




Advance Praise for MySQL Stored Procedure Programming

“I didn’t honestly believe a book could be written on this topic that wouldn’t be
too dry. But Guy and Steven show the depth of the subject and make the material
available to readers. It was a wonderful read.”

— Brian Aker, Director of Architecture, MySQL AB

“It was a pleasure to work with Guy and the editor at O’Reilly, doing the tech
review of many of the chapters for this book. The authors have an excellent grasp
of the subject matter. I found the material easy to read, with lots of code exam-
ples. MySQL users should find this book an excellent resource.”

— Arjen Lentz, Community Relations Manager, MySQL AB

“Because MySQL usage is growing so rapidly among modern enterprises, devel-
opers and DBAs alike are desperately looking for expert help that shows them
how to create high-performance stored procedures and other efficient MySQL
code. I doubt that anyone will find better guides than Guy Harrison and Steven
Feuerstein when it comes to advice on writing the absolutely best MySQL code.”

— Robin Schumacher, Director of Product Management,
MySQL AB

“This is the first book I’ve seen that really concentrates on MySQL’s stored
procedures. I found tips here that I’d never seen before.”

— Peter Gulutzan, MySQL Software Architect

“MySQL 5.0 opens up a new world to MySQL users, and this book is a great
tour guide.”

— Andy Dustman, Author of MySQL Python API

“Guy and Steven have provided MySQL developers with a gem. They not only
cover the nuts and bolts of writing stored procedures in MySQL, but also provide
sound advice on designing database applications in the real world. In addition,
they write with a sense of humor that makes the book a joy to read.”

— James Cooper, Technology Consultant, Seattle, WA





MySQL Stored Procedure Programming



Other resources from O’Reilly

Related titles MySQL in a Nutshell

MySQL Cookbook™

High Performance MySQL

Web Database Application
with PHP and MySQL

SQL in a Nutshell

SQL Cookbook™

Learning SQL

SQL Pocket Guide

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.



MySQL Stored Procedure
Programming

Guy Harrison
with Steven Feuerstein

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo



MySQL Stored Procedure Programming
by Guy Harrison with Steven Feuerstein

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Deborah Russell
Production Editor: Adam Witwer
Production Services: Argosy Publishing

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano, Jessamyn Read,

and Lesley Borash

Printing History:

March 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. MySQL Stored Procedure Programming, the image of a middle spotted
woodpecker, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™,  a durable and flexible lay-flat binding.

ISBN-10:  0-596-10089-2

ISBN-13:  978-0-596-10089-6

[M] [12/07]



vii

Table of Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Part I. Stored Programming Fundamentals

1. Introduction to MySQL Stored Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
What Is a Stored Program?  3
A Quick Tour  7
Resources for Developers Using Stored Programs  13
Some Words of Advice for Developers  15
Conclusion  19

2. MySQL Stored Programming Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
What You Will Need  20
Our First Stored Procedure  20
Variables  25
Parameters  25
Conditional Execution  30
Loops  31
Dealing with Errors  32
Interacting with the Database  33
Calling Stored Programs from Stored Programs  38
Putting It All Together  39
Stored Functions  41
Triggers  43
Calling a Stored Procedure from PHP  45
Conclusion  46



viii | Table of Contents

3. Language Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Variables, Literals, Parameters, and Comments  49
Operators  60
Expressions  64
Built-in Functions  64
Data Types  68
MySQL 5 “Strict” Mode  72
Conclusion  76

4. Blocks, Conditional Statements, and Iterative Programming  . . . . . . . . . . . . 77
Block Structure of Stored Programs  77
Conditional Control  82
Iterative Processing with Loops  93
Conclusion  98

5. Using SQL in Stored Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Using Non-SELECT SQL in Stored Programs  99
Using SELECT Statements with an INTO Clause  100
Creating and Using Cursors  101
Using Unbounded SELECT Statements  112
Performing Dynamic SQL with Prepared Statements  118
Handling SQL Errors:  A Preview  123
Conclusion  124

6. Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Introduction to Error Handling  125
Condition Handlers  129
Named Conditions  139
Missing SQL:2003 Features  139
Putting It All Together  145
Handling Stored Program Errors in the Calling Application  150
Conclusion  155



Table of Contents | ix

Part II. Stored Program Construction

7. Creating and Maintaining Stored Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Creating Stored Programs  159
Editing an Existing Stored Program  166
SQL Statements for Managing Stored Programs  170
Getting Information About Stored Programs  173
Conclusion  176

8. Transaction Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Transactional Support in MySQL  180
Defining a Transaction  183
Working with Savepoints  185
Transactions and Locks  190
Transaction Design Guidelines  201
Conclusion  203

9. MySQL Built-in Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
String Functions  205
Numeric Functions  218
Date and Time Functions  223
Other Functions  233
Conclusion  237

10. Stored Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Creating Stored Functions  238
SQL Statements in Stored Functions  242
Calling Stored Functions  242
Using Stored Functions in SQL  244
Conclusion  248

11. Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Creating Triggers  249
Using Triggers  251
Trigger Overhead  256
Conclusion  257



x | Table of Contents

Part III. Using MySQL Stored Programs in Applications

12. Using MySQL Stored Programs in Applications . . . . . . . . . . . . . . . . . . . . . . . . 261
The Pros and Cons of Stored Programs in Modern Applications  261
Advantages of Stored Programs  264
Disadvantages of Stored Programs  268
Calling Stored Programs from Application Code  270
Conclusion  273

13. Using MySQL Stored Programs with PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Options for Using MySQL with PHP  276
Using PHP with the mysqli Extension  276
Using MySQL with PHP Data Objects  289
Conclusion  308

14. Using MySQL Stored Programs with Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Review of JDBC Basics  310
Using Stored Programs in JDBC  317
Stored Programs and J2EE Applications  323
Using Stored Procedures with Hibernate  332
Using Stored Procedures with Spring  337
Conclusion  342

15. Using MySQL Stored Programs with Perl  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Review of Perl DBD::mysql Basics  344
Executing Stored Programs with DBD::mysql  354
Conclusion  362

16. Using MySQL Stored Programs with Python  . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Installing the MySQLdb Extension  364
MySQLdb Basics  365
Using Stored Programs with MySQLdb  373
A Complete Example  380
Conclusion  385

17. Using MySQL Stored Programs with .NET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Review of ADO.NET Basics  386
Using Stored Programs in ADO.NET  401
Using Stored Programs in ASP.NET  413
Conclusion  417



Table of Contents | xi

Part IV. Optimizing Stored Programs

18. Stored Program Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Permissions Required for Stored Programs  422
Execution Mode Options for Stored Programs  423
Stored Programs and Code Injection  434
Conclusion  440

19. Tuning Stored Programs and Their SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Why SQL Tuning Is So Important  443
How MySQL Processes SQL  445
SQL Tuning Statements and Practices  449
About the Upcoming Examples  459
Conclusion  462

20. Basic SQL Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Tuning Table Access  463
Tuning Joins  480
Conclusion  485

21. Advanced SQL Tuning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
Tuning Subqueries  486
 Tuning “Anti-Joins” Using Subqueries  493
Tuning Subqueries in the FROM Clause  495
Tuning ORDER and GROUP BY  501
Tuning DML (INSERT, UPDATE, DELETE)  503
Conclusion  506

22. Optimizing Stored Program Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Performance Characteristics of Stored Programs  508
How Fast Is the Stored Program Language?  509
Reducing Network Traffic with Stored Programs  512
Stored Programs as an Alternative to Expensive SQL  515
Optimizing Loops  519
IF and CASE Statements  522
Recursion  526
Cursors  528
Trigger Overhead  529
Conclusion  532



xii | Table of Contents

23. Best Practices in MySQL Stored Program Development  . . . . . . . . . . . . . . . . 533
The Development Process  533
Coding Style and Conventions  539
Variables  544
Conditional Logic  551
Loop Processing  555
Exception Handling  559
SQL in Stored Programs  562
Dynamic SQL  566
Program Construction  569
Performance  577
Conclusion  581

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xiii

Preface1

Over the past five years or so, we have seen an explosion in the use of open source
software in commercial environments. Linux has almost completely displaced vari-
ous flavors of Unix as the dominant non-Windows operating system; Apache is by
far the most significant web server; Perl and PHP form the foundation for millions of
commercial web sites; while JBoss, Hibernate, Spring, and Eclipse are making strong
inroads into the Java™ and J2EE development and application server markets.
Although the world of relational databases continues to be dominated by the com-
mercial players (Oracle, IBM, and Microsoft), the commercial use of open source
databases is growing exponentially. MySQL is the dominant open source database
management system: it is being used increasingly to build very significant applica-
tions based on the LAMP (Linux-Apache-MySQL-PHP/Perl/Python) and LAMJ
(Linux-Apache-MySQL-JBoss) open source stacks, and it is, more and more, being
deployed wherever a high-performance, reliable, relational database is required.

In the landmark book The Innovators Dilemma,* Clayton Christensen provided the
first widely accepted model of how open source and other “disruptive” technologies
displace more traditional “sustaining” technologies.

When a disruptive technology—Linux for example—first appears, its capabilities
and performance are typically way below what would be acceptable in the main-
stream or high-end market. However, the new technology is highly attractive to
those whose requirements or budgets preclude the use of the established commercial
alternatives. These very low-end markets are typically associated with low profit mar-
gins and low revenues, so the established vendors are more than happy to retreat
from these markets and give the disruptive technology this first foothold. As both the
sustaining/traditional and disruptive/innovative technologies improve their capabili-
ties, the disruptive technology becomes attractive to a wider segment of the main-
stream market, while the established technologies tend to “overshoot” the demands
of the average—or even high-end—consumer.

* The Innovator’s Dilemma, Clayton Christensen (New York, 2000), HarperBusiness Essentials.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

For the established vendors, the lower ends of the market are always associated with
lower profit margins, and the established vendors make a series of apparently sensi-
ble business decisions to successively abandon these markets to the newer disruptive
technologies. By the time the disruptive technology is seen as a real threat, the estab-
lished vendors are unable to compete without cannibalizing the revenues from their
established products, and in many cases, they become resigned to losing their mar-
ket dominance.

Open source in general, and MySQL in particular, shows all the characteristics of the
disruptive technology model. Five years ago, the capabilities of MySQL were so far
behind the requirements of the majority of business users that the use of MySQL in a
business environment was almost unheard of. However, MySQL—being free or
extremely low cost*—had a definite appeal for users who were unable to afford a
commercial relational database. As with most open source technologies, MySQL has
experienced rapid technological development—adding transactions, subqueries, and
other features normally associated with expensive commercial offerings. By the
release of MySQL 4.0, MySQL was being used in a mission-critical manner by an
increasing number of high-profile companies, including Yahoo, Google, and Sabre.

Meanwhile, the commercial database companies have been adding features that,
although significant for the very high end of the market, have arguably exceeded the
requirements of the majority of database users: they are more concerned with perfor-
mance, manageability, and stability than with advanced features such as composite
object data types, embedded Java Virtual Machines, or complex partitioning and
clustering capabilities.

With the 5.0 release, MySQL has arguably crossed one of the last remaining capabil-
ity thresholds for enterprise credibility. The ability to create stored procedures, func-
tions, triggers, and updateable views removes one of the last remaining objections to
using MySQL as a mainstream commercial database. For instance, prior to the intro-
duction of stored procedures, MySQL could not claim Java J2EE certification,
because the certification tests include stored procedure routines. While the “com-
mercial” databases still include many features not found in MySQL, these features
are often superfluous to the needs of mainstream database applications.

We believe that MySQL will continue to grow in significance as the premier open
source RDBMS and that stored programs—procedures, functions, and triggers—will
play a major part in the ongoing MySQL success story.

* MySQL has a dual licensing model that allows for free use in many circumstances but does require a com-
mercial license in some circumstances.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

First, a note about this book’s title and terminology.

The IT industry, the media, and MySQL AB itself generally use the
term stored procedures to refer to both stored procedures and stored
functions. While this is technically inaccurate (a function is not a pro-
cedure), we felt that the title MySQL Stored Procedure Programming
would most accurately and succinctly describe the purpose and con-
tent of this book. We also felt that the title MySQL Stored Procedure,
Function, and Trigger Programming would just be too much of a
mouthful!

To avoid any confusion, we use the general term stored program
within this book to refer to the set of database routines that includes
procedures, functions, and triggers, and to specific types of programs
(e.g., stored procedures) when appropriate.

Objectives of This Book
The new capabilities provided by stored procedures, functions, and triggers (we call
these, in general, stored programs) require new disciplines for MySQL developers,
only some of whom will have prior experience in stored program development using
other relational databases. Wise use of stored programs will lead to MySQL applica-
tions that are more robust, reliable, and efficient. However, inappropriate use of
stored programs, or poorly constructed stored programs, can lead to applications
that perform poorly, are hard to maintain, or are unreliable.

Thus, we see the need for a book that will help MySQL practitioners realize the full
potential of MySQL stored programs. We hope this book will help you to use stored
programs appropriately, and to write stored procedures, functions, and triggers that
are reliable, correct, efficient, and easy to maintain.

Best practice stored program development relies on four fundamentals:

Appropriate use
Used appropriately, stored programs can improve the performance, reliability,
and maintainability of your MySQL-based application. However, stored pro-
grams are not a universal panacea, and they should be used only where appropri-
ate. In this book, we describe where stored programs can be used to good effect,
and we outline some significant patterns (and anti-patterns) involving stored
programs.

Reliability
As with any programming language, the MySQL stored program language allows
you to write code that will behave predictably and correctly in all possible cir-
cumstances, but the language also allows you to write code subject to cata-
strophic failure or unpredictable behavior when unanticipated scenarios arise.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

We outline how to write stored programs that can deal appropriately with error
conditions, that fail gracefully and predictably, and that are—to the greatest
extent possible—bug free.

Maintainability
We have all had that sinking feeling of having to amend some piece of code—
whether written by a colleague or by ourselves—and finding that the intention,
logic, and mechanisms of the code are almost impossible to understand. So-called
“spaghetti” code can be written in any language, and MySQL stored programs are
no exception. We explain how to construct code that is easily maintained through
best practice naming conventions, program structure, commenting, and other
mechanisms.

Performance
Any nontrivial application has to perform to either implicitly or explicitly stated
performance requirements. The performance of the database access code—SQL
and stored program code—is often the most significant factor in overall applica-
tion performance. Furthermore, poorly constructed database code often fails to
scale predictably or at all when data or transaction volumes increase. In this
book, we show you when to use stored programs to improve application perfor-
mance and how to write stored program code that delivers the highest possible
performance. The SQL within a stored program is often the most performance-
critical part of the stored program, so we explain in depth how to write high-
performance SQL as well.

Structure of This Book
MySQL Stored Procedure Programming is divided into four major sections:

Part I, Stored Programming Fundamentals

This first part of the book introduces the MySQL stored program language and pro-
vides a detailed description of the language structure and usage.

• Chapter 1, Introduction to MySQL Stored Programs, asks the fundamental ques-
tions: Where did the language come from? What is it good for? What are the
main features of the language?

• Chapter 2, MySQL Stored Programming Tutorial, is a tutorial that is designed to
get you started with the language as quickly as possible; it shows you how to cre-
ate basic stored programs of each type and provides interactive examples of
major language functions.

• Chapter 3, Language Fundamentals, describes how to work with variables, liter-
als, operators, and expressions.

• Chapter 4, Blocks, Conditional Statements, and Iterative Programming, explains
how to implement conditional commands (IF and CASE) and looping structures.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

• Chapter 5, Using SQL in Stored Programming, discusses how SQL can be used
within the language.

• Chapter 6, Error Handling, provides the details of how errors can be handled.

Part II, Stored Program Construction

This part of the book describes how you can use the elements described in Part I to
build functional and useful stored programs.

• Chapter 7, Creating and Maintaining Stored Programs, outlines the statements
available for creating and modifying stored programs and provides some advice
on how to manage your stored program source code.

• Chapter 8, Transaction Management, explains the fundamentals of transaction
handling in stored programs.

• Chapter 9, MySQL Built-in Functions, details the built-in functions that can be
used in stored programs.

• Chapter 10, Stored Functions, describes how you can create and use one particu-
lar type of stored program: the stored function.

• Chapter 11, Triggers, describes another special type of stored program—the
database trigger—which is activated in response to DML (Data Manipulation
Language) executed on a database table.

Part III, Using MySQL Stored Programs in Applications

Stored programs can be used for a variety of purposes, including the implementation
of utility routines for use by MySQL DBAs and developers. However, the most
important use of stored programs is within applications, as we describe in this part of
the book. Stored programs allow us to move some of our application code into the
database server itself; if we do this wisely, we may benefit from an application that
will then be more secure, efficient, and maintainable.

• Chapter 12, Using MySQL Stored Programs in Applications, considers the merits
of and best practices for using stored programs inside modern—typically, web-
based—applications. The other chapters in this part of the book show you how
to use stored procedures and functions from within the development languages
most commonly used in conjunction with MySQL.

• Chapter 13, Using MySQL Stored Programs with PHP, describes the use of stored
programs from PHP. We primarily discuss the mysqli and PDO interfaces—
recently bundled by MySQL asConnector/PHP—and their stored program
support.

• Chapter 14, Using MySQL Stored Programs with Java, describes the use of stored
programs from Java and includes the use of stored programs using JDBC, Serv-
lets, Enterprise JavaBeans™, Hibernate, and Spring.

• Chapter 15, Using MySQL Stored Programs with Perl, describes the use of stored
programs from Perl.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

• Chapter 16, Using MySQL Stored Programs with Python, describes the use of
stored programs from Python.

• Chapter 17, Using MySQL Stored Programs with .NET, describes the use of
stored programs from .NET languages such as C# and VB.NET.

Part IV, Optimizing Stored Programs

This final part of the book hopes to take you from “good” to “great.” Getting pro-
grams to work correctly is hard enough: any program that works is probably a good
program. A great program is one that performs efficiently, is robust and secure, and
is easily maintained.

• Chapter 18, Stored Program Security, discusses the unique security concerns and
opportunities raised by stored procedures and functions.

• Chapter 19, Tuning Stored Programs and Their SQL. This chapter, along with
Chapters 20 through 22, covers the performance optimization of stored pro-
grams. This chapter kicks off with a general discussion of performance tuning
tools and techniques.

• Chapter 20, Basic SQL Tuning. The performance of your stored programs will be
largely dependent on the performance of the SQL inside them, so this chapter
provides guidelines for tuning basic SQL.

• Chapter 21, Advanced SQL Tuning. This chapter builds on Chapter 20, describ-
ing more advanced tuning approaches.

• Chapter 22, Optimizing Stored Program Code, covers the performance tuning of
the stored program code itself.

• Chapter 23, Best Practices in MySQL Stored Program Development, wraps up the
book with a look at best practices in stored program development. These guide-
lines should help you write stored programs that are fast, secure, maintainable,
and bug free.

You’ll find that a significant proportion of the book includes material that pertains
not only to stored program development, but also to development in other lan-
guages such as PHP or Java. For instance, we believe that you cannot write a high-
performance stored program without tuning the SQL that the program contains;
therefore, we have devoted significant coverage to SQL tuning—material that would
also be of benefit regardless of the language in which the SQL is embedded. Like-
wise, some of the discussions around transaction design and security could be appli-
cable in other languages.

What This Book Does Not Cover
This book is not intended to be a complete reference to MySQL. It focuses on the
stored program language. The following topics are therefore outside the scope of this
book and are not covered, except in an occasional and peripheral fashion:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

The SQL language
We assume that you already have a working knowledge of the SQL language,
and that you know how to write SELECT, UPDATE, INSERT, and DELETE statements.

Administration of MySQL databases
While DBAs can use this book to learn how to write the code needed to build
and maintain databases, this book does not explore all the nuances of the DDL
(Data Definition Language) of MySQL’s SQL.

Conventions Used in This Book
The following conventions are used in this book:

Italic

Used for URLs and for emphasis when introducing a new term.

Constant width
Used for MySQL and SQL keywords and for code examples.

Constant width bold
In some code examples, highlights the statements being discussed.

Constant width italic
In some code examples, indicates an element (e.g., a filename) that you supply.

UPPERCASE
In code examples, generally indicates MySQL keywords.

lowercase
In code examples, generally indicates user-defined items such as variables,
parameters, etc.

punctuation
In code examples, enter exactly as shown.

indentation
In code examples, helps to show structure but is not required.

--
In code examples, begins a single-line comment that extends to the end of a line.

/* and */
In code examples, delimit a multiline comment that can extend from one line to
another.

. In code examples and related discussions, qualifies a reference by separating an
object name from a component name.

[ ] In syntax descriptions, enclose optional items.

