving, is to use another application to inspect the traffic from outside the application.
There are two tools in particular that can be used for this kind of approach: Wireshark
and Charles. They offer fairly similar functionality in different ways, so the next sections
cover them in turn.

Wireshark
Wireshark is a “network protocol analyzer.” In plain English, that means that it takes a
copy of the traffic going over your network card, and presents it to you in a human-
readable way. You don’t need to do any configuration of your application or network
settings to use it; once it’s installed, it can just start showing us the traffic.

When you run Wireshark, you see a screen like the one in Figure 9-1.

The lefthand column lets you pick which network card you want to capture (this
screenshot is from my Ubuntu laptop; you’ll see things a little differently on different
operating systems). The “eth0” is your local wired network, “wlan0” is the wireless net‐
work, and “lo” is your local loopback. Look out for this if you’re making API calls to
localhost as they use “lo” rather than whatever connection your machine uses to access
the outside world. If you’re working with virtual machines, you will see more network
connections here so you can pick the one for which you want to see the traffic.

70 | Chapter 9: Debugging Web Services

www.it-ebooks.info

http://www.wireshark.org
http://www.it-ebooks.info/

Figure 9-1. Initial screen when starting Wireshark

The other option you might want to use from this initial view is “open.” Wireshark runs
on your desktop or laptop and captures the traffic going over a network card on your
machine. However, what if it’s not your machine that you need the traffic from? It’s rare
to have a server with a GUI that you could install Wireshark on, so instead a command-
line program called tcpdump (Windows users have a port called WinDump) can be used.
This program captures network traffic, and the resulting files can be downloaded and
opened in Wireshark to be analyzed.

Whether the traffic is captured live or comes from a file captured elsewhere, what hap‐
pens next is the same: we view the traffic and start to examine what is happening. When
I start a capture on my machine, I see something like Figure 9-2.

Debugging from Outside Your Application | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-2. Wireshark showing all network card traffic

The first thing to do here is to restrict the amount of traffic being displayed to just the
lines of interest by placing *http* in the filter field. Now a list of all the HTTP requests
and responses that have been taking place are visible, making it possible to pick out the
ones that are useful for solving a given problem.

Clicking on a request makes the detail pane open up, showing all the headers and the
body of the request, or response, that was selected. This allows you to drill down and
inspect all the various elements of both the body and the header of the HTTP traffic;
when debugging, this is a very helpful technique for finding issues. Either nonsense is
being sent by the client, or returned by the server, or (often) both.

To see the requests and responses linked together, right-click on either the request or
the response and choose “follow TCP stream.” With this, you can clearly see the requests
and responses side-by-side, with the request shown in red (trust me that this is the first
four lines, if you’re seeing this in monochrome) and the response shown in blue in
Figure 9-3.

72 | Chapter 9: Debugging Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-3. Wireshark showing a single TCP stream

The ability of Wireshark to quickly show what’s going on at HTTP level without mod‐
ifying the application is a huge advantage. Often, it’s the first tool out of the box when
something that “usually works” has suddenly stopped, and can show, for example, the
text/html response, which is confusing the client that had been expecting JSON (a
surprisingly frequent occurrence).

Charles Proxy
Charles is a paid-for product (a single license is $50 at the time of writing), but it’s one
that is absolutely invaluable, especially when working with mobile devices or when more
advanced features are needed. Charles logs a list of requests and allows you to inspect
them, just like Wireshark, but it works in quite a different way, as it is a true proxy, and
requests are passed through Charles rather than the network traffic being duplicated.

Getting set up with Charles is straightforward; it automatically installs and will prompt
you to install a plug-in for Firefox to enable proxying through Charles by default. If
you’re working with a web page making asynchronous requests, this is an excellent setup.

Debugging from Outside Your Application | 73

www.it-ebooks.info

http://www.charlesproxy.com/
http://www.it-ebooks.info/

For those not using Firefox, you need to ask your application to proxy through Charles.
Since it’s common to have proxies in place, particularly on corporate networks, this is
fairly easy to do on most devices; there are advanced settings when creating a network
connection that will allow you to do this. You will need to enter the IP address of your
machine, and the port number (8888 by default, but you can change it in the proxy
settings in Charles) into the proxy settings fields when creating and editing the network
settings. When a new device starts proxying through your machine, you’ll get an alert
from Charles that lets you allow or deny access.

Once everything is up and running, click on the “Sequence” tab and you’ll see a screen
similar to Figure 9-4.

Figure 9-4. Charles showing some web requests in detail

The top part of the pane is a list of requests that came through the proxy (I just used
Firefox to request http://google.co.uk as an example), and when you select one of these,
the detail shows in the bottom pane. This area has tabs upon tabs, making all kinds of
information available for inspection. There are the headers and body of the request and
response, and if the response is valid JSON it will also decode it for you and show a nice
representation.

If there’s a particular response that allows you to observe a bug, you might like to repeat
it; Charles makes this much easier than having to click around the same loop again to

74 | Chapter 9: Debugging Web Services

www.it-ebooks.info

http://google.co.uk
http://www.it-ebooks.info/

replicate the bug. Simply locate the request you want in the top pane, and right-click on
it to see “Repeat” in the context menu. This is really helpful for debugging, especially as
you can export and import sessions from Charles, so you can pass this information
around between team members.

Probably the nicest feature of Charles is its ability to show you SSL (Secure Socket Layer,
or https) traffic without needing the private key from the server (which Wireshark
requires). SSL is, by its very nature, not something than can be observed from the out‐
side, so usually the result is something like the image in Figure 9-5. In simple terms,
Charles creates its own certificates, and uses those to link with the browser. The “real”
SSL certificate of the server is then used between Charles and the server. This setup is
what is called “man-in-the-middle” and it’s a common attack, which is why we have
Certificate Authorities that offer trusted SSL certificates.