{ } In syntax descriptions, enclose a set of items from which you must choose only one.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

| In syntax descriptions, separates the items enclosed in curly brackets, as in
{TRUE | FALSE}.

...
In syntax descriptions, indicates repeating elements. An ellipsis also shows that
statements or clauses irrelevant to the discussion were left out.

Indicates a tip, suggestion, or general note. For example, we’ll tell you
if a certain setting is version-specific.

Indicates a warning or caution. For example, we’ll tell you if a certain
setting has some kind of negative impact on the system.

Which Version?
This book describes the stored program language introduced in MySQL 5.0. At the
time the book went to press, MySQL 5.0.18 was the most recently available binary
Community edition, although we were working with versions up to 5.1.7 built
directly from source code.

Resources Available at the Book’s Web Site
We have provided all of the code included in this book on the book’s O’Reilly web
site. Go to:

http://www.oreilly.com/catalog/mysqlspp

and click on the Examples link to go to the book’s web companion.

To find the code for a specific example, look for the file corresponding to the exam-
ple or figure in which that code appeared. For instance, to obtain the code for
Example 3-1, you would access the file example0301.sql.

At this web site you will also be able to download a dump file containing the sample
database used throughout the book, the source code to some utilities we used dur-
ing our development of the examples, errata, and addenda to the book’s content.

In particular, we will use this web site to keep you posted on the status of any restric-
tions or problems relating to stored programs in MySQL or other tools. Because the
MySQL stored program language is relatively new, MySQL AB will be refining the
behavior and capabilities of the language in each new release of the MySQL server.
Also, support for stored programs in other languages (PHP, Perl, Python, Hibernate)
was sometimes only partially completed as this book went to press; we’ll keep you
updated with the status of these languages at the web site.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “MySQL Stored Procedure Pro-
gramming by Guy Harrison with Steven Feuerstein. Copyright 2006 O’Reilly Media,
Inc., 0-596-10089-2.”

If you feel that your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us
We have tested and verified the information in this book and in the source code to
the best of our ability, but given the amount of text and the rapid evolution of tech-
nology, you may find that features have changed or that we have made mistakes. If
so, please notify us by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

You can also send messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

As mentioned in the earlier section, we have a web site for this book where you can
find code, errata (previously reported errors and corrections available for public
view), and other book information. You can access this web site at:

http://www.oreilly.com/catalog/mysqlspp

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Acknowledgments
We’d first like to thank Debby Russell, our editor at O’Reilly Media, for supporting
us through this endeavor and for being the organizing force behind the end-to-end
project. Many other people at O’Reilly also played a big role in the book’s develop-
ment, including Adam Witwer, the production editor, and Rob Romano, the illustra-
tor; additional production services were provided by Argosy Publishing.

The role of the technical reviewers in the production of this book was absolutely crit-
ical. The scope of coverage included not just the MySQL stored program language
but also five other development languages and many features of the MySQL 5.0
server itself. Furthermore, the stored program language was evolving as we con-
structed the book. Without the valuable inputs from our technical reviewers, we
would have been unable to achieve any reasonable degree of accuracy and currency
across the entire scope. Reviewers included Tim Allwine, Brian Aker, James Cooper,
Greg Cottman, Paul DuBois, Andy Dustman, Peter Gulutzan, Mike Hillyer, Arjen
Lentz, and Mark Matthews. Thanks guys!

To the open source community in general and to the MySQL development commu-
nity in particular, we also give thanks. The availability of free (both as in beer and as
in speech) software of such quality and innovation is a source of constant amaze-
ment and gratification. Many in the MySQL and associated communities contrib-
uted to the existence of this in so many ways.

We worked with some of the maintainers of the various open source interfaces to
MySQL to ensure that these were able to support some of the new features intro-
duced in MySQL 5.0. Thanks to Wez Furlong, Patrick Galbraith, and Andy Dust-
man in particular for their help in patching the PHP PDO, Perl DBI, and Python
MySQLdb interfaces.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

From Guy: On a personal note, I would like to—as always—thank my wife Jenni
and children Christopher, Katherine, Michael, and William for putting up with me
during this and other writing projects. Thanks with much love. Also—of course—
thanks to Steven for working with me on this book.

From Steven: I have spent the last 10 years studying, working with, and writing
about the Oracle PL/SQL language. That experience has demonstrated very clearly to
me the value and importance of stored programs. I was very excited, therefore, when
Guy invited me to work with him on a book about MySQL stored programs. I have
no doubt that this new functionality will help extend the reach and usefulness of
MySQL, and I thank Guy for the opportunity to help MySQL programmers make the
most of this key open source relational database.





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART I

I.Stored Programming Fundamentals

This first part of the book introduces the MySQL stored program language and pro-
vides a detailed description of the language structure and usage. Chapter 1 asks the
fundamental questions: Where did the language come from? What is it good for?
What are the main features of the language? Chapter 2 is a tutorial that is designed to
get you started with the language as quickly as possible; it shows you how to create
basic stored programs of each type and provides interactive examples of major lan-
guage functions. Chapters 3 through 6 describe the MySQL stored program lan-
guage in detail: how to work with variables, how to implement conditional and
iterative control structures, how SQL can be used within the language, and how
errors can be handled.

Chapter 1, Introduction to MySQL Stored Programs

Chapter 2, MySQL Stored Programming Tutorial

Chapter 3, Language Fundamentals

Chapter 4, Blocks, Conditional Statements, and Iterative Programming

Chapter 5, Using SQL in Stored Programming

Chapter 6, Error Handling





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3

Chapter 1 CHAPTER 1

Introduction to MySQL Stored Programs1

When MySQL first emerged into the IT world in the mid-1990s, it had few of the char-
acteristics normally associated with commercial relational databases. Features such as
transactional support, subqueries, views, and stored procedures were conspicuously
absent. Subsequent releases provided most of the missing features, and now—with the
introduction of stored procedures, functions, and triggers in MySQL 5 (as well as
updateable views and a data dictionary)—the feature gap between MySQL and other
relational database systems is narrow indeed.

The introduction of stored programs (our generic term for stored procedures, func-
tions, and triggers) has significance beyond simply winning a features war with com-
petitive database systems. Without stored programs, MySQL cannot claim full
compliance with a variety of standards, including ANSI/ISO standards that describe
how a DBMS should execute stored programs. Furthermore, judicious use of stored
programs can lead to greater database security and integrity and can improve overall
application performance and maintainability. We outline these advantages in greater
detail later in this chapter.

In short, stored programs—procedures, functions, and triggers—add significantly to
the capabilities of MySQL, and a working knowledge of stored programming should
be an essential skill for the MySQL professional.

This chapter introduces the MySQL stored program language, its origins, and its
capabilities. It also offers a guide to additional resources for MySQL stored program
developers and some words of overall development advice.

What Is a Stored Program?
A database stored program—sometimes called a stored module or a stored routine—is
a computer program (a series of instructions associated with a name) that is stored
within, and executes within, the database server. The source code and (sometimes)
any compiled version of the stored program are almost always held within the data-
base server’s system tables as well. When the program is executed, it is executed
within the memory address of a database server process or thread.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction to MySQL Stored Programs

There are three major types of MySQL stored programs:

Stored procedures
Stored procedures are the most common type of stored program. A stored proce-
dure is a generic program unit that is executed on request and that can accept
multiple input and output parameters.

Stored functions
Stored functions are similar to stored procedures, but their execution results in
the return of a single value. Most importantly, a stored function can be used
within a standard SQL statement, allowing the programmer to effectively extend
the capabilities of the SQL language.

Triggers
Triggers are stored programs that are activated in response to, or are triggered
by, an activity within the database. Typically, a trigger will be invoked in
response to a DML operation (INSERT, UPDATE, DELETE) against a database table.
Triggers can be used for data validation or for the automation of denormalization.

Other databases offer additional types of stored programs, including
packages and classes, both of which allow you to define or collect mul-
tiple procedures and functions within a single, named context.
MySQL does not currently support such structures—in MySQL, each
stored program is a standalone entity.

Throughout this book, we are going to use the term stored programs to refer to
stored procedures, functions, and triggers, and the term stored program language to
refer to the language used to write these programs. Most of the facilities in the stored
program language are applicable across procedures, functions, and triggers; how-
ever, both functions and triggers have strict limitations on the language features that
may be used with them. Thus, we dedicate a chapter to each of these program types
in which we explain these limitations.

Why Use Stored Programs?
Developers have a multitude of programming languages from which to choose. Many
of these are not database languages, which means that the code written in these lan-
guages does not reside in, nor is it managed by, a database server. Stored programs
offer some very important advantages over more general-purpose languages,
including:

• The use of stored programs can lead to a more secure database.

• Stored programs offer a mechanism to abstract data access routines, which can
improve the maintainability of your code as underlying data structures evolve.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

What Is a Stored Program? | 5

• Stored programs can reduce network traffic, because the program can work on
the data from within the server, rather than having to transfer the data across the
network.

• Stored programs can be used to implement common routines accessible from
multiple applications—possibly using otherwise incompatible frameworks—
executed either within or from outside the database server.

• Database-centric logic can be isolated in stored programs and implemented by
programmers with more specialized, database experience.

• The use of stored programs can, under some circumstances, improve the porta-
bility of your application.

While this is an impressive list of advantages (many of which will be explored in
greater detail in this book), we do not recommend that you immediately move all
your application logic into stored programs. In today’s rich and complex world of
software technology, you need to understand the strengths and weaknesses of each
possible element in your software configuration, and figure out how to maximize
each element. We spend most of Chapter 12 evaluating how and where to apply
MySQL stored programs.

The bottom line is that, used correctly, stored programs—procedures, functions, and
triggers—can improve the performance, security, maintainability, and reliability of
your applications.

Subsequent chapters will explore how to construct MySQL stored programs and use
them to best advantage. Before plunging into the details, however, let’s look at how
the technology developed and take a quick tour of language capabilities.

A Brief History of MySQL
MySQL has its roots in an in-house (non-SQL) database system called Unireg used
by the Swedish company TcX that was first developed in the 1980s and optimized
for data warehousing. The author of Unireg, Michael “Monty” Widenius, added a
SQL interface to Unireg in 1995, thus creating the first version of MySQL. David
Axmark, from Detron HB, approached Monty proposing to release MySQL to the
world under a “dual licensing” model that would allow widespread free use, but
would still allow for commercial advantage. Together with Allan Larsson, David and
Monty became the founders of the MySQL company.

The first widely available version of MySQL was 3.11, which was released in mid-
1996. Adoption of MySQL grew rapidly—paralleling the adoption of other related
open source technologies. By the year 2005, MySQL could lay claim to over 6 mil-
lion installations of the MySQL database.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction to MySQL Stored Programs

Version 3 of MySQL, while suitable for many types of applications (particularly read-
intensive web applications), lacked many of the features normally considered
mandatory in a relational database. For instance, transactions, views, and subque-
ries were not initially supported.

However, the MySQL system was designed to support a particularly extensible data
access architecture, in which the SQL layer was decoupled from the underlying data
and file access layer. This allowed custom “storage engines” to be employed in place
of—or in combination with—the native ISAM (Indexed Sequential Access Method)-
based MySQL engine. The Berkeley-DB (BDB) database (from Sleepycat Software)
was integrated as an optional storage engine in version 3.23.34 in early 2001. BDB
provided MySQL with its initial transaction processing capability. At about the same
time, the open source InnoDB storage engine became available and quickly became a
natively available option for MySQL users.

The 4.0 release in early 2002 fully incorporated the InnoDB option, making transac-
tions easily available for all MySQL users, and also added improved replication capa-
bilities. The 4.1 release in early 2004 built on the 4.0 release and included—among
many other improvements—support for subqueries and Unicode character sets.

With the 5.0 release of MySQL in late 2005, MySQL took an important step closer to
functional parity with commercial RDBMS systems; it introduced stored procedures,
functions, and triggers, the addition of a data dictionary (the SQL-standard
INFORMATION_SCHEMA), and support for updateable views.

The 5.1 release, scheduled for the second half of 2006, will add important factilities
such as an internal scheduler, table partitioning, row-based replication, and many
other significant enhancements.

MySQL Stored Procedures, Functions, and Triggers
MySQL chose to implement its stored program language within the MySQL server as
a subset of the ANSI SQL:2003 SQL/PSM (Persistent Stored Module) specification.
What a mouthful! Essentially, MySQL stored programs—procedures, functions, and
triggers—comply with the only available open standard for these types of programs
—the ANSI standard.

Many MySQL and open source aficionados had been hoping for a stored program
language implementation based on an open source language such as PHP or Python.
Others anticipated a Java™-based implementation. However, by using the ANSI
specification—the same specification adopted within IBM’s DB2 database—MySQL
has taken advantage of years of work done by the ANSI committee, which included
representatives from all of the major RDBMS companies.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A Quick Tour | 7

The MySQL stored program language is a block-structured language (like Pascal)
that includes familiar commands for manipulating variables, implementing condi-
tional execution, performing iterative processing, and handling errors. Users of exist-
ing stored program languages, such as Oracle’s PL/SQL or SQL Server’s Transact-
SQL, will find features of the language very familiar. Programmers familiar with
other languages, such as PHP or Java, might consider the language somewhat sim-
plistic, but they will find that it is easy to learn and that it is well matched to the
common requirements of database programming.

A Quick Tour
Let’s look at a few quick examples that demonstrate some key elements of both the
structure and the functionality of MySQL’s stored program language. For a full tuto-
rial, see Chapter 2.

Integration with SQL
One of the most important aspects of MySQL’s stored program language is its tight
integration with SQL. You don’t need to rely on intermediate software “glue,” such
as ODBC (Open DataBase Connectivity) or JDBC (Java DataBase Connectivity), to
construct and execute SQL statements in your stored program language programs.
Instead, you simply write the UPDATE, INSERT, DELETE, and SELECT statements directly
into your code, as shown in Example 1-1.

Example 1-1.  Embedding SQL in a stored program

1  CREATE PROCEDURE example1( )
2  BEGIN
3    DECLARE l_book_count INTEGER;
4
5    SELECT COUNT(*)
6      INTO l_book_count
7      FROM books
8     WHERE author LIKE '%HARRISON,GUY%';
9
10   SELECT CONCAT('Guy has written (or co-written) ',
11          l_book_count ,
12          ' books.');
13
14    -- Oh, and I changed my name, so...
15    UPDATE books
16       SET author = REPLACE (author, 'GUY', 'GUILLERMO')
17     WHERE author LIKE '%HARRISON,GUY%';
18
19 END



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction to MySQL Stored Programs

Let’s take a more detailed look at this code in the following table:

Control and Conditional Logic
Of course, real-world applications are full of complex conditions and special cases,
so you are unlikely to be able to simply execute a series of SQL statements. The
stored program language offers a full range of control and conditional statements so
that we can control which lines of our programs actually run under a given set of cir-
cumstances. These include:

IF and CASE statements
Both of these statements implement conditional logic with different structures.
They allow you to express logic such as “If the page count of a book is greater
than 1000, then...”.

A full complement of looping and iterative controls
These include the simple loop, the WHILE loop, and the REPEAT UNTIL loop.

Example 1-2, a procedure that pays out the balance of an account to cover outstand-
ing bills, demonstrates some of the control statements of MySQL.

Line(s) Explanation

1 This section, the header of the program, defines the name (example1) and type (PROCEDURE) of our stored
program.

2 This BEGIN keyword indicates the beginning of the program body, which contains the declarations and execut-
able code that constitutes the procedure. If the program body contains more than one statement (as in this pro-
gram), the multiple statements are enclosed in a BEGIN-END block.

3 Here we declare an integer variable to hold the results of a database query that we will subsequently execute.

5-8 We run a query to determine the total number of books that Guy has authored or coauthored. Pay special atten-
tion to line 6: the INTO clause that appears within the SELECT serves as the “bridge” from the database to the
local stored program language variables.

10-12 We use a simple SELECT statement (e.g., one without a FROM clause) to display the number of books. When we
issue a SELECT without an INTO clause, the results are returned directly to the calling program. This is a non-
ANSI extension that allows stored programs to easily return result sets (a common scenario when working with
SQL Server and other RDBMSs).

14 This single-line comment explains the purpose of the UPDATE.

15-17 Guy has decided to change the spelling of his first name to “Guillermo”— he’s probably being stalked by fans of
his Oracle book—so we issue an UPDATE against the books table. We take advantage of the built-in REPLACE
function to locate all instances of “GUY” and replace them with “GUILLERMO”.

Example 1-2. Stored procedure with control and conditional logic

1  CREATE PROCEDURE pay_out_balance
2       (account_id_in INT)
3
4  BEGIN
5
6  DECLARE l_balance_remaining NUMERIC(10,2);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A Quick Tour | 9

Let’s take a more detailed look at this code in the following table:

Stored Functions
A stored function is a stored program that returns a single value and that can be used
whenever a built-in function can be used—for example, in a SQL statement.
Example 1-3 returns the age of a person in years when provided with a date of birth.

7
8  payout_loop:LOOP
9    SET l_balance_remaining = account_balance(account_id_in);
10
11    IF l_balance_remaining < 1000 THEN
12      LEAVE payout_loop;
13
14    ELSE
15      CALL apply_balance(account_id_in, l_balance_remaining);
16    END IF;
17
18  END LOOP;
19
20 END

Line(s) Explanation

1-3 This is the header of our procedure; line 2 contains the parameter list of the procedure, which in this case consists
of a single incoming value (the identification number of the account).

6 Declare a variable to hold the remaining balance for an account.

8-18 This simple loop (named so because it is started simply with the keyword LOOP, as opposed to WHILE or
REPEAT) iterates until the account balance falls below 1000. In MySQL, we can name the loop (line 8, payout_
loop), which then allows us to use the LEAVE statement (see line 12) to terminate that particular loop. After
leaving a loop, the MySQL engine will then proceed to the next executable statement following the END LOOP;
statement (line 18).

9 Call the account_balance function (which must have been previously defined) to retrieve the balance for
this account. MySQL allows you to call a stored program from within another stored program, thus facilitating
reuse of code. Since this program is a function, it returns a value and can therefore be called from within a MySQL
SET assignment.

11-16 This IF statement causes the loop to terminate if the account balance falls below $1,000. Otherwise (the ELSE
clause), it applies the balance to the next charge. You can construct much more complex Boolean expressions
with ELSEIF clauses, as well.

15 Call the apply_balance procedure. This is an example of code reuse; rather than repeating the logic of
apply_balance in this procedure, we call a common routine.

Example 1-3. A stored function to calculate age from date of birth

1 CREATE FUNCTION f_age (in_dob datetime) returns int
2   NO SQL
3 BEGIN
4   DECLARE l_age INT;

Example 1-2. Stored procedure with control and conditional logic (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction to MySQL Stored Programs

Let’s step through this code in the following table:

We can use our stored function wherever a built-in function would be permitted—
within another stored program, in a SET statement, or, as shown in Example 1-4,
within a SQL statement.

When Things Go Wrong
Even if our programs have been thoroughly tested and have no bugs, user input can
cause errors to occur in our code. The MySQL stored program language offers a
powerful mechanism for handling errors. In Example 1-5, we create a procedure that

5   IF DATE_FORMAT(NOW( ),'00-%m-%d') >= DATE_FORMAT(in_dob,'00-%m-%d') THEN
6      -- This person has had a birthday this year
7      SET l_age=DATE_FORMAT(NOW( ),'%Y')-DATE_FORMAT(in_dob,'%Y');
8    ELSE
9      -- Yet to have a birthday this year
10      SET l_age=DATE_FORMAT(NOW( ),'%Y')-DATE_FORMAT(in_dob,'%Y')-1;
11   END IF;
12   RETURN(l_age);

END;

Lines(s) Explanation

1 Define the function: its name, input parameters (a single date), and return value (an integer).

2 This function contains no SQL statements. There’s some controversy about the use of this clause —see Chapters
3 and 10 for more discussion.

4 Declare a local variable to hold the results of our age calculation.

5-11 This IF-ELSE-END IF block checks to see if the birth date in question has occurred yet this year.

7 If the birth date has, in fact, passed in the current year, we can calculate the age by simply subtracting the year of
birth from the current year.

10 Otherwise (i.e., the birth date is yet to occur this year), we need to subtract an additional year from our age calculation.

12 Return the age as calculated to the calling program.

Example 1-4. Using a stored function within a SQL statement

mysql> SELECT firstname,surname, date_of_birth, f_age(date_of_birth) AS age
    ->   FROM employees LIMIT 5;
+-----------+---------+---------------------+------+
| firstname | surname | date_of_birth       | age  |
+-----------+---------+---------------------+------+
| LUCAS     | FERRIS  | 1984-04-17 07:04:27 |   21 |
| STAFFORD  | KIPP    | 1953-04-22 06:04:50 |   52 |
| GUTHREY   | HOLMES  | 1974-09-12 08:09:22 |   31 |
| TALIA     | KNOX    | 1966-08-14 11:08:14 |   39 |
| JOHN      | MORALES | 1956-06-22 07:06:14 |   49 |
+-----------+---------+---------------------+------+

Example 1-3. A stored function to calculate age from date of birth (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A Quick Tour | 11

creates new product codes or—if the product code already exists—updates it with a
new name. The procedure detects an attempt to insert a duplicate value by using an
exception handler. If the attempt to insert fails, the error is trapped and an UPDATE is
issued in place of the INSERT. Without the exception handler, the stored program
execution is stopped, and the exception is passed back unhandled to the calling
program.

Let’s take a more detailed look at the error-handling aspects of this code:

Example 1-5. Error handling in a stored program

1  CREATE PROCEDURE sp_product_code
2      (in_product_code VARCHAR(2),
3       in_product_name VARCHAR(30))
4
5  BEGIN
6
7    DECLARE l_dupkey_indicator INT DEFAULT 0;
8    DECLARE duplicate_key CONDITION FOR 1062;
9    DECLARE CONTINUE HANDLER FOR duplicate_key SET l_dupkey_indicator =1;
10
11   INSERT INTO product_codes (product_code, product_name)
12   VALUES (in_product_code, in_product_name);
13
14   IF l dupkey_indicator THEN
15     UPDATE product_codes
16        SET product_name=in_product_name
17      WHERE product_code=in_product_code;
18   END IF;
19
20 END

Line(s) Explanation

1-4 This is the header of the stored procedure, accepting two IN parameters: product code and product name.

7 Declare a variable that we will use to detect the occurrence of a duplicate key violation. The variable is initial-
ized with a value of 0 (false); subsequent code will ensure that it gets set to a value of 1 (true) only if a dupli-
cate key violation takes place.

8 Define a named condition, duplicate_key, that is associated with MySQL error 1062. While this step is not
strictly necessary, we recommend that you define such conditions to improve the readability of your code (you
can now reference the error by name instead of by number).

9 Define an error handler that will trap the duplicate key error and then set the value of the variable l_
dupkey_indicator to 1 (true) if a duplicate key violation is encountered anywhere in the subsequent
code.

11-12 Insert a new product with the user-provided code and name.

14 Check the value of the l_dupkey_indicator variable. If it is still 0, then the INSERT was successful and
we are done. If the value has been changed to 1 (true), we know that there has been a duplicate key violation.
We then run the UPDATE statement in lines 15-17 to change the name of the product with the specified code.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introduction to MySQL Stored Programs

Error handling is a critical aspect of writing robust, maintainable MySQL stored pro-
grams. Chapter 6 takes you on an extensive tour of the various error-handling mech-
anisms in MySQL stored programs.

Triggers
A trigger is a stored program that is automatically invoked in response to an event
within the database. In the MySQL 5 implementation, triggers are invoked only in
response to DML activity on a specific table. The trigger can automatically calculate
derived or denormalized values. Example 1-6 shows a trigger that maintains such a
derived value; whenever an employee salary is changed, the value of the contrib_401K
column is automatically set to an appropriate value.

The following table explains this fairly simple and short trigger:

There is, of course, much more that can be said about the MySQL stored program
language—which is why you have hundreds more pages of material to study in this
book! These initial examples should, however, give you a good feel for the kind of
code you will write with the stored program language, some of its most important
syntactical elements, and the ease with which you can write—and read—the stored
program language code.

Example 1-6. Trigger to maintain a derived column value

1  CREATE TRIGGER employees_trg_bu
2       BEFORE UPDATE ON employees
3       FOR EACH ROW
4    BEGIN
5      IF NEW.salary <50000 THEN
6        SET NEW.contrib_401K=500;
7     ELSE
8       SET NEW.contrib_401K=500+(NEW.salary-50000)*.01;
9     END IF;
10  END

Line(s) Explanation

1 A trigger has a unique name. Typically, you will want to name the trigger so as to reveal its nature. For
example, the “bu” in the trigger’s name indicates that this is a BEFORE UPDATE trigger.

2 Define the conditions that will cause the trigger to fire. In this case, the trigger code will execute prior to an
UPDATE statement on the employees table.

3 FOR EACH ROW indicates that the trigger code will be executed once for each row being affected by the
DML statement. This clause is mandatory in the current MySQL 5 trigger implementation.

4-10 This BEGIN-END block defines the code that will run when the trigger is fired.

5-9 Automatically populate the contrib_401K column in the employees table. If the new value for the
salary column is less than 50000, thecontrib._401K column will be set to 500. Otherwise, the value
will be calculated as shown in line 8.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Resources for Developers Using Stored Programs | 13

Resources for Developers Using Stored Programs
The introduction of stored programs in MySQL 5 is a significant milestone in the
evolution of the MySQL language. For any new technology to be absorbed and lever-
aged fully, users of that technology need lots of support and guidance in how best to
utilize it. Our objective is to offer in this book complete and comprehensive cover-
age of the MySQL stored program language.

We are certain, however, that you will need help in other ways, so in the following
sections we describe additional resources that either complement this book (by pro-
viding information about other MySQL technologies) or provide community-based
support or late-breaking news. In these sections we provide quick summaries of
many of these resources. By taking full advantage of these resources, many of which
are available either free or at a relatively low cost, you will greatly improve the qual-
ity of your MySQL development experience—and your resulting code.

Books
Over the years, the MySQL series from O’Reilly has grown to include quite a long list
of books. Here we list some of the books currently available that we feel could be perti-
nent to the MySQL stored program developer, as well as relevant books from other
publishers. Please check out the MySQL area of the O’Reilly OnLAMP web site (http://
www.onlamp.com/onlamp/general/mysql.csp) for more complete information.

MySQL Stored Procedure Programming, by Guy Harrison with Steven Feuerstein
This is the book you are holding now (or maybe even viewing online). This book
was designed to be a complete and comprehensive guide to the MySQL stored
program language. However, this book does not attempt complete coverage of
the MySQL server, the SQL language, or other programming languages that you
might use with MySQL. Therefore, you might want to complement this book
with one or more other topics from the O’Reilly catalog or even—heaven for-
bid—from another publisher!

MySQL in a Nutshell, by Russell Dyer
This compact quick-reference manual covers the MySQL SQL language, utility
programs, and APIs for Perl, PHP, and C. This book is the ideal companion for
any MySQL user (O’Reilly).

Web Database Applications with PHP and MySQL, by Hugh Williams and David Lane
This is a comprehensive guide to creating web-based applications using PHP and
MySQL. It covers PEAR (PHP Extension and Application Repository) and pro-
vides a variety of complete case studies (O’Reilly).



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Introduction to MySQL Stored Programs

MySQL, by Paul DuBois
This classic reference—now in its third edition—is a comprehensive reference to
MySQL development and administration. The third edition includes prerelease
coverage of MySQL 5.0, including some information about stored procedures,
functions, and triggers (SAMS).

High Performance MySQL, by Jeremy Zawodny and Derek Balling
This book covers the construction of high-performance MySQL server environ-
ments, along with how you can tune applications to take advantage of these
environments. The book focuses on optimization, benchmarking, backups, rep-
lication, indexing, and load balancing (O’Reilly).

MySQL Cookbook, by Paul DuBois
This cookbook provides quick and easily applied recipes for common MySQL
problems ranging from program setup to table manipulation and transaction
management to data import/export and web interaction (O’Reilly).

Pro MySQL, by Michael Krukenberg and Jay Pipes
This book covers many advanced MySQL topics, including index structure,
internal architecture, replication, clustering, and new features in MySQL 5.0.
Some coverage of stored procedures, functions, and triggers is included,
although much of the discussion is based on early MySQL 5 beta versions
(APress).

MySQL Design and Tuning, by Robert D. Schneider
This is a good source of information on advanced development and administra-
tion topics, with a focus on performance (MySQL Press).

SQL in a Nutshell, by Kevin Kline, et al.
MySQL stored procedures, functions, and triggers rely on the SQL language to
interact with database tables. This is a reference to the SQL language as imple-
mented in Oracle, SQL Server, DB2, and MySQL (O’Reilly).

Learning SQL, by Alan Beaulieu
This book provides an excellent entry point for those unfamiliar with SQL. It
covers queries, grouping, sets, filtering, subqueries, joins, indexes, and con-
straints, along with exercises (O’Reilly).

Internet Resources
There are also some excellent web sites available to MySQL programmers, including
some areas devoted to stored programming. You should also make sure to look at
the web site for this book (described in the Preface) for updates, errata, and other
MySQL information.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Resources for Developers Using Stored Programs | 15

MySQL
MySQL AB offers the most comprehensive collection of white papers, documen-
tation, and forums on MySQL in general and MySQL stored programming in
particular. Start at http://www.mysql.com. We outline some specific areas later.

MySQL Developer Zone
http://dev.mysql.com/ is the main entry point for MySQL programmers. From
here you can easily access software downloads, online forums, white papers,
documentation, and the bug-tracking system.

MySQL online documentation
The MySQL reference manual—including sections on stored procedures, func-
tions, and triggers—is available online at http://dev.mysql.com/doc/. You can also
download the manual in various formats from here, or you can order various
selections in printed book format at http://dev.mysql.com/books/mysqlpress/index.
html.

MySQL forums
MySQL forums are great places to discuss MySQL features with others in the
MySQL community. The MySQL developers are also frequent participants in
these forums. The general forum index can be found at http://forums.mysql.com/.
The stored procedure forum includes discussions of both procedures and func-
tions, and there is a separate forum for triggers.

MySQL blogs
There are many people blogging about MySQL nowadays, and MySQL has con-
solidated many of the most significant feeds on the Planet MySQL web site at
http://www.planetmysql.org/.

MySQL stored routines library
Giuseppe Maxia initiated this routine library, which collects general-purpose
MySQL 5 stored procedures and functions. The library is still young, but already
there are some extremely useful routines available. For example, you will find
routines that emulate arrays, automate repetitive tasks, and perform crosstab
manipulations. Check it out at http://savannah.nongnu.org/projects/mysql-sr-lib/.

O’Reilly’s OnLAMP MySQL section
O’Reilly hosts the OnLAMP site, which is dedicated to the LAMP stack (Linux,
Apache, MySQL, PHP/Perl/Python) of which MySQL is such an important part.
OnLAMP includes numerous MySQL articles, which you can find at http://www.
onlamp.com/onlamp/general/mysql.csp.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Introduction to MySQL Stored Programs

Some Words of Advice for Developers
By definition, everyone is new to the world of MySQL stored program development,
because stored programs are themselves new to MySQL. However, Guy and Steven
have both had plenty of experience in stored program development within other rela-
tional databases. Steven, in particular, has been a key figure in the world of Oracle
PL/SQL (Oracle’s stored program language) development for more than a decade.
We hope that you will find it helpful if we share some advice with you on how you
can work more effectively with this powerful MySQL programming language.

Don’t Be in Such a Hurry!
We are almost always working under tight deadlines, or playing catch-up from one
setback or another. We have no time to waste, and lots of code to write. So let’s get
right to it—right?

Wrong. If we dive too quickly into the depths of code construction, slavishly con-
verting requirements to hundreds, thousands, or even tens of thousands of lines of
code, we will end up with a total mess that is almost impossible to debug and main-
tain. Don’t respond to looming deadlines with panic; you are more likely to meet
those deadlines if you do some careful planning.

We strongly encourage you to resist these time pressures and make sure to do the fol-
lowing before you start a new application, or even a specific program in an application:

Construct test cases and test scripts before you write your code. You should deter-
mine how you want to verify a successful implementation before you write a sin-
gle line of a program. By doing this, you are more likely to get the interface of
your program correct and be able to thoroughly identify what it is your program
needs to do.

Establish clear rules for how developers will write the SQL statements in the
application. In general, we recommend that individual developers not write a whole

lot of SQL. Instead, those single-row queries and inserts and updates should be
“hidden” behind prebuilt and thoroughly tested procedures and functions (this
is called data encapsulation). These programs can be optimized, tested, and
maintained much more effectively than SQL statements (many of them quite
similar) scattered throughout your code.

Establish clear rules for how developers will handle exceptions in the application.
If you don’t set standards, then everyone will handle errors their own way or not
at all, creating software chaos. The best approach to take is to centralize your
error-handling logic in a small set of procedures, which hide all the details of
how an error log is kept, determine how exceptions are raised and propagated
up through nested blocks, and more. Make sure that all developers use these
programs and do not write their own complicated, time-consuming, and error-
prone error-handling code.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Some Words of Advice for Developers | 17

Use “stepwise refinement” (a.k.a. top-down design) to limit the complexity of the
requirements you must deal with at any given time. We are usually tasked with

implementing very complex requirements. If you try to “do it all” in one big
stored program, it will rapidly devolve into spaghetti code that even you will not
be able to understand later. Break your big challenges into a sequence of smaller
challenges, and then tackle those more manageable problems with reasonably
sized programs. If you use this approach, you will find that the executable sec-
tions of your modules are shorter and easier to understand, which makes your
code easier to maintain and enhance over time.

These are just a few of the important things to keep in mind before you start writing
all that code. Just remember: in the world of software development, haste not only
makes waste, it virtually guarantees a generous offering of bugs and lost weekends.

Don’t Be Afraid to Ask for Help
Chances are, if you are a software professional, you are a smart and well-educated
individual. You studied hard, you honed your skills, and now you make a darn good
living writing code. You can solve almost any problem you are handed, and that
makes you proud.

Unfortunately, your success can also make you egotistical, arrogant, and reluctant to
seek out help when you are stumped (we think we are supposed to know all the
answers). This dynamic is one of the most dangerous and destructive aspects of soft-
ware development.

Software is written by human beings; it is important, therefore, to recognize that
human psychology plays a key role in software development. The following is an
example.

Joe, the senior developer in a team of six, has a problem with his program. He stud-
ies it for hours, with increasing frustration, but cannot figure out the source of the
bug. He wouldn’t think of asking any of his peers to help because they all have less
experience than he does. Finally, though, he is at wits’ end and gives up. Sighing, he
picks up his phone and touches an extension: “Sandra, could you come over here
and take a look at my program? I’ve got a problem I can’t figure out.” Sandra stops
by and, with the quickest glance at Joe’s program, points out what should have been
obvious to him long ago. Hurray! The program is fixed, and Joe expresses gratitude,
but in fact he is secretly embarrassed.

Thoughts like “Why didn’t I see that?” and “If I’d only spent another five minutes
doing my own debugging I would have found it” run though Joe’s mind. This is
understandable but misguided. The bottom line is that we are often unable to iden-
tify our own problems because we are too close to our own code. Sometimes, all we
need is a fresh perspective, the relatively objective view of someone with nothing at
stake. It has nothing to do with seniority, expertise, or competence.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Introduction to MySQL Stored Programs

Besides, Sandra isn’t going to think poorly of Joe. Instead, by asking her for help, Joe
has made her feel better about herself, and so both members of the development
team benefit.

We strongly suggest that you establish the following guidelines in your organization:

Reward admissions of ignorance
Hiding what you don’t know about an application or its code is very dangerous.
Develop a culture in which it is OK to say “I don’t know” and encourages the
asking of lots of questions.

Ask for help
If you cannot figure out the source of a bug in 30 minutes, immediately ask for
help. You might even set up a “buddy system,” so that everyone is assigned a
person who is expected to be asked for assistance. Don’t let yourself (or others in
your group) go for hours banging your head against the wall in a fruitless search
for answers.

Set up a formal peer code review process
Don’t let any code go to QA (Quality Assurance) or production without being
read and critiqued (in a positive, constructive manner) by other developers in
your group.

Take a Creative, Even Radical Approach
We all tend to fall into ruts, in almost every aspect of our lives. Humans are crea-
tures of habit: you learn to write code in one way; you assume certain limitations
about a product; you turn aside possible solutions without serious examination
because you just know it can’t be done. Developers become downright prejudiced
about their own programs, and often not in positive ways. They are often overheard
saying things like:

• “It can’t run any faster than that; it’s a pig.”

• “I can’t make it work the way the user wants; that’ll have to wait for the next
version.”

• “If I were using X or Y or Z product, it would be a breeze. But with this stuff,
everything is a struggle.”

But the reality is that your program can almost always run a little faster. And the
screen can, in fact, function just the way the user wants it to. And although each
product has its limitations, strengths, and weaknesses, you should never have to wait
for the next version. Isn’t it so much more satisfying to be able to tell your therapist
that you tackled the problem head-on, accepted no excuses, and crafted a solution?



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 19

How do you do this? Break out of the confines of your hardened views and take a
fresh look at the world (or maybe just the walls of your cubicle). Reassess the pro-
gramming habits you’ve developed. Be creative—step away from the traditional
methods, from the often limited and mechanical approaches constantly reinforced in
our places of business.

Try something new: experiment with what may seem to be a radical departure from
the norm. You will be surprised at how much you will learn and grow as a program-
mer and problem solver. Over the years, we have surprised ourselves over and over
with what is really achievable when we stopped saying “You can’t do that!” and
instead simply nodded quietly and wondered to ourselves: “Now, if we do it this
way, what will happen...?”

Conclusion
In this chapter, we took you on a whirlwind tour of the MySQL relational database
and the new MySQL stored program language. We also provided you with some use-
ful resources and added some general words of advice that we hope you find useful.

In the next chapter, we’ll provide a more comprehensive tutorial that will really get
you started with MySQL stored procedures, functions, and triggers.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

20

Chapter 2CHAPTER 2

MySQL Stored Programming Tutorial 2

MySQL stored programming is a complex topic. We offer this chapter to introduce
you to the main and common tasks you will need to perform, including:

• How to create a stored program

• How to pass information in and out of the stored program

• How to interact with the database

• How to create procedures, functions, and triggers in the MySQL stored program
language

We don’t go into detail in this chapter. Our purpose is to get you started and to give
you some appreciation of how stored programs work. Later chapters will explore in
detail all of the topics touched on in this chapter.

What You Will Need
To follow along with the examples in this tutorial, you will need:

• A MySQL 5 server

• A text editor such as vi, emacs, or Notepad

• The MySQL Query Browser

You can get the MySQL server and MySQL Query Browser from http://dev.mysql.com.

Our First Stored Procedure
We’ll start by creating a very simple stored procedure. To do this, you need an edit-
ing environment in which to write the stored procedure and a tool that can submit
the stored procedure code to the MySQL server.

You can use just about any editor to write your code. Options for compiling that
code into MySQL include:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Our First Stored Procedure | 21

• The MySQL command-line client

• The MySQL Query Browser

• A third-party tool such as Toad for MySQL

In this chapter, we won’t make any assumptions about what tools you have installed,
so we’ll start with the good old MySQL command-line client.

Let’s connect to the MySQL server on the local host at port 3306 using the root
account. We’ll use the preinstalled “test” database in Example 2-1.

Creating the Procedure
You can create a stored program with the CREATE PROCEDURE, CREATE FUNCTION, or
CREATE TRIGGER statement. It is possible to enter these statements directly at the
MySQL command line, but this is not practical for stored programs of more than
trivial length, so the best thing for us to do is to create a text file containing our
stored program text. Then we can submit this file to the database using the com-
mand-line client or another tool.

We will use the MySQL Query Browser as a text editor in this example. If you don’t
have this tool, you can download it from http://dev.mysql.com/downloads/. Alter-
nately, you could use an OS text editor such as vi, emacs, or Notepad. We like the
MySQL Query Browser because of its built-in help system, syntax highlighting, abil-
ity to run SQL statements, and lots of other features.

Follow these steps:

1. Run the MySQL Query browser. On Windows, from the Start menu select Pro-
grams ➝ MySQL ➝ MySQL Query Browser. On Linux, type mysql-query-
browser from the command line.

2. Select File ➝ New Script tab from the menu to create a blank script window.

3. Enter your stored program command text.

Figure 2-1 shows our first stored procedure.

We then use the File ➝ Save As menu option to save our file so that we can execute it
from the mysql client.

Example 2-1. Connecting to the MySQL command-line client

[gharriso@guyh-rh4-vm2 ~]$ mysql -uroot -psecret -hlocalhost
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.16-nightly-20051017-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: MySQL Stored Programming Tutorial

This first stored procedure is very simple, but let’s examine it line by line to make
sure you understand it completely:

Figure 2-1. A first stored procedure

Line Explanation

1 Issue the DELIMITER command to set '$$' as the end of a statement. Normally, MySQL regards ";" as the end of
a statement, but since stored procedures contain semicolons in the procedure body, we need to use a different
delimiter.