Figure 9-5. Charles showing https traffic without decrypting

You can enable SSL proxying on a per-site basis in Charles in the “SSL” tab of the proxy
settings screen. When you try to access the SSL site now through Charles, you will see
a warning that the SSL certificate is not trusted. Accept the warning and your application
will operate as normal, with decoded content visible in Charles.

Two other features that are helpful with Charles are the ability to throttle traffic, and to
rewrite any part of the request or the response as it comes through the proxy. Throttling

Debugging from Outside Your Application | 75

www.it-ebooks.info

http://www.it-ebooks.info/

traffic allows you to simulate a selection of real-world network speeds, including 3G for
a mobile phone. This is a key part of the development process, especially if your appli‐
cation and server are on a fast corporate network; the real world can look quite different!
I will never forget testing games on phones in an underground car park to find out what
happened when there was no reception.

The rewriting feature is also extremely handy—it makes it possible to change headers
or bodies of requests or responses, restrict them to specific sites, and use regexes (see
Figure 9-6). This can be handy for all kinds of reasons: dealing with server names that
are different in your testing environment, trying out a new remote service, or testing
whether a change of headers fixes a particular problem.

Figure 9-6. Charles allows rewriting of requests

76 | Chapter 9: Debugging Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

Finding the Tool for the Job
Learning new tools costs time, even if the tools themselves don’t cost money, and it can
be hard to invest that time when there is pressure to fix the bug, ship the product, or
close the deal. Getting to know as many tools as you can, however, and being able to set
them up quickly, means you’ll always be able to find the information you need. Think
of it as an investment.

Finding the Tool for the Job | 77

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Making Service Design Decisions

This is the million-dollar question: what kind of a service do I need for my next project?
REST is cool, but RPC is familiar. JSON is lighter, but the client already works with
XML. The API will be used by mobile consumers, or web consumers, or a reporting
engine, or all of these.

There’s rarely a clear-cut “one true way” when picking the best solution for a given API,
but there are some key elements that can influence how to choose a solution that will
be a good fit. API design is mostly engineering with a generous dash of common sense
also required.

The big questions you need to ask at each step are these:

1. Who will be using this API?
2. What are they trying to achieve?
3. Which technologies do they use?

With these in mind, you can consider each of the following points.

1. It can be helpful to create some user stories to represent some of the expected users
and tasks that the API will serve.

2. Building APIs is all about creating an interface point that makes sense when viewed
from the outside, so the users’ perspective is always the lens needed to scrutinize
any decision.

3. Not every piece of data or possible piece of functionality in an application will
necessarily make sense exposed over an API, so don’t be tempted to build something
huge immediately!

79

www.it-ebooks.info

http://www.it-ebooks.info/

Service Type Decisions
The first decision to make when designing any API is one that can’t be changed: decide
what kind of a service you will offer. This depends on a combination of the audience
and the type of service to be created.

For users who have larger systems using technology stacks such as Java, C++, or .NET,
it may be easier for them to integrate with a SOAP service. This book covered SOAP in
detail in Chapter 7, but basically it is an RPC-style service and is well-supported in PHP.
Between platforms, problems can arise with mixed data types (such as when a data type
exists in one of the languages but not in another), so do take care when picking data
types.

For everyone else, a choice can be made that is based more on what kind of an API will
be needed. If it will mostly be dealing with CRUD (Create, Read, Update, Delete) op‐
erations on data, then a REST API is a strong contender. It offers a simple way to work
with data records and a well-designed RESTful API is very intuitive to pick up and use
(read more about REST in Chapter 8).

The biggest pitfall with a RESTful API is the need to represent everything as a re‐
source. This means that the URLs should be crafted to contain no verbs at all, and for
an API that offers functional features, it can be quite tricky to reframe those ideas—
both for the creators of the API and for those using it. These types of APIs have been
quite popular in recent years but they won’t be the right choice for every situation. The
worst outcome here is to create a “RESTful” API, which isn’t really RESTful.

Perhaps the simplest choice is one of the RPC formats. Developers on any platform are
familiar with calling methods, passing parameters, and getting values returned. These
services are easy to understand and will work well even for developers with limited API
experience. RPC-style APIs are also very useful when using HTTP within existing ap‐
plications, either to provide some modularity or to integrate two existing systems with
a functional style, but they do have their downsides. Since the RPC services are usually
made up entirely of POST requests, none of the responses can be cached by an HTTP
proxy.

Consider Data Formats
A SOAP service will always use XML, but for RESTful or RPC services, the data format
that fits best can be chosen. The most common options are JSON and XML, but there
are also services that handle incoming form-encoded data formats, outgoing HTML
formats, serialized PHP formats, YAML, and even plain text.

We saw in Chapter 6 some examples of XML being used with an RPC service, and SOAP
is XML underneath. However, XML has plenty more applications than just SOAP, and
can be used as the data format (or a data format) in any one of a number of different

80 | Chapter 10: Making Service Design Decisions

www.it-ebooks.info

http://www.it-ebooks.info/

styles of service. XML allows us to mark up elements with child elements, character
data, and also attributes, but produces quite a large data size in return. Therefore, XML
would do well when the bandwidth used for the transfers isn’t slow or expensive, and
the devices consuming the data have enough memory and processing power to handle
and parse the data.

JSON is great for JavaScript applications, but they’re not the only target market for this
format. The majority of scripting languages have built-in support for JSON and will be
able to serve and consume this format easily. JSON is also a great choice for mobile
applications, where the smaller overall data size and simplicity of parsing the format are
very useful for less powerful devices on potentially slow, patchy, or expensive
connections.