3 Issue a DROP PROCEDURE IF EXISTS statement to remove the stored procedure if it already exists. If we don’t do
this, we will get an error if we then try to re-execute this file with modifications and the stored procedure exists.

4 The CREATE PROCEDURE statement indicates the start of a stored procedure definition. Note that the stored pro-
cedure name "HelloWorld" is followed by an empty set of parentheses "( )". If our stored procedure had any
parameters, they would be defined within these parentheses. This stored procedure has no parameters, but we need
to include the parentheses anyway, or we will get a syntax error.

5 The BEGIN statement indicates the start of the stored procedure program. All stored programs with more than a
single statement must have at least one BEGIN and END block that defines the start and end of the stored program.

6 This is the single executable statement in the procedure: a SELECT statement that returns "Hello World" to
the calling program. As you will see later, SELECT statements in stored programs can return data to the console or
calling program just like SELECT statements entered at the MySQL command line.

7 The END statement terminates the stored procedure definition. Note that we ended the stored procedure definition
with $$ so that MySQL knows that we have completed the CREATE PROCEDURE statement.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Our First Stored Procedure | 23

With our definition stored in a file, we can now use the mysql client to create and
then execute the HelloWorld stored procedure, as shown in Example 2-2.

Here is an explanation of the MySQL commands used to get all this to work:

Creating the Procedure Using the MySQL Query Browser
In this tutorial—and indeed throughout this book—we will mostly create and dem-
onstrate stored programs the old-fashioned way: using the MySQL command-line
client to create the stored program. By doing this, you’ll always be able to duplicate
the examples. However, you do have the option of using a GUI tool to create stored
programs: there are a number of good third-party GUI tools for MySQL available,
and you always have the option of installing and using the MySQL Query Browser,
available from http://dev.mysql.com/downloads/.

In this section we offer a brief overview of creating a stored procedure using the
MySQL Query Browser. Using the Query Browser is certainly a more user-friendly way

Example 2-2. Creating our first stored procedure

$ mysql -uroot -psecret -Dprod
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 16 to server version: 5.0.18-nightly-20051208-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SOURCE HelloWorld.sql
Query OK, 0 rows affected, 1 warning (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> CALL HelloWorld( ) $$
+-------------+
| Hello World |
+-------------+
| Hello World |
+-------------+
1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

mysql>

Command Explanation

SOURCE HelloWorld.sql Reads commands from the nominated file. In this case, we specify the file we just
saved from the MySQL Query Browser. No errors are returned, so the stored proce-
dure appears to have been created successfully.

CALL HelloWorld( ) $$ Executes the stored procedure. Calling our stored procedure successfully results in
"Hello World" being output as a result set. Note that we terminated the CALL
command with '$$', since that is still what the DELIMITER is set to.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: MySQL Stored Programming Tutorial

of creating stored programs, although it might not be available on all platforms, and
you may prefer to use the MySQL command line or the various third-party
alternatives.

On Windows, you launch the Query Browser (if installed) from the Start menu
option Programs ➝ MySQL ➝ MySQL Query Browser. On Linux, you type mysql-
query-browser.

When the Query Browser launches, it prompts you for connection details for your
MySQL server. Once you have provided these, a blank GUI window appears. From
this window, select Script and then Create Stored Procedure. You will be prompted
for the name of the stored program to create, after which an empty template for the
stored program will be displayed. An example of such a template is shown in
Figure 2-2.

You can then enter the text of the stored procedure at the appropriate point
(between the BEGIN and END statements—the cursor is handily positioned there auto-
matically). Once you have finished entering our text, simply click the Execute but-
ton to create the stored procedure. If an error occurs, the Query Browser highlights
the line and displays the error in the lower half of the Query Browser window. Oth-
erwise, you’ll see the name of the new stored procedure appear in the Schemata tab
to the left of the stored procedure, as shown in Figure 2-3.

To execute the stored procedure, double-click on the name of the procedure within
the Schemata tab. An appropriate CALL statement will be pasted into the execution
window above the stored procedure. Clicking on the Execute button to the right of
the CALL statement executes the stored procedure and displays a results window, as
shown in Figure 2-4.

Figure 2-2. Creating a stored procedure in the MySQL Query Browser



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Parameters | 25

We hope this brief example gives you a feel for the general process of creating and
executing a stored procedure in the MySQL Query Browser. The Query Browser
offers a convenient environment for the development of stored programs, but it is
really up to you whether to use the Query Browser, a third-party tool, or simply your
favorite editor and the MySQL command-line client.

Variables
Local variables can be declared within stored procedures using the DECLARE state-
ment. Variable names follow the same naming rules as MySQL table column names
and can be of any MySQL data type. You can give variables an initial value with the
DEFAULT clause and assign them new values using the SET command, as shown in
Figure 2-5.

Parameters
Most of the stored programs you write will include one or more parameters. Parame-
ters make stored programs much more flexible and therefore more useful. Next, let’s
create a stored procedure that accepts parameters.

Figure 2-3. Stored procedure is created by clicking the Execute button



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: MySQL Stored Programming Tutorial

The stored procedure shown in Figure 2-6 accepts an integer parameter, input_
number, and calculates the square root of that number. The resulting number is
returned as a result set.

Place parameters within parentheses that are located immediately after the name of
the stored procedure. Each parameter has a name, a data type, and, optionally, a
mode. Valid modes are IN (read-only), INOUT (read-write), and OUT (write-only). No
parameter mode appears in Figure 2-6, because IN is the default and this is an IN
parameter.

We’ll take a closer look at parameter modes following this example.

In addition to the parameter, this stored procedure introduces two other features of
MySQL stored programs:

DECLARE
A statement used to create local variables for use in the stored program. In this
case, we create a floating-point number called l_sqrt.

Figure 2-4. Executing the stored procedure in the Query Browser



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Parameters | 27

SET
A statement used to assign a value to a variable. In this case, we assign the
square root of our input parameter (using the built-in SQRT function) to the float-
ing-point number we created with the DECLARE command.

We can run this script, and test the resulting stored procedure in the MySQL client,
as shown in Example 2-3.

Figure 2-5. Examples of variables in stored procedures

Example 2-3. Creating and executing a stored procedure with a parameter

mysql> SOURCE my_sqrt.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> CALL my_sqrt(12)$$
+-----------------+
| l_sqrt          |
+-----------------+



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: MySQL Stored Programming Tutorial

Parameter Modes
Parameters in MySQL can be defined as IN, OUT, or INOUT:

IN
This mode is the default. It indicates that the parameter can be passed into the
stored program but that any modifications are not returned to the calling
program.

OUT
This mode means that the stored program can assign a value to the parameter,
and that value will be passed back to the calling program.

| 3.4641016151378 |
+-----------------+
1 row in set (0.12 sec)

Query OK, 0 rows affected (0.12 sec)

Figure 2-6. A stored procedure with parameters

Example 2-3. Creating and executing a stored procedure with a parameter (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Parameters | 29

INOUT
This mode means that the stored program can read the parameter and that the
calling program can see any modifications that the stored program may make to
that parameter.

You can use all of these parameter modes in stored procedures, but only the IN mode
in stored functions (see the later “Stored Functions” section).

Let’s change our square root program so that it puts the result of its calculations into
an OUT variable, as shown in Figure 2-7.

In the MySQL client, we now have to provide a variable to hold the value of the OUT
parameter. After the stored procedure has finished executing, we can look at that
variable to retrieve the output, as shown in Example 2-4.

Figure 2-7. Example of using OUT parameter in a stored procedure

Example 2-4. Creating and executing a stored procedure with an OUT parameter

mysql> SOURCE my_sqrt2.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.02 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: MySQL Stored Programming Tutorial

Conditional Execution
You can control the flow of execution in your stored program by using IF or CASE
statements. Both have roughly the same functionality; we will demonstrate the use of
IF in this tutorial, as it’s probably the most familiar of the two constructs.

Figure 2-8 shows a stored program that works out the discounted rate for a purchase
based on the size of the purchase, and Example 2-5 shows its execution. Purchases
over $500 get a 20% discount, while purchases over $100 get a 10% discount.

mysql> CALL my_sqrt(12,@out_value) $$
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT @out_value $$
+-----------------+
| @out_value      |
+-----------------+
| 3.4641016151378 |
+-----------------+
1 row in set (0.00 sec)

Figure 2-8. Conditional execution with the IF statement

Example 2-4. Creating and executing a stored procedure with an OUT parameter (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Loops | 31

The IF statement allows you to test the truth of an expression such as normal_price >
500 and take appropriate action based on the result of the expression. As with other
programming languages, the ELSEIF clause is used for all conditional branches after
the initial IF. The ELSE clause is executed if the Boolean expressions in the IF and
ELSEIF clauses all evaluate to false.

CASE has very similar functionality, and may be preferable when you are comparing a
single expression against a set of possible distinct values. The two conditional state-
ments are explored and contrasted in Chapter 4.

Loops
Loops allow stored programs to execute statements repetitively. The MySQL stored
program language offers three types of loops:

• Simple loops using the LOOP and END LOOP clauses

• Loops that continue while a condition is true, using the WHILE and END WHILE
clauses

• Loops that continue until a condition is true, using the REPEAT and UNTIL clauses

With all three loop types, you terminate execution of the loop with the LEAVE statement.

All three types of loops are described in detail in Chapter 4; we’ll only demonstrate
the LOOP-LEAVE-END LOOP (simple loop) sequence in this tutorial.

Figure 2-9 shows a very simple loop.

Example 2-5. Creating and executing a stored procedure that contains an IF statement

mysql> SOURCE discounted_price.sql
Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> CALL discounted_price(300,@new_price) $$
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @new_price$$
+------------+
| @new_price |
+------------+
| 270.0      |
+------------+
1 row in set (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: MySQL Stored Programming Tutorial

Here is an explanation of the activity in this stored procedure:

Dealing with Errors
When an error occurs in a stored program, the default behavior of MySQL is to termi-
nate execution of the program and pass the error out to the calling program. If you
need a different kind of response to an error, you create an error handler that defines
the way in which the stored program should respond to one or more error conditions.

Figure 2-9. A simple loop inside a stored procedure

Line(s) Explanation

7 Declare a simple numeric variable called counter with an initial value of 0.

9-14 The simple loop. All statements between LOOP and END LOOP are repeated until a LEAVE clause is executed.

9 The LOOP statement is prefixed by the my_simple_loop: label. The LEAVE statement requires that the loop
be labeled so it knows which loop to exit.

10 Increment the counter variable by one.

11-13 Test for the value of counter. If the value of counter is 10, we execute the LEAVE statement to terminate the
loop. Otherwise, we continue with the next iteration of the loop.

15 We proudly announce that we can count to 10!



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interacting with the Database | 33

The following are two relatively common scenarios that call for the definition of
error handlers:

• If you think that an embedded SQL statement might return no rows, or you need
to fetch all the rows from a SELECT statement using a cursor, a NOT FOUND error
handler will prevent the stored program from terminating prematurely.

• If you think that a SQL statement might return an error (a constraint violation,
for instance), you may need to create a handler to prevent program termination.
The handler will, instead, allow you to process the error and continue program
execution.

Chapter 6 describes in detail how to use error handlers. An example of using a NOT
FOUND error handler with a cursor is shown in the next section.

Interacting with the Database
Most stored programs involve some kind of interaction with database tables. There
are four main types of interactions:

• Store the results of a SQL statement that returns a single row into local variables.

• Create a “cursor” that allows the stored program to iterate through the rows
returned by a SQL statement.

• Execute a SQL statement, returning the result set(s) to the calling program.

• Embed a SQL statement that does not return a result set, such as INSERT, UPDATE,
DELETE, etc.

The following sections look briefly at each type of interaction.

To run the examples in this section of the chapter, you should install
the book’s sample database, available at this book’s web site (see the
Preface for details).

SELECTing INTO Local Variables
Use the SELECT INTO syntax when you are querying information from a single row of
data (whether retrieved from a single row, an aggregate of many rows, or a join of
multiple tables). In this case, you include an INTO clause “inside” the SELECT state-
ment that tells MySQL where to put the data retrieved by the query.

Figure 2-10 shows a stored procedure that obtains and then displays the total sales
for the specified customer ID. Example 2-6 executes the procedure.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: MySQL Stored Programming Tutorial

Using Cursors
SELECT INTO is fine for single-row queries, but many applications require the query-
ing of multiple rows of data. You will use a cursor in MySQL to accomplish this. A
cursor lets you fetch one or more rows from a SQL result set into stored program
variables, usually with the intention of performing some row-by-row processing on
the result set.

The stored procedure in Figure 2-11 uses a cursor to fetch all rows from the
employees table.

Here is an explanation of the significant lines in this procedure:

Figure 2-10. A stored procedure with an embedded SELECT INTO statement

Example 2-6. Executing a stored procedure that includes a SELECT INTO statement

mysql> CALL customer_sales(2) $$
+--------------------------------------------------------------+
| CONCAT('Total sales for ',in_customer_id,' is ',total_sales) |
+--------------------------------------------------------------+
| Total sales for 2 is 7632237                                 |
+--------------------------------------------------------------+
1 row in set (18.29 sec)

Query OK, 0 rows affected (18.29 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interacting with the Database | 35

Figure 2-11. Using a cursor in a stored procedure

Line(s) Explanation

8-12 Declare local variables. The first three are created in order to receive the results of our SELECT statement. The
fourth (done) lets us know when all the rows have been retrieved from the result set.

14-16 Define our cursor. This is based on a simple SELECT that will retrieve results from the employees table.

18 Declare a “handler” that defines the actions we will take when no more rows can be retrieved from a SELECT
statement. Handlers can be used to catch all kinds of errors, but a simple handler like this is always needed to
alert us that no more rows can be retrieved from a result set.

20 Open the cursor.

21-26 The simple loop that fetches all the rows from the cursor.

22 Use the FETCH clause to get a single row from the cursor into our local variables.

23-25 Check the value of the done variable. If it is set to 1, then we have fetched beyond the last row within the cur-
sor, so we execute the LEAVE statement to terminate the loop.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: MySQL Stored Programming Tutorial

Returning Result Sets from Stored Procedures
An unbounded SELECT statement—one not associated with an INTO clause or a cur-
sor—returns its result set to the calling program. We have used this form of interac-
tion between a stored procedure and the database quite a few times already in this
book, using simple SELECTs to return some kind of status or result from a stored pro-
cedure. So far, we’ve used only single-row result sets, but we could equally include a
complex SQL statement that returns multiple rows within the stored procedure.

If we execute such a stored procedure from the MySQL command line, the results are
returned to us in the same way as if we executed a SELECT or SHOW statement. Figure 2-12
shows a stored procedure that contains such an unbounded SELECT statement.

If we execute the stored procedure and supply an appropriate value for the input
parameter, the results of the SELECT within the stored procedure are returned. In
Figure 2-13 we see the results of the SELECT statement being returned from the stored
procedure call from within the MySQL Query Browser.

Figure 2-12. An unbounded SELECT statement in a stored procedure



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Interacting with the Database | 37

Note that a stored program call can return more than one result set. This creates spe-
cial challenges for the calling program, which we discuss—for each specific program-
ming language—in Chapters 13 through 17.

Embedding Non-SELECTs
“Simple” SQL statements that do not return results can also be embedded in your
stored programs. These statements include DML statements such as UPDATE, INSERT,
and DELETE and may also include certain DDL statements such as CREATE TABLE. Some
statements—specifically those that create or manipulate stored programs—are not
allowed; these are outlined in Chapter 5.

Figure 2-14 shows a stored procedure that includes an update operation. The UPDATE
statement is enclosed in some validation logic that prevents the update from pro-
ceeding if the input values are invalid.

Figure 2-13. Results returned from a stored procedure that has an unbounded SELECT



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: MySQL Stored Programming Tutorial

Calling Stored Programs from Stored Programs
Calling one stored program from another is perfectly simple. You do this with the
CALL statement, just as you would from the MySQL command-line client.

Figure 2-15 shows a simple stored procedure that chooses between two stored proce-
dures based on an input parameter. The output of the stored procedure (l_bonus_amount
is populated from an OUT parameter) is passed to a third procedure.

Here is an explanation of the significant lines:

Figure 2-14. Stored procedure with an embedded UPDATE

Line(s) Explanation

11 Determine if the employee is a manager. If he is a manager, we call the calc_manager_bonus stored
procedure; if he is not a manager, we call the calc_minion_bonus stored procedure.

12 and 14 With both stored procedures, pass in the employee_id and provide a variable—l_bonus_amount—
to receive the output of the stored procedure.

16 Call the grant_bonus stored procedure that passes as arguments the employee_id and the bonus
amount, as calculated by the stored procedure we called in line 12 or 14.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Putting It All Together | 39

Putting It All Together
In Example 2-7 we show a stored procedure that uses all the features of the stored
program language we have covered so far in this tutorial.

Figure 2-15. Example of calling one stored procedure from another

Example 2-7.  A more complex stored procedure

1  CREATE PROCEDURE putting_it_all_together(in_department_id INT)
2      MODIFIES SQL DATA
3  BEGIN
4      DECLARE l_employee_id INT;
5      DECLARE l_salary      NUMERIC(8,2);
6     DECLARE l_department_id INT;
7     DECLARE l_new_salary  NUMERIC(8,2);
8     DECLARE done          INT DEFAULT 0;
9
10    DECLARE cur1 CURSOR FOR
11            SELECT employee_id, salary, department_id
12              FROM employees
13             WHERE department_id=in_department_id;
14
15



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: MySQL Stored Programming Tutorial

This is the most complex procedure we have written so far, so let’s go through it line
by line:

16    DECLARE CONTINUE HANDLER FOR NOT FOUND SET done=1;
17
18    CREATE TEMPORARY TABLE IF NOT EXISTS emp_raises
19      (employee_id INT, department_id INT, new_salary NUMERIC(8,2));
20
21    OPEN cur1;
22    emp_loop: LOOP
23
24      FETCH cur1 INTO l_employee_id, l_salary, l_department_id;
25
26      IF done=1 THEN       /* No more rows*/
27         LEAVE emp_loop;
28      END IF;
29
30      CALL new_salary(l_employee_id,l_new_salary); /*get new salary*/
31
32      IF (l_new_salary<>l_salary) THEN             /*Salary changed*/
33
34         UPDATE employees
35            SET salary=l_new_salary
36          WHERE employee_id=l_employee_id;
37         /* Keep track of changed salaries*/
38         INSERT INTO emp_raises (employee_id,department_id,new_salary)
39          VALUES (l_employee_id,l_department_id,l_new_salary);
40      END IF;
41
42    END LOOP emp_loop;
43    CLOSE cur1;
44    /* Print out the changed salaries*/
45    SELECT employee_id,department_id,new_salary from emp_raises
46     ORDER BY employee_id;
47 END;

Line(s) Explanation

1 Create the procedure. It takes a single parameter—in_department_id. Since we did not specify the OUT or
INOUT mode, the parameter is for input only (that is, the calling program cannot read any changes to the param-
eter made within the procedure).

4-8 Declare local variables for use within the procedure. The final parameter, done, is given an initial value of 0.

10-13 Create a cursor to retrieve rows from the employees table. Only employees from the department passed in as a
parameter to the procedure will be retrieved.

16 Create an error handler to deal with “not found” conditions, so that the program will not terminate with an error
after the last row is fetched from the cursor. The handler specifies the CONTINUE clause, so the program execu-
tion will continue after the “not found” error is raised. The hander also specifies that the variable done will be set
to 1 when this occurs.

Example 2-7.  A more complex stored procedure  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Functions | 41

When this stored procedure is executed from the MySQL command line with the
parameter of department_id set to 18, a list of updated salaries is printed as shown in
Example 2-8.

Stored Functions
Stored functions are similar to stored procedures: they are named program units that
contain one or more MySQL statements. They differ from procedures in the follow-
ing ways:

18 Create a temporary table to hold a list of rows affected by this procedure. This table, as well as any other tempo-
rary tables created in this session, will be dropped automatically when the session terminates.

21 Open our cursor to prepare it to return rows.

22 Create the loop that will execute once for each row returned by the stored procedure. The loop terminates on line 42.

24 Fetch a new row from the cursor into the local variables that were declared earlier in the procedure.

26-28 Declare an IF condition that will execute the LEAVE statement if the variable done is set to 1 (accomplished
through the “not found” handler, which means that all rows were fetched).

30 Call the new_salary procedure to calculate the employee’s new salary. It takes as its arguments the
employee_id and an OUT variable to accept the new salary (l_new_salary).

32 Compare the new salary calculated by the procedure called on line 30 with the existing salary returned by the cur-
sor defined on line 10. If they are different, execute the block of code between lines 32 and 40.