HTML as a data format is an idea that isn’t found in many textbooks, but certainly shows
up in the real world on a regular basis. In its simplest form, we might return HTML in
response to an AJAX request from a webpage, perhaps showing some new content in
HTML on the page (something that you may already feature in your applications). It
doesn’t take a huge leap of faith from this to providing HTML as an optional output
format for an API, if only for reading data. An example of this is found in the RESTful
Joind.in API, where HTML is offered as an output format; if you request http://
api.joind.in from your browser, the API reads your Accept headers and returns the data
as HTML, with the hypermedia presented as clickable hyperlinks. This serves as excel‐
lent documentation for your service.

Accepting incoming requests from a web form, or in that format, can also be very web-
friendly if the users of the API are mostly web developers and it is likely to be used
mostly with or from a web page. This is a step away from the pure idea of exchanging
data between machines, but can be a valuable option depending on the audience of
the API.

If the user stories show that different consumers will want different data formats, then
the API will need to return multiple formats such as XML, JSON, and perhaps HTML
as well. This needs a bit of planning, but has major advantages because every consumer
of your service will be able to ask for the data in the format that is right for their scenario.
An application that takes care to make use of common templates or output handlers for
each data format, used by every response sent, will be able to consistently return data
in multiple formats.

Customizable Experiences
As well as choosing data formats, there are other variables for which the “right” choice
to make will differ between the consumers of the API. An easy example is the number
of entries you return. Returning all the data is fine…until the application becomes ter‐
ribly popular, and suddenly the API is returning four thousand records instead of forty!

Customizable Experiences | 81

www.it-ebooks.info

http://api.joind.in
http://api.joind.in
http://www.it-ebooks.info/

To improve this experience for everyone, APIs often offer pagination of data. As well
as giving a way to specify which range of results to return, it is good practice to allow
the number of results returned to be customized. A reporting server on a fast network
might want all the data, whereas the mobile device with a patchy signal might only want
the newest five records.

Another big variable is how much information to return with each request, and this
decision usually manifests in two forms. When returning information about a particular
item, should all the information be returned? And the follow up question: Should any
related data be returned also? Including data means we’ll sometimes be returning more
information than needed, a bit like doing SELECT * FROM … in SQL. But if you omit
data, then some consumers will have to make a large number of requests to obtain what
they need.

Consider the example of the classic blog application. Should the API return the body
of every article? If you’re showing the user a list of articles, you probably don’t want to
show the entire text of the post, and to include all the text for all the articles would result
in a huge response to send—but when showing an individual article, it will be an im‐
portant piece of data to have. Allowing the consumer of your API to specify whether he
needs headline data or detailed data, or offering different methods depending on
whether a list of outline elements is needed or a single, in-depth method is required,
will help users to get the best out of your API.

Now for the follow up question of whether to include related data. With the hypothetical
blog post application, the post record itself will include, perhaps, the ID of the author.
Your API will offer a way to fetch an author by his or her ID. But that means that when
the consumer retrieves a list of articles, an additional call must be made for each of the
items in the list to discover the name of the author so it can be displayed to the user,
and these additional calls can be slow if many of them are needed. In a situation like
this, it is quite clear-cut that we would return the name of the author with each article,
to save lots of round trips to the server. In the real world, few situations are quite this
clear-cut, and you will have to make some decisions about when data should be included
and when it should be available separately. This is where the user stories I mentioned
at the beginning of this chapter will help you to gain insight into what the “right” decision
is, and in fact some resources should probably be made available in “brief ” and “verbose”
formats to allow consumers some choices.

82 | Chapter 10: Making Service Design Decisions

www.it-ebooks.info

http://www.it-ebooks.info/

Pick Your Defaults
It’s important to offer users some choice, but also to offer a simpler path so that people
can jump straight in and use your API without having to set up too many options. Every
customizable option should have a default value that is returned if no preference is
stated. Are you missing the Accept header? Send JSON. You don’t have any pagination
settings? Send the first 25 results. This approach allows people to get the best of the API
very quickly and easily, and they can delve deeper to change the defaults if their re‐
quirements don’t fit well with the defaults chosen.

Consider whether or not you will comply with all requests, though; if a consumer re‐
quests 1,000 results that might be expensive for your API to generate, you may still only
send the first 200 (or whatever makes sense for your system). Similarly, some APIs will
benefit from having rate limits. This means that each client can only make a certain
number of requests in a given time period. Many APIs allow a very limited number of
requests for unregistered users, and may allow differing levels of access to different
customers, particularly for paid-for apps. Rate limiting is a way of making sure that you
guarantee an expected level of service to all users by managing the load on your servers
and allowing different users to have a level of access that suits them.

This philosophy of making things easy and useful to users, with minimal effort on their
part, makes the barrier to entry much lower for your application and makes the expe‐
rience of using a new API one of tolerance and welcome.

Pick Your Defaults | 83

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Building a Robust Service

A robust service is one that feels secure and reliable to its users. Something that behaves
unpredictably, sometimes gives incorrect results, and occasionally doesn’t respond at
all, is not what a consumer wants to integrate into her own applications. This chapter
will look at what makes a robust service, and some techniques for making services as
reliable and useful as they can be, both when things are going well and when they are
not.

The best services exhibit consistent, predictable behaviors. This approach of having as
much “sameness” as possible works well for consumers, who start to feel at home. As
they use the service, they become familiar with how it will work, and will be able to find
their way around and deal with any errors they encounter more easily. Most importantly,
those consumers will be able to achieve their goals, which should give both consumer
and provider a warm, fuzzy feeling.

Consistency Is Key
As PHP developers, we know only too well how difficult it is to use an interface that is
inconsistent. The number of manual entries that use the words “needle” and “haystack”
with very little correlation between which one should come first in any given situation
(and one function where they can be passed in either order!) is our reminder of how
painful this can be!

In our own applications, we can do better, but it is important to pay attention to the
bigger picture and the existing elements of an API while working on building more
features. In particular, consideration should be given to how things are named, how the
parameters are passed in and returned, and what the expected behavior should be when
something unexpected happens.

85

www.it-ebooks.info

http://www.it-ebooks.info/

Consistent and Meaningful Naming
I recently worked with a system that had a function in it called isSiteAdmin(). Guess
what it returned? Wrong! It actually returned the username of the current user, or
false. There are plenty of examples of badly-named functions in the world, but please
protect us from having any more to add to the list. Function names should be mean‐
ingful, and they should also be alike. So if there is something called getCategories()
available, try to avoid adding a function called fetchPosts() or getAllTags() unless
there’s a good reason for the differences. Instead, fit in with the existing convention and
call the functions getPosts() and getTags().

The same applies to RESTful services, as well as those that contain function names,
although it is slightly less of an issue when the clients are following hypermedia links.
Look out for consistency in whether collection names are plural or not, for example.

Case-sensitive or not, make sure your service is absolutely case-
consistent throughout.

The naming of parameters is also an area full of traps that are all too easy to fall into—
and will annoy your users forever (or at least until you figure out how to release the next
version without breaking their existing applications). The way that you name your pa‐
rameters can give users a clue as to what they should be passing in. For example, a
parameter called user is rather ambiguous but either user_id or username would help
the user to send more accurate data through to your API.

Naming your parameters with “Hungarian notation” is probably a step too far, but
aiming more at the verbose than the terse is probably in everyone’s interests. If there’s
a field called desc then people will probably guess the correct meaning of the abbrevi‐
ation from the context, but it is clearer to call the parameter description or descend
ing or whatever it really means.

Common Validation Rules
The benefits of consistency were discussed already, but it is very easy to end up with
slightly different validation rules for similar parameters in different settings; for exam‐
ple, whether extra address lines are optional or required between shipping and billing
addresses. Also, try to avoid the irritatingly common situation of allowing a particular
format of date/time information or telephone number in one place in your API, but not
in another.

86 | Chapter 11: Building a Robust Service

www.it-ebooks.info

https://en.wikipedia.org/wiki/Hungarian_notation
http://www.it-ebooks.info/

Make sure that incoming data is validated in the same way for the same kinds of data
every time. An easy way to do this is to always use functionality that is built in, such as
whatever your framework offers, or the fabulous Filter extension in PHP. Alternatively,
and for types that are specific to your application, you can create a utility class that holds
all the validations. In this way, you can add functions that check for particular kinds of
data, and then reuse them across your application to ensure consistency.

Just like with the “needle” and “haystack” problems that are found in PHP, parameter
ordering is important for RPC services. Figure out a plan to keep your service looking
the same everywhere; does the API key need to be the first parameter, for example?
Often it isn’t obvious which parameters should be in which order, and in those cases it
is best to simply pick something and then stick to it.

Predictable Structures
Structure of data is a key characteristic of a service, and a good API design will have it
in mind when accepting requests, building responses, and also in the event of any error.
APIs that return an array of results should always return an array of results. If there’s
one result, it still needs to be in an array. If there are no results, an empty array should
convey this information. Suddenly returning false, or showing an item one level up
from where it usually lives, is confusing; so take care to avoid it.

In most situations, the order in which parameters are provided, either as URL param‐
eters or as part of body content, should not matter. Whether the parameter names or
their values are case-sensitive can be made clear in the documentation; it is a challenge
to keep these small details correct, particularly across a large API, but it is key and does
greatly improve your system.

If an error should occur, it may well be the fault of the user. That said, the API ideally
should help the user understand what went wrong and how the user can be better in
their use of the API (because otherwise they will log a support ticket that you will have
to fix). The entire next chapter is devoted to error handling, but at this point it seems
important to mention that error responses should always be in a format, that is consis‐
tent across the API. If a user sees not-success in the status code that is returned with
his response, he should immediately know how to get the information he needs about
what went wrong, in a predictable format.

Predictability isn’t just about data formats. Take care to follow patterns throughout an
API regarding what happens when something is created, deleted, or not found.

Consistency Is Key | 87

www.it-ebooks.info

http://www.php.net/filter
http://www.it-ebooks.info/

Making Design Decisions for Robustness
Robustness is basically a measure of reassurance; how does the API behave both in good
and bad situations? It can be tricky to know which design patterns are the best ones to
follow, especially if you are new to APIs. In that situation, good advice would be to stick
to the existing standards. These are well-known and understood, and will make it easier
for people to integrate with your API or web service. Writing great documentation (see
Chapter 13) is key to creating a great API; in general, anything without documentation
will not be a good experience for anyone using it. Finally, always consider what should
happen in the event that something goes wrong. Keep reading, as the next chapter is all
about how to handle errors.

88 | Chapter 11: Building a Robust Service

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Error Handling in APIs

Errors are a fact of life. Users will enter nonsense into your system, not because they are
simpletons (although it does often look that way), but because their expectations and
understanding are different from yours. The Internet is a very loosely-coupled affair
and all kinds of things can and will go wrong at a technical level, once in a while. How
your API handles these inevitable situations is a measure of the quality and design of
your API, so this chapter gives some pointers on what to look out for and how to do it
well.

Output Format
This is the golden rule: always respond in the format that the client was expecting. This
means that it is never acceptable to return an HTML error message when the client
expected JSON (in fact, in certain PHP versions, passing invalid JSON to json_de
code() causes a segment fault!). If your system does return HTML messages when things
go wrong, that is a bug and needs fixing. If an unexpected format is sent, the client will
not be unable to understand the response and any error information contained in it.