34-36 Update the employee salary to the new salary as returned by the new_salary procedure.

38 and 39 Insert a row into our temporary table (defined on line 21) to record the salary adjustment.

43 After all of the rows have been processed, close the cursor.

45 Issue an unbounded SELECT (e.g., one without a WHERE clause) against the temporary table, retrieving the list
of employees whose salaries have been updated. Because the SELECT statement is not associated with a cursor
or an INTO clause, the rows retrieved will be returned as a result set to the calling program.

47 Terminate the stored procedure.

Example 2-8. Output from the “putting it all together” example

mysql> CALL cursor_example2(18) //
+-------------+---------------+------------+
| employee_id | department_id | new_salary |
+-------------+---------------+------------+
|         396 |            18 |   75560.00 |
|         990 |            18 |  118347.00 |
+-------------+---------------+------------+
2 rows in set (0.23 sec)

Query OK, 0 rows affected (0.23 sec)

Line(s) Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: MySQL Stored Programming Tutorial

• The parameter list of a function may contain only IN parameters. OUT and INOUT
parameters are not allowed. Specifying the IN keyword is neither required nor
allowed.

• The function itself must return a single value, whose type is defined in the
header of the function.

• Functions can be called from within SQL statements.

• A function may not return a result set.

Generally, you should consider using a stored function rather than a stored procedure
when you have a program whose sole purpose is to compute and return a single value
or when you want to create a user-defined function for use within SQL statements.

Figure 2-16 shows a function that implements the same functionality found in the
discount_price stored procedure we created earlier in this chapter.

Figure 2-16. A stored function



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Triggers | 43

The following table explains a few things that set apart this function from its stored
procedure equivalent:

Example 2-9 shows calling this function from within a SQL statement.

We can also call this function from within another stored program (procedure, func-
tion, or trigger), or any place that we could use a built-in MySQL function.

Triggers
A trigger is a special type of stored program that fires when a table is modified by an
INSERT, UPDATE, or DELETE (DML) statement. Triggers implement functionality that
must take place whenever a certain change occurs to the table. Because triggers are
attached directly to the table, application code cannot bypass database triggers.

Typical uses of triggers include the implementation of critical business logic, the
denormalization of data for performance reasons, and the auditing of changes made
to a table. Triggers can be defined to fire before or after a specific DML statement
executes.

In Figure 2-17, we create a trigger that fires before any INSERT statement completes
against the sales table. It automatically applies free shipping and discounts to orders
of a specified value.

Line Explanation

7 Specify a RETURNS clause as part of the function definition. This specifies the type of data that the function will
return.

8 MySQL applies stricter rules to stored functions than it does to procedures. A function must either be declared not to
modify SQL (using the NO SQL or READS SQL DATA clauses) or be declared to be DETERMINISTIC (if it is to be
allowed in servers that have binary logging enabled). This restriction is designed to prevent inconsistencies
between replicated databases caused by functions that return an unpredictable value (see Chapter 10 for more
details). Our example routine is “deterministic” —we can guarantee that it will return the same result if it is pro-
vided with the same input parameter.

21 Use the RETURN statement to pass back the discount price calculated by the IF statement.

Example 2-9. Calling a stored function from a SELECT statement

mysql> SELECT f_discount_price(300) $$
+-----------------------+
| f_discount_price(300) |
+-----------------------+
|                 270.0 |
+-----------------------+



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: MySQL Stored Programming Tutorial

Here is an explanation of the trigger definition:

The effect of the trigger is to automatically set the value of the free_shipping and
discount columns. Consider the INSERT statement shown in Example 2-10.

Figure 2-17. A database trigger

Line(s) Explanation

5 Specify the trigger name.

6 Specify that the trigger fires before an insert on the sales table.

7 Include the (currently) mandatory FOR EACH ROW clause, indicating that the statements within the trigger will be
executed once for every row inserted into the sales table.

8 Use BEGIN to start the block containing statements to be executed by the trigger.

9-13 If the sale_value is greater than $500, set the value of the free_shipping column to 'Y'. Otherwise, set it
to 'N'.

15-19 If the sale_value is greater than $1000, calculate a 15% discount and insert that value into the discount
column. Otherwise, set the discount to 0.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Calling a Stored Procedure from PHP | 45

The sale is valued at $10,034 and, as such, is eligible for a 15% discount and free
shipping. Example 2-11 demonstrates that the trigger correctly set these values.

Using a trigger to maintain the free_shipping and discount columns ensures that the
columns are correctly maintained regardless of the SQL statements that might be
executed from PHP, C#, or Java, or even from the MySQL command-line client.

Calling a Stored Procedure from PHP
We’ve shown you how to call stored programs from the MySQL command-line client,
from the MySQL Query Browser, and from another stored program. In the real world,
however, you are more likely to call a stored program from another programming envi-
ronment, such as PHP, Java, Perl, Python, or .NET. We discuss the details of using
stored programs within each of these environments in Chapters 12 through 17.

For now, let’s look at how you can call a stored procedure (shown in Figure 2-18)
from PHP, which is probably the development environment most commonly used in
conjunction with MySQL.

When interacting with MySQL from PHP, we can choose between the database-
independent PEAR::DB extension, the mysqli (MySQL “improved”) extension, and
the more recent PHP Data Objects (PDO) extension. In this example we will use the
mysqli extension. Chapter 13 describes the details of these extensions.

Figure 2-19 shows PHP code that connects to the MySQL server and calls the stored
procedure. We won’t step through the code here, but we hope that it will give you a
sense of how stored programs can be used in web and other applications.

Example 2-10. An INSERT into the sales table

INSERT INTO sales
       (customer_id, product_id, sale_date, quantity, sale_value,
        department_id, sales_rep_id)
 VALUES(20,10,now( ),20,10034,4,12)

Example 2-11. A trigger automatically populates the free_shipping and discount columns

mysql> SELECT sale_value,free_shipping,discount
    ->   FROM sales
    ->  WHERE sales_id=2500003;
+------------+---------------+----------+
| sale_value | free_shipping | discount |
+------------+---------------+----------+
|      10034 | Y             |     1505 |
+------------+---------------+----------+
1 row in set (0.22 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: MySQL Stored Programming Tutorial

The PHP program prompts the user to specify a department ID; it then calls the
stored procedure employee_list to retrieve a list of employees that belong to that
department. Figure 2-20 shows the output displayed by the PHP/stored procedure
example.

Conclusion
In this chapter we presented a brief “getting started” tutorial that introduced you to
the basics of MySQL stored programs. We showed you how to:

• Create a simple “Hello World” stored procedure.

• Define local variables and procedure parameters.

• Perform conditional execution with the IF statement.

• Perform iterative processing with simple loops.

• Include SQL statements inside stored procedures, including how to perform
row-at-a-time processing with cursors.

• Call a stored program from another stored program.

• Create a stored function (and differentiate stored functions from stored procedures).

• Create a trigger on a table to automate denormalization.

• Call a stored procedure from PHP.

Figure 2-18. Stored procedure to be called from PHP



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 47

You may now be tempted to put down this book and start writing MySQL stored
programs. If so, we congratulate you on your enthusiasm. May we suggest, however,
that you first spend some time reading more detailed explanations of each of these
areas of functionality in the following chapters? That way, you are likely to make
fewer mistakes and write higher-quality code.

Figure 2-19. Sample PHP program calling a stored procedure



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: MySQL Stored Programming Tutorial

Figure 2-20. Output from our PHP example



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

49

Chapter 3 CHAPTER 3

Language Fundamentals3

This chapter introduces the MySQL stored program language, a simple, readable but
complete programming language based on the ANSI SQL:2003 SQL/PSM (Persis-
tent Stored Module) specification.

The MySQL stored program language is a block-structured language (like Pascal)
that includes familiar statements for manipulating variables, implementing condi-
tional execution, performing iterative processing, and handling errors. Users of other
stored program languages such as Oracle PL/SQL or Microsoft SQL Server Transact-
SQL will find features of the language very familiar. In fact, users of the IBM DB2
SQL Procedural language will find MySQL’s stored program language almost identi-
cal—both are based on the SQL/PSM specification. Users of other programming lan-
guages that are typically used with MySQL—such as PHP, Java, or Perl—might find
the stored program language a little verbose, but should have no difficulty at all
learning the language.

In this chapter we will look at the fundamental building blocks of the stored pro-
gram language—variables, literals, parameters, comments, operators, expressions,
and data types. We will also discuss MySQL 5 “strict” mode and its implications. In
the next chapter we will build on this base by describing the block structure, condi-
tional statements (IF and CASE), and looping capabilities of the language.

Variables, Literals, Parameters, and Comments
Let’s start with a review of how we define and use various data items—variables, lit-
erals, and parameters—in our stored programs and how we can add comments to
document our code.

Variables
The first thing we’ll look at is how the MySQL stored program language deals with
variables and literals, because without some understanding of these items, we can’t
create any meaningful examples for any other topics.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Language Fundamentals

A variable is a named data item whose value can change during program execution.
A literal (described in the next section) is an unnamed data item that can be assigned
to a variable. Typically, literals are hardcoded into your stored program code and are
usually assigned to variables, passed as parameters, or used as arguments to SELECT
statements.

The DECLARE statement allows us to create a variable. As we will see a bit later on, it
appears within a block of code before any cursor or handler declarations and before
any procedural statements. The syntax of the DECLARE statement is:

DECLARE variable_name [,variable_name...] datatype [DEFAULT value];

Multiple variables may be declared in a single DECLARE statement, and the variable(s)
can be assigned a default (or initial) value. If you don’t use the DEFAULT clause, then
the variable starts off with the NULL value.

Using DEFAULT is a good practice because, unless you initialize a variable, any subse-
quent operations on that variable—other than a simple assignment—may also return
NULL. We’ll give an example of this type of error later in the chapter.

The datatype may be any of the valid MySQL data types that you can use in a CREATE
TABLE statement. We provide detailed descriptions of each data type later in this
chapter; Table 3-1 summarizes those most commonly used.

Table 3-1. Commonly used MySQL data types

Data type Explanation Examples of corresponding values

INT, INTEGER A 32-bit integer (whole number). Values
can be from approximately -2.1 billion to
+2.1 billion. If unsigned, the value can
reach about 4.2 billion, but negative num-
bers are not allowed.

123,345
-2,000,000,000

BIGINT A 64-bit integer (whole number). Values
can be from approximately -9 million tril-
lion to +9 million trillion or from 0 to 18
million trillion if unsigned.

9,000,000,000,000,000,000
-9,000,000,000,000,000,000

FLOAT A 32-bit floating-point number. Values can
range from about -1.7e38 to 1.7e38 for
signed numbers or 0 to 3.4e38 if unsigned.

0.00000000000002
17897.890790
-345.8908770
1.7e21

DOUBLE A 64-bit floating-point number. The value
range is close to infinite ( 1.7e308).

1.765e203
-1.765e100

DECIMAL(precision,scale)
NUMERIC(precision,scale)

A fixed-point number. Storage depends on
the precision, as do the possible numbers
that can be stored. NUMERICs are typically
used where the number of decimals is
important, such as for currency.

78979.00
-87.50
9.95

DATE A calendar date, with no specification of
time.

'1999-12-31'



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Variables, Literals, Parameters, and Comments | 51

Some examples of variable declarations for each of the data types are shown in
Example 3-1.

Literals
A literal is a data value hardcoded into your program. You commonly use literals in
variable assignment statements or comparisons (IF, for instance), as arguments to
procedures or functions, or within SQL statements.

There are three fundamental types of literals:

Numeric literals
A numeric literal represents a number and can be defined as a raw number (300,
30.45, etc.), as a hexadecimal value, or in scientific notation. Scientific notation

DATETIME A date and time, with resolution to a partic-
ular second.

'1999-12-31 23:59:59'

CHAR(length) A fixed-length character string. The value
will be right-padded up to the length speci-
fied. A maximum of 255 bytes can be speci-
fied for the length.

'hello world       '

VARCHAR(length) A variable-length string up to 64K in
length.

'Hello world'

BLOB, TEXT Up to 64K of data, binary in the case of
BLOB, or text in the case of TEXT.

Almost anything imaginable

LONGBLOB, LONGTEXT Longer versions of the BLOB and TEXT
types, capable of storing up to 4GB of data.

Almost anything imaginable, but a lot
more than you would have imagined
for BLOB or TEXT

Example 3-1. Examples of variable declarations

DECLARE l_int1 INT DEFAULT -2000000;
DECLARE l_int2      INT UNSIGNED DEFAULT 4000000;
DECLARE l_bigint1   BIGINT DEFAULT 4000000000000000;
DECLARE l_float     FLOAT DEFAULT 1.8e8;
DECLARE l_double    DOUBLE DEFAULT 2e45;
DECLARE l_numeric   NUMERIC(8,2) DEFAULT 9.95;

DECLARE l_date      DATE DEFAULT '1999-12-31';
DECLARE l_datetime  DATETIME DEFAULT '1999-12-31 23:59:59';

DECLARE l_char      CHAR(255) DEFAULT 'This will be padded to 255 chars';
DECLARE l_varchar   VARCHAR(255) DEFAULT 'This will not be padded';

DECLARE l_text      TEXT DEFAULT 'This is a really long string.  In stored programs
                    we can use text columns fairly freely, but in tables there are some
                    limitations regarding indexing and use in various expressions.';

Table 3-1. Commonly used MySQL data types (continued)

Data type Explanation Examples of corresponding values



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Language Fundamentals

is a way of representing very large or very high-precision values. The letter ‘e’ in
what otherwise appears to be a number indicates that the numeric value on the
left of the ‘e’ is multiplied by 10 to the power of the number to the right of the
‘e’. So 2.4e is equivalent to 2.4 × 104 or 24,000. You cannot use commas in
numeric literals.

Hexadecimal values are represented in the traditional format, by prefixing them
with ‘0x’. So 0xA represents the hexadecimal number ‘A’, which is 10 in
decimal.

Date literals
A date literal is a string in the format ‘YYYY-MM-DD’ or—for the DATETIME data
type—in the format ‘YYYY-MM-DD HH24:MI:SS’. So ‘1999-12-31 23:59:59’
represents the last second of the last century (unless you believe that because
there was no year 0, the century actually ended on 2000-12-31).

String literals
A string literal is simply any string value surrounded by quotes. If single quotes
themselves need to be included within the literal itself delimited by single
quotes, they can be represented by two single quotes or prefixed with a back-
slash (\'). You can also enclose strings in double quotes, and you can use escape
sequences for special characters (\t for a tab, \n for a new line, \\ for a back-
slash, etc.).

If the server is running in ANSI_QUOTES mode (SET sql_mode='ANSI_QUOTES') then
only single quotes can be used for literals. Sequences enclosed in double quotes
will be interpreted as identifiers (variables or column names, for instance) that
contain special characters, in accordance with the ANSI standard.

Rules for Variable Names
MySQL is amazingly flexible when it comes to naming variables. Unlike most other
programming languages, MySQL allows variable names to be extremely long (more
than 255 characters); they can contain special characters and can commence with
numeric characters. However, we recommend that you not take advantage of
MySQL’s flexibility in this case—use sensible naming conventions and avoid overly
long variable names (see Chapter 23 for these and other best practices).

Assigning Values to Variables
You manipulate variable values with the SET statement, which has the following syn-
tax:

SET variable_name = expression [,variable_name = expression ...]

As you can see, it is possible to perform multiple assignments with a single SET
statement.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Variables, Literals, Parameters, and Comments | 53

Most languages do not require a SET statement for variable assignment, and conse-
quently, one of the easiest mistakes to make when getting started is to try to assign a
value to a variable without specifying SET, as in Example 3-2.

As is often the case with stored program compilation errors, the error message does
not directly identify the absence of the SET statement, so when checking your pro-
gram for strange compilation errors, double check that all variable assignments
include SET.

Parameters
Parameters are variables that can be passed into—or out of—the stored program
from the calling program. Parameters are defined in the CREATE statement for the
function or procedure as follows:

CREATE PROCEDURE|FUNCTION(
   [[IN|OUT|INOUT] parameter_name data_type ...])

The parameter names follow the same naming rules that apply to variables. The
data_type can be any of the types available to local variables. Parameters can be asso-
ciated with an IN, OUT, or INOUT attribute:

IN
Unless otherwise specified, parameters assume the IN attribute. This means that
their value must be specified by the calling program, and any modifications
made to the parameter in the stored program cannot be accessed from the call-
ing program.

OUT
An OUT parameter can be modified by the stored program, and the modified
value can be retrieved from the calling program. The calling program must sup-
ply a variable to receive the output of the OUT parameter, but the stored program
itself has no access to whatever might be initially stored in that variable. When

Example 3-2. Attempting to manipulate a variable without the SET statement

mysql> CREATE PROCEDURE no_set_stmt( )
BEGIN
        DECLARE i INTEGER;
        i=1;
END;
$$

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'procedure no_
set_stmt( )
BEGIN
        DECLARE i INT;
        i=1;
END' at line 1



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Language Fundamentals

the stored program commences, the value of any OUT variables appear as NULL,
regardless of what value they may have been assigned in the calling program.

INOUT
An INOUT parameter acts both as an IN and as an OUT parameter. That is, the call-
ing program may supply a value, the stored program itself may modify the value
of the parameter, and the calling program may access this changed value when
the stored program completes.

The IN, OUT, and INOUT keywords apply only to stored procedures and not to stored
functions. In stored functions all parameters behave as IN parameters (although you
cannot specify the IN keyword).

The next three examples illustrate these principles.

First, although MySQL lets us change the value of an IN parameter in a stored pro-
gram, the change cannot be seen by the calling program. The stored program in
Example 3-3 prints and then modifies the value of the parameter. While modifica-
tion of the input parameter is allowed within the stored program, the original vari-
able (@p_in) is unchanged.

Example 3-3. Example of an IN parameter

mysql> CREATE PROCEDURE sp_demo_in_parameter(IN p_in INT)
BEGIN
    /* We can see the value of the IN parameter */
    SELECT p_in;
    /* We can modify it*/
    SET p_in=2;
    /* show that the modification took effect */
    select p_in;
END;

/* This output shows that the changes made within the stored program cannot be accessed
from the calling program (in this case, the mysql client):*/

mysql> SET @p_in=1

Query OK, 0 rows affected (0.00 sec)

mysql> CALL sp_demo_in_parameter(@p_in)

+------+------------------------------------------+
| p_in | We can see the value of the IN parameter |
+------+------------------------------------------+
|    1 | We can see the value of the IN parameter |
+------+------------------------------------------+
1 row in set (0.00 sec)

+------+-------------------------------------+
| p_in | IN parameter value has been changed |
+------+-------------------------------------+



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Variables, Literals, Parameters, and Comments | 55

Next, in Example 3-4 we examine the behavior of an OUT parameter. Although the
calling program has initialized the OUT parameter with a value, the stored program
does not see that value. The calling program, however, sees the changed values when
the procedure completes execution.

|    2 | IN parameter value has been changed |
+------+-------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p_in,'We can''t see the changed value from the calling program'

+-------+---------------------------------------------------------+
| @p_in | We can't see the changed value from the calling program |
+-------+---------------------------------------------------------+
| 1     | We can't see the changed value from the calling program |
+-------+---------------------------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Example 3-4. Example of an OUT parameter

mysql> CREATE PROCEDURE sp_demo_out_parameter(OUT p_out INT)

BEGIN
    /* We can't see the value of the OUT parameter */
    SELECT p_out,'We can''t see the value of the OUT parameter';
    /* We can modify it*/
    SET p_out=2;
    SELECT p_out,'OUT parameter value has been changed';

END;

mysql> SET @p_out=1

Query OK, 0 rows affected (0.00 sec)

mysql> CALL sp_demo_out_parameter(@p_out)

+-------+-------------------------------------------------------------------+
| p_out | We can't see the value of the OUT parameter in the stored program |
+-------+-------------------------------------------------------------------+
|  NULL | We can't see the value of the OUT parameter in the stored program |
+-------+-------------------------------------------------------------------+
1 row in set (0.00 sec)

+-------+--------------------------------------+
| p_out | OUT parameter value has been changed |
+-------+--------------------------------------+
|     2 | OUT parameter value has been changed |

Example 3-3. Example of an IN parameter (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Language Fundamentals

Finally, Example 3-5 shows that the value of an INOUT parameter can be seen by the
stored program, modified, and returned in its modified form to the calling program.