In order to handle this requirement, there are some established patterns when designing
our API that may help. Many modern applications have some kind of “front controller”
pattern, in which all incoming requests are handled by a common entry point. This
common front controller typically parses the request and figures out which part of the
system it should be passed on to. We can put the same ideas into practice at the end of
the request and make sure that the data to send back to the client always passes through
a common point. At this point, it is possible to put in an output handler to correctly
and consistently format the outgoing data correctly.

Here’s a very simple front controller to give an idea of how this might look; you might
use something along these lines, or follow the conventions of whichever framework
you use:

89

www.it-ebooks.info

http://www.it-ebooks.info/

<?php

require "accept.php";

spl_autoload_register(function ($classname) {
 require ("inc/" . strtolower($classname) . ".php");
});

// create the correct view format
$accepted_formats = parseAcceptHeader();
$supported_formats = array("application/json", "application/xml");
foreach($accepted_formats as $format) {
 if(in_array($format, $supported_formats)) {
 // yay, use this format
 break;
 }
}

switch($format) {
 case "application/xml":
 $view = new XmlView();
 break;
 case "application/json":
 default:
 $view = new JsonView();
 break;
}

set_exception_handler(function ($exception) use ($view) {
 $data = array("message" => $exception->getMessage());
 if($exception->getCode()) {
 $view->status = $exception->getCode();
 } else {
 $view->status = 500;
 }
 $view->render($data);
});

// allowed controllers
$controllers = array("user", "post", "category");

// parse URL, first is class, then function
$pieces = explode('/', $_SERVER['PATH_INFO']);
if(in_array($pieces[1], $controllers)) {
 $classname = $pieces[1];
 $functionname = $pieces[2];

 $class = new $classname();
 $data = $class->$functionname();

 $view->render($data);

90 | Chapter 12: Error Handling in APIs

www.it-ebooks.info

http://www.it-ebooks.info/

} else {
 throw new Exception("request not recognised", 400);
}

There’s a lot happening here, so let’s run through it in pieces. The first block is just the
autoloader. To keep the example short, you will find all the classes in this example ap‐
plication are in /inc with lowercase file names matching their CamelCase class names.
Next, the Accept header is parsed and the correct format is established using the example
from the headers chapter. We work out the correct return format first, so it is then
possible to return meaningful and understandable error information to a user in the
event of any issues.

Next is the exception handler; this is a key pawn in our game of returning excellent and
correctly-formatted content. Rather than passing error statuses and messages up and
down potentially deep stacks, the application can be designed to use exceptions instead.
Whenever something goes wrong, an exception will be passed up the stack and, if not
handled, will arrive at the exception handler. This feature can be used to make sure that
the only output from an error will be handled in the way the requesting client expects;
care must be taken, however, to ensure that the messages returned by the exceptions are
appropriate for public view—perhaps by always throwing specific exceptions with hu‐
mane messages. A closure is used to bake the $view object into the exception handler,
so that our output will be in the correct format.

Many applications follow patterns that separate out various pieces of functionality. You
may have a system of routes and templates, where different URL patterns will be parsed
to figure out which code to run. It’s also very common to have an MVC (Model, View,
Controller) style of application architecture; in an API this works very well, although
the V (for view) becomes more like an output handler than a series of per-page templates.
Here, we take the view that the first part of the URL will be the class name where the
code can be found (in MVC, the “controller”), and the second part will be the function
to actually run (in MVC, this is referred to as the “action”). When using a similar ap‐
proach in your own code, do make sure that you are filtering incoming values correctly;
the example uses the raw URL pieces for brevity, but a public-facing application would
have much tighter security measures and would check that both class and function exist.
Exactly the same principles apply to all incoming data; the URL, headers including
cookies, and the POST variables (for example) are all to be treated with the same suspicion
before using them in your code.

The biggest departure from a standard web architecture shows up right at the end of
this front controller, where we send (sometimes called “dispatch”) the request to the
location where the code that can form the response is. Many of those controller-type
patterns will then pass the program flow onto a template, and execution will end once
the template has been rendered. In this example, those functions instead return data
back to where the calls fan out from in order to be passed through a common output
handler as the last step in the process.

Output Format | 91

www.it-ebooks.info

http://www.it-ebooks.info/

The output handlers themselves can be beyond simple. To illustrate my point, here’s the
JsonView class used by the previous example code:

<?php

class JsonView
{
 public $status;

 public function render($data) {
 if($this->status) {
 http_response_code($this->status);
 }

 header('Content-Type: application/json; charset=utf8');
 echo json_encode($data);
 return true;
 }
}

The XML equivalent is slightly longer at 24 lines of code, but still not complex at all.
The main things to remember are to set the correct Content-Type header and body
format. Remember also that the status code needs to be set appropriately, depending on
what action was performed.

Meaningful Error Messages
We all know how frustrating it is to get error messages from systems that say something
like “an unknown error has occurred.” This gives us absolutely no information at all on
how we can coax the application to behave better. Even worse is an application I work
with regularly, which will return the error message “Invalid permissions!” in the event
that anything at all goes wrong, regardless of whether or not there is a problem with
permissions. This leads to people looking in completely the wrong places for solutions
and eventually filing very frustrated support tickets.

Error messages should be more than a tidy placeholder that the developer can use to
find where in the code she should look when a bug is reported (there is also something
to be said in favor of avoiding any copying and pasting of error messages for this reason).
The information that an application returns in the event of an error is what lies between
the application, the user, and the bug-reporting software. Anyone trying to use an ap‐
plication will have something he is trying to achieve and will be motivated to achieve
that goal. If the application can return information about what exactly went wrong, then
the user will adjust his attempts and try again, without bothering you. Users tend not
to read documentation (developers in particular will usually only read instructions once
something isn’t working—all engineers do this), so the error information is what forms
their experience of the system.