+-------+--------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p_out,"Calling program can see the value of the changed OUT parameter"

+----------------------------------------------------------------+
| Calling program can see the value of the changed OUT parameter |
+----------------------------------------------------------------+
| 2                                                              |
+----------------------------------------------------------------+
1 row in set (0.00 sec)

Example 3-5. Example of an INOUT parameter

mysql> CREATE PROCEDURE sp_demo_inout_parameter(INOUT p_inout INT)

BEGIN

    SELECT p_inout,'We can see the value of the INOUT parameter in the stored program';

    SET p_inout=2;
    SELECT p_inout,'INOUT parameter value has been changed';

END;
//
Query OK, 0 rows affected (0.00 sec)

SET @p_inout=1
//

Query OK, 0 rows affected (0.00 sec)

CALL sp_demo_inout_parameter(@p_inout) //

+---------+-------------------------------------------------------------------+
| p_inout | We can see the value of the INOUT parameter in the stored program |
+---------+-------------------------------------------------------------------+
|       1 | We can see the value of the INOUT parameter in the stored program |
+---------+-------------------------------------------------------------------+
1 row in set (0.00 sec)

+---------+----------------------------------------+
| p_inout | INOUT parameter value has been changed |
+---------+----------------------------------------+
|       2 | INOUT parameter value has been changed |
+---------+----------------------------------------+
1 row in set (0.00 sec)

Example 3-4. Example of an OUT parameter (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Variables, Literals, Parameters, and Comments | 57

User Variables
User variables are special MySQL variables that can be defined and manipulated
inside or outside stored programs. They have been available in MySQL since version
3 and are a feature of the MySQL base product, not the stored program language.
However, we can make good use of user variables in two ways:

• Since user variables have a scope that is outside of individual stored programs,
they can be used to represent variables that should be accessible from any stored
program within a session. This approach is similar in principle to the use of glo-
bal variables in other programming languages.

• User variables can provide an alternative method of passing information to
stored programs. Stored programs can access the values of user variables, which
can avoid the need to pass in the values as parameters. (See the earlier “Parame-
ters” section for more information on parameters.)

User variables can be created and manipulated from the MySQL command-line cli-
ent—or from any other program that can issue MySQL statements—using the SET
statement. Example 3-6 shows some examples of using SET from the MySQL client.

Query OK, 0 rows affected (0.00 sec)

SELECT @p_inout ,"Calling program can see the value of the changed INOUT parameter"
//

+----------+------------------------------------------------------------------+
| @p_inout | Calling program can see the value of the changed INOUT parameter |
+----------+------------------------------------------------------------------+
| 2        | Calling program can see the value of the changed INOUT parameter |
+----------+------------------------------------------------------------------+
1 row in set (0.00 sec)

Example 3-6. Manipulating user variables in the MySQL client

mysql> SELECT 'Hello World' into @x ;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @x;
+-------------+
| @x          |
+-------------+
| Hello World |
+-------------+
1 row in set (0.03 sec)

mysql> SET @y='Goodbye Cruel World';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @y;

Example 3-5. Example of an INOUT parameter (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Language Fundamentals

You can access any user variable defined in the current session (e.g., connection)
from within a stored program. For instance, Example 3-7 shows how to pass infor-
mation to a stored procedure without using a procedure parameter.

We can also create a user variable within a stored program. It will then be available
from all other stored programs, acting like a global variable would in a language such
as PHP. For instance, in Example 3-8, procedure p1( ) creates the user variable,
which is visible within procedure p2( ).

+---------------------+
| @y                  |
+---------------------+
| Goodbye Cruel World |
+---------------------+
1 row in set (0.00 sec)

mysql> SET @z=1+2+3;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @z;
+------+
| @z   |
+------+
| 6    |
+------+
1 row in set (0.00 sec)

Example 3-7. Using user variables to pass information from the calling program to the stored
procedure

mysql> CREATE PROCEDURE GreetWorld( )
    ->  SELECT CONCAT(@greeting,' World');
Query OK, 0 rows affected (0.00 sec)

mysql> SET @greeting='Hello';
Query OK, 0 rows affected (0.00 sec)

mysql> CALL GreetWorld( );
+----------------------------+
| CONCAT(@greeting,' World') |
+----------------------------+
| Hello World                |
+----------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Example 3-6. Manipulating user variables in the MySQL client (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Variables, Literals, Parameters, and Comments | 59

A user variable is a variant data type—it can store a string, date, or numeric value.
Data type conversions are performed automatically. User variables remain in exist-
ence for the duration of a MySQL session and can be accessed by any program or
statement running within that session. They cannot, however, be accessed by other
sessions.

In some programming languages (such as PHP), variables whose scope extends
beyond a single function are identified by the global keyword. In other languages the
syntax for defining these variables may differ, but they are often still referred to as
“global” variables. In MySQL, the global clause of the SET statement allows you to
set the server-wide value of system variables, not to create the equivalent of a PHP
global variable. For this reason, referring to user variables as “global” in scope can
lead to confusion and probably should be avoided. Note that you cannot use the
global clause of the SET statement to create your own variables.

Using user variables to implement variables that are available across multiple stored
programs can be useful on occasion. However, you should definitely use this tech-
nique sparingly. As in all programming languages, overuse of global variables that
scope beyond a single program can lead to code that is hard to understand and main-
tain. Routines that share such variables become tightly coupled and hence hard to
maintain, test, or even understand in isolation.

Use “user” variables sparingly in your stored programs. Excessive use
of variables that scope beyond a single program leads to code that is
nonmodular and hard to maintain.

Example 3-8. Using a user variable as a “global variable” across stored programs

mysql> CREATE PROCEDURE p1( )
    ->  SET @last_procedure='p1';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE PROCEDURE p2( )
    ->  SELECT CONCAT('Last procedure was ',@last_procedure);
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p1( );
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p2( );
+-----------------------------------------------+
| CONCAT('Last procedure was ',@last_procedure) |
+-----------------------------------------------+
| Last procedure was p1                         |
+-----------------------------------------------+
1 row in set (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Language Fundamentals

Comments
Two styles of comments are supported in MySQL stored programs:

• Two dashes -- followed by a space create a comment that continues until the
end of the current line. We’ll call these single-line comments.

• C-style comments commence with /* and terminate with */. We’ll call these
multiline comments.

Single-line comments are useful for documenting variable declarations and simple
single-line statements. Multiline comments are more useful for creating larger com-
ment chunks, such as a standard comment header that accompanies each stored pro-
gram definition.

The chunk of code in Example 3-9 illustrates both types of comments.

Operators
MySQL operators include the familiar operators common to most programming lan-
guages, although C-style operators (++, --, +=, etc.) are not supported.

Operators are typically used within the SET statement to change the value of a vari-
able, within comparison statements such as IF or CASE, and in loop control expres-
sions. Example 3-10 shows a few simple examples of using operators within stored
programs.

Example 3-9. Example of stored program comments

CREATE PROCEDURE comment_demo
    (IN p_input_parameter INT  -- Dummy parameter to illustrate styles
    )
/*
|    Program: comment_demo
|    Purpose: demonstrate comment styles
|    Author:  Guy Harrison
|    Change History:
|        2005-09-21 - Initial
|
*/

Example 3-10. Examples of operators in a stored program

CREATE PROCEDURE operators( )
BEGIN
        DECLARE a int default 2;

DECLARE b int default 3;
DECLARE c FLOAT;

SET c=a+b; select 'a+b=',c;
        SET c=a/b; select 'a/b=',c;
        SET c=a*b; Select 'a*b=',c;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Operators | 61

The various types of operators (mathematical, comparison, logical, and bitwise) are
described in the following subsections.

Mathematical Operators
MySQL supports the basic mathematical operators you learned about in elementary
school (pay attention class!): addition (+), subtraction (-), multiplication (*), and
division (/).

In addition, MySQL supports two additional operators related to division: the DIV
operator returns only the integer portion of division, while the modulus operator (%)
returns only the remainder from a division. Table 3-2 lists, describes, and provides
an example of the MySQL mathematical operators.

 Comparison Operators
Comparison operators compare values and return TRUE, FALSE, or UNKNOWN
(usually if one of the values being compared is NULL or UNKNOWN). They are
typically used within expressions in IF, CASE, and loop control statements.

Table 3-3 summarizes the MySQL comparison operators.

        IF (a<b) THEN
SELECT 'a is less than b';

        END IF;
        IF NOT (a=b) THEN
                SELECT 'a is not equal to b';
        END IF;
end;

Table 3-2. MySQL mathematical operators

Operator Description Example

+ Addition SET var1=2+2; → 4

- Subtraction SET var2=3-2; → 1

* Multiplication SET var3=3*2; → 6

/ Division SET var4=10/3; → 3.3333

DIV Integer division SET var5=10 DIV 3; → 3

% Modulus SET var6=10%3 ; → 1

Example 3-10. Examples of operators in a stored program (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Language Fundamentals

Logical Operators
Logical operators operate on the three-valued logic values TRUE, FALSE, and NULL
and return a like value. These operators are typically used with comparison opera-
tors to create more complex expressions.

For many of the logical operations, if any of the values being compared is NULL,
then the result is also NULL. It is extremely important to remember this simple fact
when creating logical expressions since, otherwise, subtle bugs can arise in your
code.

The AND operator compares two Boolean expressions and returns TRUE only if both
of the expressions are true. Table 3-4 shows the possible values generated by the AND
function.

Table 3-3. Comparison operators

Operator Description Example Example result

> Is greater than 1>2  FALSE

< Is less than 2<1  FALSE

<= Is less than or equal to 2<=2  TRUE

>= Is greater than or equal to 3>=2  TRUE

BETWEEN Value is between two values 5 BETWEEN 1 AND 10  TRUE

NOT BETWEEN Value is not between two values 5 NOT BETWEEN 1 AND 10  FALSE

IN Value is in a list 5 IN (1,2,3,4)  FALSE

NOT IN Value is not in a list 5 NOT IN (1,2,3,4)  TRUE

= Is equal to 2=3  FALSE

<>, != Is not equal to 2<>3  FALSE

<=> Null safe equal (returns TRUE if
both arguments are NULL)

NULL<=>NULL TRUE

LIKE Matches a simple pattern "Guy Harrison" LIKE
"Guy%"

 TRUE

REGEXP Matches an extended regular
expression

"Guy Harrison" REGEXP
"[Gg]reg"

 FALSE

IS NULL Value is NULL 0 IS NULL FALSE

IS NOT NULL Value is not NULL 0 IS NOT NULL TRUE

Table 3-4. Truth table for AND operator

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE NULL

NULL NULL NULL NULL



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Operators | 63

The OR operator compares two Boolean expressions and returns TRUE if either of the
expressions provided is TRUE (Table 3-5).

The XOR operator returns TRUE if either—but not both—of the values is TRUE.
Table 3-6 shows the possible values for an XOR expression.

Example 3-11 shows the use of the AND operator to combine multiple comparisons.

Bitwise Operators
Bitwise operators perform operations on the underlying binary representation of a
variable. Table 3-7 lists the bitwise operators.

Table 3-5. Truth table for the OR operator

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Table 3-6. Truth table for the XOR operator

XOR TRUE FALSE NULL

TRUE FALSE TRUE NULL

FALSE TRUE FALSE NULL

NULL NULL NULL NULL

Example 3-11. Example of logical operators in practice

CREATE FUNCTION f_title(in_gender CHAR(1),
                        in_age INT, in_marital_status VARCHAR(7))
  RETURNS VARCHAR(6)
BEGIN
  DECLARE title VARCHAR(6);
  IF in_gender='F' AND in_age<16 THEN
     SET title='Miss';
  ELSEIF in_gender='F' AND in_age>=16 AND in_marital_status='Married' THEN
     SET title='Mrs';
  ELSEIF in_gender='F' AND in_age>=16 AND in_marital_status='Single' THEN
     SET title='Ms';
  ELSEIF in_gender='M' AND in_age<16 THEN
     SET title='Master';
  ELSEIF in_gender='M' AND in_age>=16 THEN
     SET title='Mr';
  END IF;
  RETURN(title);
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Language Fundamentals

Bitwise operators are similar to logical operators, except that they perform their
operations on each bit within a variable.

For instance, consider the integers 5 (binary 101) and 4 (binary 010). The OR opera-
tor sets each bit if either of the bits is set in the inputs; so 5|2=7, because
101|010=111, which is 7 in decimal.

The bitwise AND operator sets a bit only if both the bits are true in the input. So
5&6=7, because 101&110=111, which equals 4.

Expressions
An expression is a combination of literals, variables, and operators that resolves to
some value. Conditional execution and flow-control statements usually depend on
the value of an expression to determine loop continuation or code branching.

Example 3-12 shows a variety of expressions.

Built-in Functions
You can use most of the functions that MySQL makes available for use in SQL state-
ments within stored programs. These are fully documented in the MySQL reference
manual, and we provide details and examples for most of these functions in
Chapter 9. We’ll also talk about how you can create your own “stored” functions in
the MySQL stored program language in Chapter 10.

The functions that may be used in SQL but not in stored programs are those
involved in group (multiple-row) operators. These include functions such as SUM,

Table 3-7. Bitwise operators

Operator Use

| OR

& AND

<< Shift bits to left

>> Shift bits to right

~ NOT or invert bits

Example 3-12. Examples of expressions

Myvariable_name
Myvariable_name+1
ABS(Myvariable_name)
3.14159
IF(Myvariable='M','Male','Female')
(2+4)/12



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 65

COUNT, MIN, MAX, and AVG. MySQL accepts these functions within expressions, but they
will return NULL as shown in Example 3-13.

MySQL functions fall into the following categories:

String functions
These functions perform operations on string variables. For example, you can
concatenate strings, find characters within strings, obtain a substring, and per-
form other common operations.

Mathematical functions
These functions perform operations on numbers. For example, you can perform
exponentiation (raise to a power), trigonometric functions (sine, cosine, etc.),
random number functions, logarithms, and so on.

Date and time functions
These functions perform operations on dates and times. For example, you can
get the current date, add or subtract time intervals from dates, find the differ-
ence between two dates, and extract certain portions of a date (e.g., get the time
of day from a date-time).

Miscellaneous functions
These functions include everything not easily categorized in the above three
groupings. They include cast functions, flow control functions (e.g., CASE), infor-
mational functions (e.g., server version), and encryption functions.

Table 3-8 summarizes some of the most frequently used functions; see Chapter 9 for
a more complete coverage of function syntax and examples.

Example 3-13. Aggregate functions in stored procedures return NULL

mysql> CREATE PROCEDURE functions( )
BEGIN
        DECLARE a int default 2;

DECLARE b int default 3;
DECLARE c FLOAT;

        SET c=SUM(a); select c;

END;

Query OK, 0 rows affected (0.00 sec)

mysql> CALL functions( );

+------+
| c    |
+------+
| NULL |
+------+
1 row in set (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Language Fundamentals

Table 3-8. Commonly used MySQL functions

Function Description

ABS(number) Returns the absolute value of the number supplied. For
instance, ABS(-2.3)=2.3.

CEILING(number) Returns the next highest integer. For instance,
CEILING(2.3)=3.

CONCAT(string1[,string2,string3,...]) Returns a string comprised of all the supplied strings joined
(concatenated) together.

CURDATE Returns the current date (without the time portion).

DATE_ADD(date,INTERVAL amount_type) Adds the specified interval to the specified date and returns a
new date. Valid types include SECOND, MINUTE, HOUR,
DAY, MONTH, and YEAR.

DATE_SUB(date,INTERVAL interval_type) Subtracts the specified interval from the specified date and
returns a new date. Valid types include SECOND, MINUTE,
HOUR, DAY, MONTH, and YEAR.

FORMAT(number,decimals) Returns a number with a specified number of decimal places
and with 1000 separators (usually “,”).

GREATEST(num1,num2[,num3, ... ]) Returns the greatest number from all the numbers supplied
as arguments.

IF(test, value1,value2) Tests a logical condition. If TRUE, returns value1; other-
wise, returns value2.

IFNULL(value,value2) Returns the value of the first argument, unless that argument
is NULL; in that case, it returns the value of the second
argument.

INSERT(string,position,length,new) Inserts a string into the middle of another string.

INSTR(string,substring) Finds the location of a substring within a string.

ISNULL(expression) Returns 1 if the argument is NULL, 0 otherwise.

LEAST(num1,num2[,num3, ... ]) Returns the smallest number from the list of arguments.

LEFT(string,length) Returns the leftmost portion of a string.

LENGTH(string) Returns the length of a string in bytes. CHAR_LENGTH can
be used if you want to return the number of characters
(which could be different if you are using a multibyte charac-
ter set).

LOCATE(substring,string[,number]) Returns the location of the substring within the string,
optionally starting the search at the position given by the
third argument.

LOWER(string) Translates the given string into lowercase.

LPAD(string,length,padding) Left-pads the string to the given length, using the third argu-
ment as the pad character.

LTRIM(string) Removes all leading whitespace from a string.

MOD(num1,num2) Returns the modulo (remainder) returned by the division of
the first number by the second number.

NOW Returns the current date and time.

POWER(num1,num2) Raises num1 to the power num2.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Built-in Functions | 67

Functions can be used in any statement that accepts an expression—for example, in
SET statements, conditional statements (IF, CASE), and loop control clauses.
Example 3-14 shows some examples that use functions in SET and IF clauses.

RAND([seed]) Returns a random number. The seed may be used to initial-
ize the random number generator.

REPEAT(string,number) Returns a string consisting of number repetitions of the
given string.

REPLACE(string,old,new) Replaces all occurrences of old with new in the given
string.

ROUND(number[,decimal]) Rounds a numeric value to the specified number of decimal
places.

RPAD(string,length,padding) Right-pads string to the specified length using the spec-
ified padding character.

RTRIM(string) Removes all trailing blanks from string.

SIGN(number) Returns -1 if the number is less than 0, 1 if the number is
greater than 0, or 0 if the number is equal to 0.

SQRT(number) Returns the square root of the given number.

STRCMP(string1,string2) Returns 0 if the two strings are identical, -1 if the first string
would sort earlier than the second string, or 1 otherwise.

SUBSTRING(string,position,length) Extracts length characters from string starting at the
specified position.

UPPER(string) Returns the specified string converted to uppercase.

VERSION Returns a string containing version information for the cur-
rent MySQL server.

Example 3-14. Examples of functions in SET and IF clauses

CREATE PROCEDURE function_example( )
BEGIN

  DECLARE TwentyYearsAgoToday DATE;
  DECLARE mystring VARCHAR(250);

  SET TwentyYearsAgoToday=date_sub(curdate( ), interval 20 year);

  SET mystring=concat('It was ',TwentyYearsAgoToday,
      ' Sgt Pepper taught the band to play...');

  SELECT mystring;

  IF (CAST(SUBSTR(version( ),1,3) AS DECIMAL(2,1)) <5.0) THEN
    SELECT 'MySQL versions earlier than 5.0 cannot run stored programs - you
            must be hallucinating';
  ELSE

Table 3-8. Commonly used MySQL functions (continued)

Function Description



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Language Fundamentals

Data Types
Variables in MySQL stored programs can be assigned any of the data types available
to columns in MySQL tables. We previewed most of the data types earlier, in
Table 3-1.

All variables in MySQL stored programs are scalars, which is to say variables that
store only a single item. There are no equivalents to arrays, records, or structures
such as you can find in some other programming languages.

String Data Types
MySQL supports two basic string data types: CHAR and VARCHAR. CHAR stores fixed-
length strings, while VARCHAR stores variable-length strings. If a CHAR variable is
assigned a value shorter than its declared length, it will be blank-padded out to the
declared length. This does not occur with VARCHAR variables.

When used in MySQL tables, the choice of CHAR or VARCHAR can be significant because
it can affect the amount of disk storage needed. However, in stored programs, the
additional memory requirements will be minimal and, use CHARs and VARCHARs can be
used interchangeably in all expressions, there is little advantage to either data type.
We generally use VARCHARs because they are capable of storing longer strings.

The CHAR data type can store a maximum of 255 bytes, and the VARCHAR a maximum
of 65,532 bytes.

    SELECT 'Thank goodness you are running 5.0 or higher!';
  END IF;

END$$

CALL function_example( )$$

+---------------------------------------------------------+
| mystring                                                |
+---------------------------------------------------------+
| It was 1985-11-22 Sgt Pepper taught the band to play... |
+---------------------------------------------------------+
1 row in set (0.03 sec)

+-----------------------------------------------+
| Thank goodness you are running 5.0 or higher! |
+-----------------------------------------------+
| Thank goodness you are running 5.0 or higher! |
+-----------------------------------------------+
1 row in set (0.03 sec)

Example 3-14. Examples of functions in SET and IF clauses (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Types | 69

The ENUM data type

The ENUM data type is used to store one of a set of permissible values. These values
can be accessed as their string value or as their indexed position in the set of possibil-
ities. If you attempt to assign a value into an ENUM that does not appear in the list,
MySQL will either issue a warning and insert a NULL or—if the sql_mode includes
one of the “strict” values (see the later section “MySQL 5 “Strict” Mode”)—issue an
error.