92 | Chapter 12: Error Handling in APIs

www.it-ebooks.info

http://www.it-ebooks.info/

When something goes wrong, answer your user’s questions:

• Was a parameter missing or invalid? Was there an unexpected parameter? (A typo
can make these two questions arise together very regularly.)

• Was the incoming format invalid? Was it malformed or is it in a format the server
does not accept?

• Was a function called that does not exist? (For common mistakes, you might even
suggest what the user may have meant.)

• Does the system need to know who the user is before granting access? Or is this
user authenticated but with insufficient privileges?

When it exists, give information about which fields are the problem, what is wrong with
them, or if something is missing. It is also very helpful to users if you can collate the
errors as much as possible. Sometimes, errors prevent us from proceeding any further
with a request, but if, for example, one of the data fields isn’t valid, we could check all
the other data fields and return that information all at once. This saves the user from
untangling one mistake only to trip straight over the next one, and also shows if the
errors are related and could all be fixed in one go.

What to Do When You See Errors
Let us consider our other role in that relationship: that of the consumer of a service.
Many of the APIs we work with are not ones we made ourselves, so inevitably we will
be encountering some of the behaviors this chapter preaches against. What can we do
when this happens? The best approach is to take baby steps.

First, go back to the last known good API call. At the very early stages of working with
an API, that means reading the documentation or finding a tutorial to follow, and seeing
if you can make any calls at all against this system. Some APIs offer what I call a “heart‐
beat” method and some offer a status page. Look for something that doesn’t need au‐
thentication or any complicated parameters to call, and which will let you know that
the API is actually working and the problem is at your end. Flickr has a particularly
good example of this with their flickr.test.echo method.

Once it has been established that the target API is working, take a look at the call that
was being attempted. Does it have any required parameters? Can the call be made in its
simplest possible form, passing the smallest possible amount of data with the call? Even
once things seem to be improving, it is advisable to approach changes to the API call in
small steps, changing data format or adding a parameter, then checking that the response
comes back as expected. Just like any kind of debugging, this iterative approach will help
to pinpoint which change caused an error to occur.

What to Do When You See Errors | 93

www.it-ebooks.info

http://www.flickr.com/services/api/flickr.test.echo.html
http://www.it-ebooks.info/

While these test requests are being made, regardless of which tool is being used, take
care to check the headers of the response as well as the body. Status codes, Content-
Type headers, cache information, and all kinds of other snippets can be visible in the
header and give clues about what is happening.

Do take the time to use the tools and tactics available to you, whether the errors are in
your API or someone else’s. In particular, the techniques covered in Chapter 9 will be
superbly useful in such scenarios.

94 | Chapter 12: Error Handling in APIs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Documentation

Raise your hand if you like writing documentation. Now raise your hand if you like
discovering that the API you are to integrate against is well-documented and has ex‐
amples of applications similar to what you need it for. These two are in direct conflict
since very often, developers don’t enjoy writing documentation, and while they often
don’t read it either, good documentation will ease the path of developers into using your
service rather than logging a support ticket, or just leaving and using your competitors’
offerings.

Your API might be the best the world has ever seen, but without any supporting docu‐
mentation, or with bad/inaccurate documentation, people won’t be able to use it. In fact,
without considering great documentation as part of your project, one could argue that
you may as well save yourself even more time and not build the API either!

There are many types of documentation, and a great web service probably needs a bit
of all of them. The following sections will look at the various kinds of documentation
that are useful to accompany a web service and give some suggestions of tools you can
use to generate and maintain these.

Overview Documentation
This is the welcoming committee of your API; it gets people over the threshold and
gives them confidence that they are about to have a good time. The overview docu‐
mentation will set the tone of the API and provide some pointers for where to find more
detailed information. In general, it shows the style and layout of the API and states the
protocol(s) that are available. There will probably be some simple examples of requests
and responses for common operations to show off the headers and body formats that
should be needed. Showing the HTTP for both requests and responses is very useful,
because it means that anyone running into problems can fire up a debugger and compare
their results with the examples shown.

95

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter will also cover how users can identify themselves to the system, if they need
to. Many services will allow some public access, others will ask that users link an API
key to their login information on a website. If users need to actually log in, this overview
section will cover how to do this, and the method will be the same across all the various
parts of the API. This might be a username and password, or an OAuth process to follow,
again with clear examples (bonus points if you can manage a real working guest account
they can try) showing which credentials go where, where to get any necessary tokens,
or how to craft a URL to which they can forward a user.

Information about error states belongs here in the overview, since they will be the same
throughout the application. If the error states in your system aren’t consistent, then go
and read Chapter 12 before reading any further. If you use error codes, provide infor‐
mation about where to find more information about what they mean. If there will be
information in the status code or headers, it is helpful to mention it here for any con‐
sumers not realizing that they need to look beyond the body text (although this should
also contain useful information). Alongside the information about errors, you may also
like to include some support information.

API Documentation
In the RPC services, it is common for the entry points to the service to be contained in
a single class, and hopefully that class will have inline code documentation. If it does,
and especially if this service is for an internal or technical audience, it may be possible
to generate API documentation using phpDocumentor and supply this as a reference
to your users (see Figure 13-1). This describes all the methods and parameters in the
underlying class, but the PHP SOAP extension, for example, simply provides a very
lightweight wrapper, so the generated documentation for the API of that class may well
be a very useful artifact to generate and share. Do take care, however, that you’re not
exposing any undesirable information—for example, implementation details within
protected methods.

96 | Chapter 13: Documentation

www.it-ebooks.info

http://phpdoc.org
http://www.it-ebooks.info/

Figure 13-1. API documentation generated by phpDocumentor

Another way of documenting SOAP services is to supply a WSDL file, which was covered
in Chapter 7.

For a RESTful service it is harder to generate documentation from our PHP code, but
existing tools we have in our project can still be used and maintained alongside the API
by linking our documentation to our other tools. One example is something like FRA‐
PI, which allows you to configure a RESTful service for your application, and also gen‐
erates stub documentation that you can expand upon.

Interactive Documentation
Some of the best documentation in existence for APIs allows a user to actually try out
the request from the documentation page. One great example is Flickr, which offers an
API Explorer that allows the user to enter data into the fields and then make the request
from the online documentation itself (see Figure 13-2). This allows the user to try the
feature as herself or as an anonymous user and set any of the available parameters for
a particular method. Flickr gets extra points for technical merit, as they include some
handy reference numbers, such as your own user ID and some recent photos uploaded
to your account on the same page.

Interactive Documentation | 97

www.it-ebooks.info

http://getfrapi.com/
http://getfrapi.com/
http://www.it-ebooks.info/

Figure 13-2. Flickr offers interactive API documentation

There are plenty of tools available to help create something similar for another project;
alternatively, you could create a simple Web-based way to try your API that you can
include with your documentation. For an existing system, you could do worse than the
I/O Docs tool. It’s written in Node.js and the code is available on GitHub, so you can
amend it as you need to. You create a configuration file describing how your API can
be used, which URLs can be called, what format and parameters to use, and so on. Once
you are done, I/O Docs creates a page showing these available actions and parameters
as a web form, and allows users to click the alluringly-named “Try it!” button to try
making a request and viewing the response. This is used by a few online APIs; for
example, Klout (Twitter metric tools) uses it to document its API, as you can see in
Figure 13-3.

98 | Chapter 13: Documentation

www.it-ebooks.info

http://www.mashery.com/product/io-docs
http://developer.klout.com/iodocs
http://www.it-ebooks.info/

Figure 13-3. Klout uses I/O docs to create its interactive documentation

There are other great options such as the apiary.io site, and it’s always worth looking
out for new tools being released. Whichever route you take, interactive documentation
serves as a quick way for a new or potential user to figure out whether she can use your
API for her purposes, and what would be involved to do so.

Tutorials and the Wider Ecosystem
Documentation is about so much more than lists of accessible functionality. It is about
showing how the API actually solves problems, and how it looks when it is used in the
real world. A common criticism of software library documentation is that, while each
function is documented, it can be very hard to know which function you want to use.
Giving practical tutorial examples is really useful, even when they are not exactly what
a user was looking for. Such examples can often give enough clues for a developer to
piece together what he should do for his own application. If any of your users write on
their own sites about how to use your tool, send them a T-shirt, or at least a tweet, and
link to their material. That kind of content is hard to create, and having supportive
outsiders shows what a great following your tool has.

Make sure your users know where they can go for support; then go and find where they
actually ask for help. While you may set up user forums to help people with their queries
and make those details public so that other people can find answers to common ques‐
tions, users often don’t follow the paths you set for them. Sometimes it is necessary to
“pave the cowpaths” and follow where they lead. To this end, set up a search alert for

Tutorials and the Wider Ecosystem | 99

www.it-ebooks.info

http://apiary.io
http://www.it-ebooks.info/

your product or application name with a search engine, and make sure that when ques‐
tions do pop up in other places (such as StackOverflow), someone is able to respond.

Having documentation outside of your own control is a very positive thing, although it
can feel a little frightening at first. Users are the word of mouth that spread influence,
and often they can become your biggest advocates and very effectively help one another.
Welcome those users and credit them where you can; documentation from any angle is
a resource that’s valuable to any project and it’s vital for anything public. It is referred
to as the “ecosystem” because it’s the world your application exists in.

100 | Chapter 13: Documentation

www.it-ebooks.info

http://stackoverflow.com
http://www.it-ebooks.info/

APPENDIX A

A Guide to Common Status Codes

This section outlines some of the most common status codes in use in HTTP APIs, their
meaning, and some notes about when they can be used.

Code Meaning Notes

100 Continue For a large request, a client can send just the headers and Expect: 100-continue as an
additional header. If the 100 status is received in response, the client can then send the request as
normal. Think of it as “go ahead”—in fact, many libraries will handle this for you and make the second
request without further prompting.

200 OK This is good news, everything worked as expected.

201 Created A new resource was created. This is often accompanied by a Location header or a representation
of the new resource in the body of the request.

202 Accepted This is useful if something is taken to be actioned later, such as being placed on a queue for
asynchronous processing.

204 No Content The request was successful, but there is nothing to return. Perhaps this is the result of a DELETE
request.

301 Moved
Permanently

The content is at a new location, and this is a permanent change. Links to the old URL must be updated,
and this change will often be cached for long periods.

302 Found This is much like a 200, but the content was not at the location specified. Usually this is seen when
an application uses rewrite rules.

304 Not Modified This is sent in response to a request that included information such as an ETag or Last-
Modified, which indicates that the resource is cached and specified which version the client has.
This status code means “use the one you have” and is useful to avoid repeatedly transferring large
representations that don’t change.

400 Bad Request This is the general “something went wrong” status. Sometimes there may be no more detail to offer;
at other times, you may choose not to transmit anything more.

401 Unauthorized Credentials are needed in order to access this resource.

403 Forbidden This contrasts with 401 and means that any credentials given were not sufficient to access this resource.

101

www.it-ebooks.info

http://www.it-ebooks.info/

Code Meaning Notes

404 Not Found A request was made for something the server doesn’t have or doesn’t know how to provide.
Alternatively, a request was made for a resource that isn’t available to this user and the 404 doesn’t
leak information about the potential existence of such a resource.

405 Method Not
Allowed

The verb used to access this URL isn’t supported—this is useful if, for example, you don’t allow updates
to a resource but a PUT request was received.

406 Not Acceptable The server cannot generate a response in accordance with the Accept headers that came with the
request.