Example 3-15 illustrates the use of ENUMs in stored programs.

Example 3-15. Using ENUMs in stored programs

CREATE PROCEDURE sp_enums(in_option ENUM('Yes','No','Maybe'))
BEGIN
  DECLARE position INTEGER;
  SET position=in_option;
  SELECT in_option,position;
END
--------------

Query OK, 0 rows affected (0.01 sec)

--------------
CALL sp_enums('Maybe')
--------------

+-----------+----------+
| in_option | position |
+-----------+----------+
| Maybe     |        3 |
+-----------+----------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

--------------
CALL sp_enums(2)
--------------

+-----------+----------+
| in_option | position |
+-----------+----------+
| No        |        2 |
+-----------+----------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

--------------
CALL sp_enums('What?')
--------------

ERROR 1265 (01000): Data truncated for column 'in_option' at row 1



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Language Fundamentals

The SET data type

The SET type is similar to the ENUM type, except that multiple values from the list of
allowable values can occur in the variables (see Example 3-16). As with the ENUM
type, an attempt to assign a value not in the list will generate an error in “strict”
mode, and a warning otherwise.

Example 3-16. Behavior of SET variables in stored programs

CREATE PROCEDURE sp_set(in_option SET('Yes','No','Maybe'))
BEGIN

  SELECT in_option;
END
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
CALL sp_set('Yes')
--------------

+-----------+
| in_option |
+-----------+
| Yes       |
+-----------+
1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

--------------
CALL sp_set('Yes,No,Maybe')
--------------

+--------------+
| in_option    |
+--------------+
| Yes,No,Maybe |
+--------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

--------------
CALL sp_set('Yes,No,Go away')
--------------

ERROR 1265 (01000): Data truncated for column 'in_option' at row 1



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Data Types | 71

Numeric Data Types
MySQL supports two families of numeric types:

• Exact numeric types such as the INT and DECIMAL types

• Approximate numeric types such as FLOAT

Accurate numeric types store an exact value for a number. The various INT types
(INT, BIGINT, TINYINT) differ in that they use different amounts of storage, which
therefore restricts the magnitude of the numbers that they can store. Each type can
be signed (capable of storing positive or negative numbers) or unsigned, which fur-
ther restricts the maximum values that the type may store (allowing a variable to be
unsigned doubles the maximum possible number that can be stored). Table 3-9
shows the limits for the various integer types.

Floating-point data types (FLOAT, DOUBLE, REAL) store numbers of variable size and
precision. In MySQL tables, FLOAT types use 32 bits of storage by default, while
DOUBLE uses 64 bits of storage.

Be aware, however, that the floating-point data types store approximate representa-
tions of numbers. Most of the time this is unimportant, but in some circumstances
you will want to use the precision data types, such as DECIMAL or NUMERIC, to avoid
rounding errors that can occur when performing mathematical operations on float-
ing-point numbers.

Date and Time Data Types
MySQL stores date-times with a precision down to one second. In MySQL tables,
columns of the DATE data type can store the date part of a date-time only, while the
DATETIME can store both a date and a time.

TEXT and BLOB Data Types
In MySQL tables, the TEXT data type can store up to 64K of data, and LONGTEXT can
store up to 4,294,967,295 characters. BLOB and LONGBLOB data types can store similar
amounts of data, but are able to store binary as well as character data.

Table 3-9. Limits for the various integer data types

Data type Storage (bits) Signed maximum Unsigned maximum

TINYINT 8 127 255

SMALLINT 16 32767 65535

MEDIUMINT 24 8388607 16777215

INT 32 2147483647 4294967295

BIGINT 64 9223372036854775807 9223372036854775807



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Language Fundamentals

MySQL 5 “Strict” Mode
MySQL 5 “strict” mode applies when either STRICT_TRANS_TABLES or STRICT_ALL_
TABLES is included in the list of options supplied to the sql_mode configuration vari-
able. STRICT_ALL_TABLES will cause any attempt to set a column to an invalid value to
fail with an error. STRICT_TRANS_TABLES has the same effect, but only if the table is
transactional.

If neither of these settings is in effect, MySQL will either accept the update or do a
“best fit” of the invalid value into a legal column value. For instance, if you try to
assign a string value into an integer column, MySQL may set the value of the col-
umn to 0. A warning will be generated whenever such a “truncation” occurs.

Strict mode will also cause errors to occur for missing columns in an INSERT state-
ment, unless that column has an associated DEFAULT clause.

STRICT_ALL_TABLES can have some dubious side effects when you are performing mul-
tirow updates or inserts into nontransactional tables. Because there is no rollback
capability for a nontransactional table, the error may occur after a certain number of
valid row updates have occurred. This means that in the event of a strict-mode error
on a nontransactional table, the SQL statement may partially succeed. This is rarely
desirable behavior, and for this reason the default setting in MySQL 5.0 is STRICT_
TRANS_TABLES.

You can change your strict mode at any time with a SET statement:

SET sql_mode='STRICT_ALL_TABLES'

The strict mode also determines how stored programs deal with attempts to assign
invalid values to variables. If either of the strict modes is in effect, then an error will
be generated whenever an attempt to assign an invalid value to a variable occurs. If
no strict modes are in effect, then only warnings are generated.

Note that this behavior is controlled by the sql_mode settings that are in effect when
the program is created, not when it is run. So once a strict stored program is created,
it remains strict, even if the sql_mode settings are relaxed later on. In the same way,
programs that are created when none of the strict modes are in effect will continue to
generate warnings rather than errors when invalid data is assigned, regardless of the
sql_mode that is in effect when the program runs.

Stored Program Behavior and Strict Mode
All variables in a MySQL stored program must be declared before use—with the
exception of “user” variables, which are prefixed by the @ symbol and may be
defined outside of the stored program. Furthermore, variables in MySQL stored pro-
grams must be assigned an explicit data type, and this data type cannot change dur-
ing program execution. In this respect, the MySQL stored program language



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

MySQL 5 “Strict” Mode | 73

resembles “strongly typed” languages such as C, Java, and C# rather than dynami-
cally typed languages such as Perl and PHP.

When created in strict mode, as explained in the previous section, stored programs
will reject with an error any attempt to assign an invalid or inappropriate value to a
variable. Such rejected assignments will include attempts to assign strings to numeric
data or attempts to assign values that exceed the storage limitations declared for the
variable.

However, when a stored program is created in non-strict mode, MySQL will per-
form a best attempt to convert invalid data and will generate a warning rather than
an error. This allows you to—for instance—assign a string value to a variable defined
as an integer. This non-strict behavior can lead to unexpected results or subtle bugs
if you do not carefully ensure that you always use variables in ways that are appropri-
ate for their data type. For these reasons it is usually best to create stored programs
in strict mode and generate an error that you cannot possibly fail to notice during
program testing or execution.

Program Examples
We’ll illustrate these differences with an example that compares the behavior of the
MySQL stored program in non-strict mode with several other programming
languages.

Example 3-17 shows a Java program that intends to concatenate an integer value to a
string value with the intention of printing the string "99 bottles of beer on the
wall". Unfortunately for the beer, the programmer accidentally declared variable c as
an int, rather than as a String. The Java compiler detects this error during compile
time when it detects an attempt to assign a string expression to an integer variable,
and the program fails to compile—no harm done.

Example 3-17. Type checking in a Java program

$cat simplejava.java
package simplejava;

public class SimpleJava {

        public static void main(String[] args) {
                String b;
                int a;

int c;
                a=99;
                b="Bottles of beer on the wall";
                c=a+" "+c;

                System.out.println(c);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Language Fundamentals

Now let’s look at an equivalent example (in a dynamically typed language—in this
case, PHP). In PHP and Perl, variable data types change on the fly as required. In
Example 3-18, the variable c started as a number, but when subjected to a string
assignment, the data type dynamically changed to a string. The program therefore
works as required.

Now let’s look at the equivalent non-strict MySQL stored program version of this
logic, as shown in Example 3-19. This procedure has the same data type error as in
the previous examples—the variable c should be defined as a VARCHAR, but it is
instead declared as an INT.

        }
}

$javac simplejava.java
simplejava.java:11: incompatible types
found   : java.lang.String
required: int
                c=a+" "+c;
                       ^
1 error

Example 3-18. Dynamic variable typing in PHP

$cat simplephp.php
<?php
                $a=99;
                $b="Bottles of beer on the wall";

$c=0;          #c is a number
$c=$a." ".$b;  #c is now a string

                print $c."\n";
?>

$php simplephp.php
99 Bottles of beer on the wall

Example 3-19. MySQL stored program non-strict type checking

CREATE PROCEDURE strict_test( )
BEGIN

  DECLARE a INT;
  DECLARE b VARCHAR(20);
DECLARE c INT;

  SET a=99;
  SET b="Bottles of beer on the wall";
SET c=CONCAT(a," ",b);

  SELECT c;
END

Example 3-17. Type checking in a Java program (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

MySQL 5 “Strict” Mode | 75

Without the strict mode, MySQL does not generate an error when the attempt to
supply a string to an integer value occurs, nor does it dynamically convert the data
type of the integer variables. Instead, it assigns only the numeric part of the string
expression to the integer—leading to an unexpected and erroneous result. However,
if we had created the procedure when in strict mode, we would have generated a
runtime error, as shown in Example 3-20.

It’s almost always preferable for your programs to operate in strict mode. While a
non-strict program will sometimes be able to continue where a strict program would
fail with an error, the risk that the non-strict program will exhibit unexpected and
inappropriate behaviors is usually too high. Remember that the behavior of a stored
program depends on the setting of the variable sql_mode when the program is created,
not when the program is run.

Stored programs should almost always operate in strict mode to avoid
unpredictable behavior when invalid data assignments occur. The
strict mode for a stored program is determined by the setting of the
sql_mode variable in effect when the program is created, not when the
program is run.

--------------

Query OK, 0 rows affected (0.01 sec)

mysql> CALL strict_test( );
+------+
| C    |
+------+
|   99 |
+------+
1 row in set (0.00 sec)

Query OK, 0 rows affected, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level   | Code | Message                                |
+---------+------+----------------------------------------+
| Warning | 1265 | Data truncated for column 'b' at row 1 |
| Warning | 1265 | Data truncated for column 'c' at row 1 |
+---------+------+----------------------------------------+
2 rows in set (0.01 sec)

Example 3-20. Stored program type checking in strict mode

mysql> CALL strict_test( );
ERROR 1406 (22001): Data too long for column 'b' at row 1

Example 3-19. MySQL stored program non-strict type checking  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Language Fundamentals

As always, the onus is on the programmer to ensure that data types are used appropri-
ately. As Bruce Eckel noted in his article “Strong Typing vs. Strong Testing” (http://
www.mindview.net/WebLog/log-0025), strong typing in computer languages only pro-
vides an illusion of safety—true validation of correct behavior can only be obtained
through strong testing. You should not assume that by declaring a variable as being of a
certain type you are implicitly performing validation of the data being applied to that
variable.

Conclusion
In this chapter we provided an overview of the building blocks of the MySQL stored
program language. The MySQL stored program language—based on the ANSI SQL:
2003 PSM specification—is a block-structured language that supports all the pro-
gramming fundamentals that you would expect from a procedural language. The
major aspects of the stored program language with which you should be familiar at
this point are:

• The DECLARE statement, which allows you to define and initialize program
variables.

• Stored program parameters, which allow you to pass information into or—in the
case of stored procedures—out of a stored program.

• The SET statement, which allows you to change the value of a program variable.

• MySQL functions, operators, and data types—the MySQL stored program lan-
guage utilizes most of the equivalents available in the MySQL SQL language.

Stored program type checking is very dependent on the setting of the sql_mode con-
figuration variable. If a program is created when the sql_mode variable includes one
of the strict settings (STRICT_TRANS_TABLES or STRICT_ALL_TABLES), then the program
will reject invalid variable assignments with an error. If neither of the strict modes is
in effect, then the stored program will generate an error when invalid data assign-
ments occur, but will continue execution. Non-strict stored program behavior can
lead to unexpected and subtle bugs, and we recommend that you usually use the
strict mode when creating your stored programs.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

77

Chapter 4 CHAPTER 4

Blocks, Conditional Statements,
and Iterative Programming4

This chapter describes the constructs in the MySQL language that control the scope
and flow of execution.

In MySQL, as in all block-structured languages, groups of statements may be
grouped together into blocks. A block can normally occur whenever a single state-
ment would be permitted, and the block may contain its own distinct variable, cur-
sor, and handler declarations.

The MySQL stored program language supports two types of stored program control
statements: conditional control statements and iteration (looping) statements.
Almost every piece of code you write requires conditional control, which is the abil-
ity to direct the flow of execution through your program based on a condition. You
do this with IF-THEN-ELSE and CASE statements.

Iterative control structures—otherwise known as loops—let you execute the same
code repeatedly. MySQL provides three different kinds of loop constructs:

Simple loop
Continues until you issue a LEAVE statement to terminate the loop

REPEAT UNTIL loop
Continues until an expression evaluates as true

WHILE loop
Continues as long as an expression evaluates as true

Block Structure of Stored Programs
Most MySQL stored programs consist of one or more blocks (the only exception is
when a stored program contains only a single executable statement). Each block
commences with a BEGIN statement and is terminated by an END statement. So in the
simplest case, a stored program consists of a program definition statement (CREATE



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER) followed by a single block that con-
tains the program code to be executed:

CREATE {PROCEDURE|FUNCTION|TRIGGER} program_name
BEGIN

program_statements
END;

The purpose of a block is twofold:

To logically group related code segments
For instance, a handler declaration (see Chapter 6 for an explanation of error
handlers) can include a block definition allowing it to execute multiple com-
mands. All of the statements within the block will be executed if the handler is
invoked.

To control the scope of variables and other objects
You can define a variable within a block that is not visible outside the block.
Furthermore, you can declare a variable within a block that overrides the defini-
tion of a variable with the same name declared outside of the block.

A compound statement consists of a BEGIN-END block, which encloses
one or more stored program commands.

Structure of a Block
A block consists of various types of declarations (e.g., variables, cursors, handlers)
and program code (e.g., assignments, conditional statements, loops). The order in
which these can occur is as follows:

1. Variable and condition declarations. Variables were discussed earlier in
Chapter 3, and condition declarations are discussed in Chapter 6.

2. Cursor declarations, discussed in Chapter 5.

3. Handler declarations, discussed in Chapter 6.

4. Program code.

If you violate this order—for instance, by issuing a DECLARE statement after a SET
statement—MySQL will generate an error message when you try to create your
stored program code. The error messages do not always clearly indicate that you
have used statements in the wrong order, so it’s important to develop the habit of
declaring things in the correct order.

The order of statements in a block must be Variables and conditions,
followed by Cursors, then Exception handlers, and finally Other state-
ments. We remember this order using the following mnemonic: “Very
Carefully Establish Order” in your stored programs.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Block Structure of Stored Programs | 79

You can also name a block with a label. The label can occur both before the BEGIN
statement and after the END statement. Labeling a block has the following advantages:

• It improves code readability—for instance, by allowing you to quickly match the
BEGIN statement with its associated END statement.

• It allows you to terminate block execution with the LEAVE statement (see the sec-
tion describing this statement later in this chapter).

So a simplified representation of the structure of a block is:

 [label:] BEGIN
    variable and condition declarations
    cursor declarations
    handler declarations

   program code

END [label];

Nested Blocks
If all stored programs contained only a single block, the block structure would be
hardly worth mentioning. However, many programs include blocks that are defined
within an enclosing block—at least within the main block that encloses all the stored
program code. As suggested earlier, variables declared within a block are not available
outside the block, but may be visible to blocks that are declared within the block. You
can override an “outer” variable with a new definition within the block, and you can
manipulate this variable without affecting the value of the “outer” variable.

Let’s illustrate some of these principles with some examples.

In Example 4-1, we create a variable within a block. The variable is not available in
the outer block, so this example generates an error.

Example 4-1. Declarations within a block are not visible outside the block

mysql> CREATE PROCEDURE nested_blocks1( )
BEGIN
        DECLARE outer_variable VARCHAR(20);
        BEGIN
                DECLARE inner_variable VARCHAR(20);
                SET inner_variable='This is my private data';
        END;
        SELECT inner_variable,' This statement causes an error ';
END;
$$

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks1( )
--------------

ERROR 1054 (42S22): Unknown column 'inner_variable' in 'field list'



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

In Example 4-2, we modify a variable declared in the “outer” block inside of an
“inner” block. The changes made are visible outside of the inner block.

In Example 4-3, we create a variable in the inner block with the same name as one in
the outer block. When we change the value within the inner block, the changes are
not reflected in the outer block—that’s because although the two variables have the
same name, they are really two separate variables. Overriding a variable name inside
of a block in this way can be fairly confusing, reducing code readability and possibly
encouraging bugs. In general, don’t override variable definitions in this way unless
you have a very compelling reason.

Example 4-2. Variables within a block can override variables defined outside the block

mysql> CREATE PROCEDURE nested_blocks2( )
BEGIN
        DECLARE my_variable varchar(20);
        SET my_variable='This value was set in the outer block';
        BEGIN
                SET my_variable='This value was set in the inner block';
        END;
        SELECT my_variable, 'Changes in the inner block are visible in the outer block';
END;
$$

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks2( )
//

+---------------------+-----------------------------------------------------------+
| my_variable         | Changes in the inner block are visible in the outer block |
+---------------------+-----------------------------------------------------------+
| This value was set  |                                                           |
|  in the inner block | Changes in the inner block are visible in the outer block |
+---------------------+-----------------------------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Example 4-3. Changes made to an overloaded variable in an inner block are not visible outside the
block

mysql> CREATE PROCEDURE nested_blocks3( )
BEGIN
        DECLARE my_variable varchar(20);
        SET my_variable='This value was set in the outer block';
        BEGIN
                DECLARE my_variable VARCHAR(20);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Block Structure of Stored Programs | 81

Avoid overriding a variable declared within an outer block inside an
inner block.

In our final nested blocks example (Example 4-4), we use a block label and the LEAVE
statement to terminate block execution. We discuss the use of the LEAVE statement
later in this chapter, but for now it’s enough to point out that you can terminate exe-
cution of a block with a LEAVE statement at any time, providing that the block is
labeled.

                SET my_variable='This value was set in the inner block';
        END;
        SELECT my_variable, 'Can''t see changes made in the inner block';
END;
//

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks3( )
$$

+---------------------------+-------------------------------------------+
| my_variable               | Can't see changes made in the inner block |
+---------------------------+-------------------------------------------+
| This value was set in the |                                           |
|   outer block             | Can't see changes made in the inner block |
+---------------------------+-------------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Example 4-4. Example of using a LEAVE statement to exit a labeled block

mysql> CREATE PROCEDURE nested_blocks5( )
 outer_block: BEGIN
        DECLARE l_status int;
        SET l_status=1;
        inner_block: BEGIN
                IF (l_status=1) THEN
                        LEAVE inner_block;
                END IF;
                SELECT 'This statement will never be executed';
        END inner_block;
        SELECT 'End of program';
END outer_block$$

Query OK, 0 rows affected (0.00 sec)

Example 4-3. Changes made to an overloaded variable in an inner block are not visible outside the
block (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

Conditional Control
Conditional control—or “flow of control”—statements allow you to execute code
based on the value of some expression. As we said earlier, an expression can be any
combination of MySQL literals, variables, operators, and functions that returns a
value. Conditional control statements allow you to take different actions depending
on the value of such an expression, which could refer to parameters to the stored
program, to data in the database, or to other variable data (such as the day of the
week or the time of the day).

The MySQL stored program language supports two conditional control statements:
IF and CASE. Both IF and CASE perform very similar functions, and there is always a
way to rewrite an IF statement as a CASE statement or vice versa. Usually, choosing
between IF and CASE is a matter of personal preference or programming standards.
However, there are circumstances in which one type of statement is more readable or
efficient than the other.

The following subsections describe the syntax of both statements, provide usage
examples, and, finally, compare the pros and cons of each.

The IF Statement
All programmers will be familiar with some variation of the IF statement, and
MySQL’s implementation of the IF statement contains no surprises. The syntax of IF
in stored programs is:

IF expression THEN commands
    [ELSEIF expression THEN commands ....]
    [ELSE commands]
END IF;

mysql> CALL nested_blocks5( )$$

+----------------+
| End of program |
+----------------+
| End of program |
+----------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Example 4-4. Example of using a LEAVE statement to exit a labeled block (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conditional Control | 83

TRUE or FALSE (or neither)?