409 Conflict There is a mismatch between versions of resources, such as an incoming update when the resource
has changed in the meantime.

410 Gone A resource did exist, but doesn’t any more. Many services will simply return a 404 here, or a 409 may
also be appropriate, particularly if something is trying to perform an update on the resource.

415 Unsupported
Media Type

The media type specified in the Content-Type header isn’t understood by this server.

429 Too Many Requests Usually used with rate-limiting schemes, although Twitter uses 420 “Enhance Your Calm” for this
purpose.

500 Internal Server
Error

An unhandled error occurred, and is the fault of the server rather than the client. In PHP applications,
PHP has usually segfaulted, leaving the web server unable to return any useful information.

501 Not Implemented The server can’t handle this request; it may also indicate that a documented feature is currently still
under construction.

502 Bad Gateway This indicates that a proxy server of some sort has failed, such as a load balancer.

503 Service
Unavailable

This is usually seen when a server is temporarily offline, such as during a planned maintenance window.
Often, it really means “try again later” but it also discourages caching, and is particularly useful to
stop search engines from finding and caching your temporary holding page.

For a full list of status codes, there is an excellent reference on Wikipedia.

102 | Appendix A: A Guide to Common Status Codes

www.it-ebooks.info

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.it-ebooks.info/

APPENDIX B

Common HTTP Headers

Here we look at a series of often-used headers, whether they are request or response
headers, and how they can be used.

Header Request Response Notes

Accept yes This shows the formats, with an indication of preference, that the requesting client
can understand. Closely related are the additional headers Accept-Charset,
Accept-Encoding, and Accept-Language.

Authorization yes This is free-form information to prove a user’s identity. This is used in basic
authentication, digest authentication, OAuth, and so on; each has their own format
of exactly what goes in the header.

Cookie yes Cookies are key/value pairs sent with each request, separated by a semicolon. This
is the sister header to Set-Cookie.

Content-

Length

yes yes Any request or response with body content should also have the Content-
Length in bytes in the header; often your HTTP library will calculate this for you.

Content-Type yes yes Any request or response with body content should include the Content-Type
header to provide information about the format of that body content. As with the
Accept headers, Content-Encoding and Content-Language may also
be sent to give information about the format of the content.

ETag yes This is an identifier for the version of the resource that is being returned. If the client
caches the resource, this information can be used with If-None-Match to work
out whether a resource has been updated or if the previous version can be used.

If-Modified-

Since and If-

None-Match

yes This informs the server that there is a cached copy of this resource and allows the
server to return a 304 status code if that resource is still valid.

Last-Modified yes This provides information about when this resource was last updated; the client
can use this to check if it has the most recent version of the resource upon
subsequent requests.

103

www.it-ebooks.info

http://www.it-ebooks.info/

Header Request Response Notes

Location yes This provides information about a location and is used either with 300-series status
codes when redirecting, or with 201/202 to give information about the location of
a new resource.

Set-Cookie yes This sends cookies to be stored on the client and sent back in a Cookie header
with later requests.

User-Agent yes This provides information about the client software making the request.

104 | Appendix B: Common HTTP Headers

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Lorna Jane Mitchell is an independent web development consultant, specializing in
PHP and APIs in particular. With over 10 years of PHP development experience across
a wide variety of industries, Lorna learned many lessons the hard way and always has a
story to tell. Lorna is also an experienced trainer, offering training to private clients
around the world, and teaching public courses. A prolific writer, Lorna writes for a
number of publications, and frequently for her own blog.

Colophon
The animal on the cover of PHP Web Services is an Alpine Accentor (Prunella collaris).

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga‐
ramond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://lornajane.net
http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. HTTP
	Clients and Servers
	Making HTTP Requests
	Curl
	Browser Tools
	PHP

	Chapter 2. HTTP Verbs
	Making GET Requests
	Making POST Requests
	Using Other HTTP Verbs

	Chapter 3. Headers
	Request and Response Headers
	Common HTTP Headers
	User-Agent
	Headers for Content Negotiation
	Securing Requests with the Authorization Header

	Custom Headers

	Chapter 4. Cookies
	Cookie Mechanics
	Working with Cookies in PHP

	Chapter 5. JSON
	When to Choose JSON
	Handling JSON with PHP
	JSON in Existing APIs

	Chapter 6. XML
	When to Choose XML
	XML in PHP
	XML in Existing APIs

	Chapter 7. RPC and SOAP Services
	RPC
	SOAP
	WSDL
	PHP SOAP Client
	PHP SOAP Server
	Generating a WSDL File from PHP
	PHP Client and Server with WSDL

	Chapter 8. REST
	RESTful URLs
	Resource Structure and Hypermedia
	Data and Media Types
	HTTP Features in REST
	Create Resources
	Read Records
	Update Records
	Delete Records

	Additional Headers in RESTful Services
	Authorization Headers
	Caching Headers

	RESTful versus Useful

	Chapter 9. Debugging Web Services
	Debug Output
	Logging
	Debugging from Outside Your Application
	Wireshark
	Charles Proxy

	Finding the Tool for the Job

	Chapter 10. Making Service Design Decisions
	Service Type Decisions
	Consider Data Formats
	Customizable Experiences
	Pick Your Defaults

	Chapter 11. Building a Robust Service
	Consistency Is Key
	Consistent and Meaningful Naming
	Common Validation Rules
	Predictable Structures

	Making Design Decisions for Robustness

	Chapter 12. Error Handling in APIs
	Output Format
	Meaningful Error Messages
	What to Do When You See Errors

	Chapter 13. Documentation
	Overview Documentation
	API Documentation
	Interactive Documentation
	Tutorials and the Wider Ecosystem

	Appendix A. A Guide to Common Status Codes
	Appendix B. Common HTTP Headers
	About the Author