The commands associated with IF or ELSEIF statements will only be executed if the
associated expression evaluates to TRUE. Expressions such as 1=1 or 2>1 will evalu-
ate to TRUE. Expressions such as 1>3 will evaluate to FALSE.

However, if you are performing an operation on one or more variables, and one of
the variables has a NULL value, then the result of the expression can be NULL—nei-
ther TRUE nor FALSE. This can lead to some erroneous conclusions if your code
assumes that expressions that are not TRUE are necessarily FALSE, or vice versa. So,
for instance, in Example 4-5, if we can’t find 'alpha' or 'beta' in the version string, we
assume that the release is production. However, if l_version is NULL, then the ELSE
condition will always fire, although we actually have no basis for making any such
assertion.

Don’t assume that the result of an expression is either TRUE or
FALSE. It could also evaluate to NULL (UNKNOWN) if any of the
participating variables is NULL.

Also note that any expressions that return numeric values—or strings that look like
numbers—may evaluate to TRUE, FALSE, or NULL. The rules are:

• If the absolute value of a numeric expression is 1 or greater, then it will be evalu-
ated to TRUE by the IF or ELSEIF statement. Note that the term “absolute value”
means that both 1 and –1 will evaluate to TRUE.

• If the value of the numeric expression is 0, then it will evaluate to FALSE.

Simple IF-THEN combinations

In its simplest form, IF can be used to specify a set of statements that executes only if
a condition evaluates to TRUE. The syntax for this type of IF statement is as follows:

IF expression THEN
statements

END IF;

Example 4-5. Incorrectly assuming that NOT TRUE = FALSE

   IF (INSTR(l_version_string,'alpha')>0) THEN
         SELECT 'Alpha release of MySQL';
    ELSEIF (INSTR(l_version_string,'beta')>0) THEN
         SELECT 'Beta release of MySQL';
    ELSE
         SELECT 'Production release of MySQL';
    END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

Example 4-6 shows a simple IF statement.

We can include multiple statements between the THEN and END IF clauses, as in
Example 4-7.

As shown in Example 4-8, we can also include any other executable statement inside
the IF statement, such as looping constructs, SET statements, and other IF state-
ments (although, as we will see later, it’s often best to avoid nesting IF statements in
this manner if possible).

Three-Valued Logic
Boolean expressions can return three possible results. When all values in a Boolean
expression are known, the result is either TRUE or FALSE. For example, there is no
doubt when determining the truth or falsity of an expression such as:

(2 < 3) AND (5 < 10)

Sometimes, however, you don’t know all values in an expression. That’s because data-
bases allow for values to be NULL, or missing. What, then, can be the result from an
expression involving NULLs? For example:

2 < NULL

Because you don’t know what the missing value is, the only answer you can give is “I
don’t know.” This is the essence of so-called three-valued logic, that you can have not
only TRUE and FALSE as a possible result, but also NULL.

To learn more about three-valued logic, we recommend C. J. Date’s book Database In
Depth: Relational Theory for the Practitioner (O’Reilly).

Example 4-6. Example of simple IF statement

IF sale_value > 200 THEN
    CALL apply_free_shipping(sale_id);
END IF;

Example 4-7. Multistatement IF statement

IF sale_value > 200 THEN
    CALL apply_free_shipping(sale_id);
    CALL apply_discount(sale_id,10);
END IF;

Example 4-8. Nested IF statements

IF sale_value > 200 THEN
    CALL apply_free_shipping(sale_id);
    IF sale_value > 500 THEN
        CALL apply_discount(sale_id,20);
    END IF;
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conditional Control | 85

It is not necessary to break the IF statement across multiple lines; all of the IF state-
ments in Example 4-9 are treated identically by MySQL.

It’s probably OK to put a very simple IF statement on a single line, but it is definitely
not a good practice to do this for complex or nested IF structures. For instance,
which is easier to read, understand, and maintain? This:

IF sale_value > 200 THEN
    CALL apply_free_shipping(sale_id);
    IF sale_value > 500 THEN
        CALL apply_discount(sale_id,20);
    END IF;
END IF;

Or this:

IF sale_value > 200 THEN CALL apply_free_shipping(sale_id); IF sale_value > 500 THEN
CALL apply_discount(sale_id,20);END IF;END IF;

Some programmers like to place the THEN clause on a separate line, as follows:

IF sale_value > 200
THEN
    CALL apply_free_shipping(sale_id);
END IF;

But this is really a matter of personal preference and/or programming standards.

For any nontrivial IF statement, use indenting and formatting to
ensure that the logic of your IF statement is easily understood.

IF-THEN-ELSE statements

Adding an ELSE condition to your IF statements allows you to specify statements that
will execute if the IF condition is NOT TRUE. We’ll emphasize again—because it is
important—that NOT TRUE does not always mean FALSE. If the IF statement con-
dition evaluates to NULL, then the ELSE statements will still be executed; this can
lead to subtle bugs if you don’t protect against NULL variables in your IF conditions.

Example 4-9. Alternate formatting for IF statements

IF sale_value > 200 THEN CALL apply_free_shipping(sale_id); END IF;

IF sale_value > 200
THEN
    CALL apply_free_shipping(sale_id);
END IF;

IF sale_value > 200 THEN
    CALL apply_free_shipping(sale_id);
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

An IF-THEN-ELSE block has the following syntax:

IF expression THEN
statements that execute if the expression is TRUE

ELSE
statements that execute if the expression is FALSE or NULL

END IF;

So in Example 4-10, we apply shipping to an order if it is less than $200; otherwise,
we apply a discount (and don’t charge shipping).

IF-THEN-ELSEIF-ELSE statements

The full syntax of the IF statements allows for multiple conditions to be defined. The
first condition that evaluates to TRUE will execute. If none of the statements evalu-
ates to TRUE, then the ELSE clause (if present) will execute. The syntax for an IF-
THEN-ELSEIF-ELSE IF statement looks like this:

IF expression THEN
statements that execute if the expression is TRUE

ELSEIF expression THEN
statements that execute if expression1 is TRUE

ELSE
statements that execute if all the preceding expressions are FALSE or NULL

END IF;

You can have as many ELSEIF conditions as you like.

The conditions do not need to be mutually exclusive. That is, more than one of the
conditions can evaluate to TRUE. The first condition that evaluates to TRUE is the
one that executes. Creating overlapping conditions like this can be useful, but you
have to be very careful when ordering the conditions. For instance, consider the IF-
ELSEIF statement shown in Example 4-11.

The intention of this code fragment is clear: apply free shipping to all orders over
$200, and add a 20% discount for preferred customers. However, because the first

Example 4-10. Simple IF-THEN ELSE example

IF sale_value <200 THEN
    CALL apply_shipping(sale_id);
ELSE
    CALL apply_discount(sale_id);
END IF;

Example 4-11. Example of an IF-ELSEIF block with overlapping conditions

IF (sale_value>200) THEN
    CALL free_shipping(sale_id);
ELSEIF (sale_value >200 and customer_status='PREFERRED') THEN
    CALL free_shipping(sale_id);
    CALL apply_discount(sale_id,20);
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conditional Control | 87

condition will evaluate to TRUE for all orders over $200, the ELSEIF condition will
not be evaluated for any orders over $200, and our preferred customers will not get
their discount. No discount for preferred customers means no end-of-year bonus for
our stored procedure programmer!

There are a number of better ways to craft this statement: for one thing, we could
move the ELSEIF condition into the IF clause to ensure that it gets evaluated first;
alternately, we could nest an IF statement within the sale_value>200 IF clause to test
the customer status, as shown in Example 4-12.

Both of the alternatives shown in Example 4-12 are perfectly valid. Generally we
want to avoid nesting IF statements where possible, but if there are a lot of addi-
tional evaluations that we need to conduct when the sale_value is greater than $200,
then it might make sense to perform the sale_value test once, and then individually
test for all the other conditions. So let’s say our business rules state that for orders
over $200 we give free shipping, along with a variable discount based on the cus-
tomer’s status in our loyalty program. The logic in a single IF-ELSEIF block might
look like that shown in Example 4-13.

Example 4-12. Two ways of correcting the logic error in the previous example

/* Reordering the IF conditions */
IF (sale_value >200 and customer_status='PREFERED') THEN
        CALL free_shipping(sale_id);
        CALL apply_discount(sale_id,20);
ELSEIF (sale_value>200) THEN
        CALL free_shipping(sale_id);

END IF;

/* Nesting the IF conditions */

IF (sale_value >200) THEN
    CALL free_shipping(sale_id);
    IF (customer_satus='PREFERRED') THEN
       CALL apply_discount(sale_id,20);
    END IF;
END IF:

Example 4-13. IF block with many redundant conditions

IF (sale_value >200 and customer_status='PLATINUM') THEN
    CALL free_shipping(sale_id);      /* Free shipping*/
    CALL apply_discount(sale_id,20);  /* 20% discount */

ELSEIF (sale_value >200 and customer_status='GOLD') THEN
    CALL free_shipping(sale_id);     /* Free shipping*/
    CALL apply_discount(sale_id,15); /* 15% discount */



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

In this case, the constant repetition of the sale_value condition and the free_
shipping call actually undermines the readability of our logic—as well as imposing a
performance overhead (see Chapter 22). It might be better to use a nested IF struc-
ture that makes it clear that everyone gets free shipping for orders over $200, and
that discounts are then applied based on the customer loyalty status only.
Example 4-14 shows the nested IF implementation.

The CASE Statement
The CASE statement is an alternative conditional execution or flow control statement.
Anything that can be done with CASE statements can be done with IF statements (and
vice versa), but CASE statements are often more readable and efficient when multiple
conditions need to be evaluated, especially when the conditions all compare the out-
put from a single expression.

ELSEIF (sale_value >200 and customer_status='SILVER') THEN
    CALL free_shipping(sale_id);     /* Free shipping*/
    CALL apply_discount(sale_id,10); /* 10% discount */

ELSEIF (sale_value >200 and customer_status='BRONZE') THEN
    CALL free_shipping(sale_id);    /* Free shipping*/
    CALL apply_discount(sale_id,5); /* 5% discount*/

ELSEIF (sale_value>200) THEN
    CALL free_shipping(sale_id);    /* Free shipping*/

END IF;

Example 4-14. Using nested IF to avoid redundant evaluations

IF (sale_value > 200) THEN
    CALL free_shipping(sale_id);    /*Free shipping*/

    IF (customer_status='PLATINUM') THEN
        CALL apply_discount(sale_id,20); /* 20% discount */

    ELSEIF (customer_status='GOLD') THEN
        CALL apply_discount(sale_id,15); /* 15% discount */

    ELSEIF (customer_status='SILVER') THEN
        CALL apply_discount(sale_id,10); /* 10% discount */

    ELSEIF (customer_status='BRONZE') THEN
        CALL apply_discount(sale_id,5); /* 5% discount*/
    END IF;

END IF;

Example 4-13. IF block with many redundant conditions (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conditional Control | 89

Simple CASE statement

CASE statements can take two forms. The first—sometimes referred to as a simple
CASE statement—compares the output of an expression with multiple conditions:

CASE expression
    WHEN value THEN

statements
    [WHEN value THEN

statements ...]
    [ELSE

statements]
END CASE;

This syntax is useful when we are checking the output of some expression against a
set of distinct values. For instance, we could check the customer loyalty status from
our previous example using the simple CASE statement shown in Example 4-15.

As with the IF command, you can specify multiple WHEN statements and you can spec-
ify an ELSE clause that executes if none of the other conditions apply.

However, it is critical to realize that a CASE statement will raise an exception if none
of the conditions apply. This means that in Example 4-15 if the customer_status was
not one of 'PLATINUM', 'GOLD', 'SILVER', or 'BRONZE' then the following runtime excep-
tion would occur:

ERROR 1339 (20000): Case not found for CASE statement

We could create an exception handler to cause this error to be ignored (as described
in Chapter 6), but it is probably better practice to code an ELSE clause to ensure that
all possible conditions are handled. So, we should probably adapt the previous
example to include an ELSE clause that applies a zero discount to a customer who
meets none of the preceding conditions.

Example 4-15. Example of a simple CASE statement

CASE customer_status
    WHEN 'PLATINUM'  THEN
        CALL apply_discount(sale_id,20); /* 20% discount */

    WHEN 'GOLD' THEN
        CALL apply_discount(sale_id,15); /* 15% discount */

    WHEN 'SILVER' THEN
        CALL apply_discount(sale_id,10); /* 10% discount */

    WHEN 'BRONZE' THEN
        CALL apply_discount(sale_id,5); /* 5% discount*/
END CASE;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

If none of the CASE statements matches the input condition, CASE will
raise MySQL error 1339. You should either construct an error handler
to ignore this error, or ensure that the exception never occurs by
including an ELSE clause in your CASE statement.

The simple CASE statement is useful when comparing the value of an expression to a
series of specific values. However, the simple CASE statement cannot easily or natu-
rally match ranges, or handle more complex conditions involving multiple expres-
sions. For these more complex “cases” we can use a “searched” CASE statement,
described in the next section.

 “Searched” CASE statement

The searched CASE statement is functionally equivalent to an IF-ELSEIF-ELSE-END IF
block. The searched CASE statement has the following syntax:

CASE
    WHEN condition THEN
        statements
    [WHEN condition THEN

statements...]
    [ELSE

statements]
END CASE;

Using the searched CASE structure, we can implement the free shipping and discount
logic that we implemented earlier using IF. A direct translation of our sales discount
and free shipping logic using a searched CASE statement is shown in Example 4-16.

Example 4-16. Example of a searched CASE statement

CASE
    WHEN  (sale_value >200 AND customer_status='PLATINUM') THEN
        CALL free_shipping(sale_id);     /* Free shipping*/
        CALL apply_discount(sale_id,20); /* 20% discount */

    WHEN  (sale_value >200 AND customer_status='GOLD') THEN
        CALL free_shipping(sale_id);     /* Free shipping*/
        CALL apply_discount(sale_id,15); /* 15% discount */

    WHEN (sale_value >200 AND customer_status='SILVER') THEN
        CALL free_shipping(sale_id);     /* Free shipping*/
        CALL apply_discount(sale_id,10); /* 10% discount */

    WHEN (sale_value >200 AND customer_status='BRONZE') THEN
        CALL free_shipping(sale_id);    /* Free shipping*/
        CALL apply_discount(sale_id,5); /* 5% discount*/

    WHEN (sale_value>200)     THEN



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conditional Control | 91

However, remember that if none of the WHERE clauses is matched, a 1339 error will
occur. Therefore, this code will cause a fatal error if the order is less than $200 or the
customer is not in our loyalty program—not a happy outcome. So we should protect
our code—and our job security—by including an ELSE clause as shown in
Example 4-17.

Note that because MySQL lacks a NULL (do nothing) statement in the stored pro-
gram language, we had to add a dummy statement—but this statement has negligi-
ble overhead.

As with our IF implementation of this logic, we could also use nested CASE state-
ments to perform the same logic with arguably greater clarity. In Example 4-18 we
combine simple and searched CASE statements, and also include a “not found” han-
dler to avoid having to include ELSE statements. We enclose the entire thing in a
block so that our handler does not inadvertently influence other statements within
the stored program.

        CALL free_shipping(sale_id);    /* Free shipping*/

END CASE;

Example 4-17. Adding a dummy ELSE clause to our searched CASE example

CASE
    WHEN  (sale_value >200 AND customer_status='PLATINUM') THEN
          CALL free_shipping(sale_id);     /* Free shipping*/
          CALL apply_discount(sale_id,20); /* 20% discount */

    WHEN (sale_value >200 AND customer_status='GOLD') THEN
         CALL free_shipping(sale_id);     /* Free shipping*/
         CALL apply_discount(sale_id,15); /* 15% discount */

    WHEN (sale_value >200 AND customer_status='SILVER') THEN
         CALL free_shipping(sale_id);     /* Free shipping*/
         CALL apply_discount(sale_id,10); /* 10% discount */

    WHEN (sale_value >200 AND customer_status='BRONZE') THEN
         CALL free_shipping(sale_id);    /* Free shipping*/
         CALL apply_discount(sale_id,5); /* 5% discount*/

    WHEN (sale_value>200) THEN
         CALL free_shipping(sale_id);    /* Free shipping*/
    ELSE
         SET dummy=dummy;

END CASE;

Example 4-16. Example of a searched CASE statement (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

IF Versus CASE
We’ve seen that both IF and CASE statements can implement the same flow control
functionality. So which is best? To a large extent, choosing between IF and CASE is
more a matter of personal preference and programming standards than of any
implicit advantages offered by either of the two statements. However, when decid-
ing between CASE and IF, consider the following:

• Consistency in style is probably more important than any slight advantages
either approach might have in a particular circumstance. We therefore suggest
that you choose between CASE and IF consistently, and not randomly switch
between the two depending on your mood, the weather, or your horoscope!

• CASE is slightly more readable when you are comparing a single expression
against a range of distinct values (using a “simple” CASE statement).

• IF is probably a more familiar and easily understood construct when you are
evaluating ranges or complex expressions based on multiple variables.

• If you choose CASE, you need to ensure that at least one of the CASE conditions is
matched, or define an error handler to catch the error that will occur if no CASE
condition is satisfied. IF has no such restriction.

Remember—whichever construct you use—that:

• Once any condition in the CASE or IF structure is satisfied, no more conditions
will be evaluated. This means that if your conditions overlap in any way, the
order of evaluation is critical.

Example 4-18. Using nested CASE statements and a block-scoped “not found” handler

BEGIN
    DECLARE not_found INT DEFAULT 0;
    DECLARE CONTINUE HANDLER FOR 1339 SET not_found=1;

    CASE
        WHEN (sale_value>200) THEN
            CALL free_shipping(sale_id);
            CASE customer_status
                WHEN 'PLATINUM' THEN
                    CALL apply_discount(sale_id,20);
                WHEN 'GOLD' THEN
                    CALL apply_discount(sale_id,15);
                WHEN 'SILVER' THEN
                    CALL apply_discount(sale_id,10);
                WHEN 'BRONZE' THEN
                    CALL apply_discount(sale_id,5);
            END CASE;
    END CASE;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Iterative Processing with Loops | 93

• The MySQL stored program language uses three-valued logic; just because a
statement is NOT TRUE does not mean that it is necessary FALSE—it could be
NULL.

• You should think carefully about the readability of your statements—sometimes
a nested set of IF or CASE statements will be more readable and possibly more
efficient. However, more often it is better to avoid nesting, especially if the state-
ments become deeply nested (say three or more levels).

Iterative Processing with Loops
In this section we examine the statements that the MySQL stored program language
provides for iteratively (repeatedly) processing commands. There are many reasons
why a program may need to iterate:

• A program that supports a user interface may run a main loop that waits for, and
then processes, user keystrokes (this doesn’t apply to stored programs, however).

• Many mathematical algorithms can be implemented only by loops in computer
programs.

• When processing a file, a program may loop through each record in the file and
perform computations.

• A database program may loop through the rows returned by a SELECT statement.

It’s fairly obvious that it is the last case—processing rows returned by a SELECT state-
ment—that will be the most common reason for looping in MySQL stored pro-
grams, and we will give this topic a great deal of consideration in Chapter 5. In this
chapter, we consider the looping commands in their general form.

LOOP Statement
The simplest possible looping construct is the LOOP statement. The syntax for this
statement is as follows:

[label:] LOOP
statements

END LOOP [label];

The statements between the LOOP and END LOOP statements will be repeated indefi-
nitely, until the LOOP is terminated. You can terminate the LOOP using the LEAVE state-
ment, which we will describe shortly.

You can supply labels to the loop, which have the same syntax as those we can add
to BEGIN-END blocks. Labels can help you identify the END LOOP statement that corre-
sponds to a particular LOOP statement. Equally important, labels can be used to con-
trol execution flow, as we will see in subsequent sections.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

Example 4-19 shows a very simple (and very dangerous) loop. It will continue for-
ever, or at least until you manage to somehow terminate it. Because stored programs
run inside of the database server, using Ctrl-C or other forms of keyboard interrupts
will be ineffective—you will only be able to terminate this loop by issuing a KILL
command against the MySQL session, or by shutting down the database server. In
the meantime, the loop will consume as much CPU as it can, so we don’t recom-
mend that you run this example on your mission-critical production systems.

Obviously we almost never want to program an infinite loop, and therefore we need
some way to terminate the loop. We can do this with the LEAVE statement, so let’s
move on to this statement without delay.…

LEAVE Statement
The LEAVE statement allows us to terminate a loop. The general syntax for the LEAVE
statement is:

LEAVE label;

LEAVE causes the current loop to be terminated. The label matches the loop to be ter-
minated, so if a loop is enclosed within another loop, we can break out of both loops
with a single statement.

In the simplest case, we simply execute LEAVE when we are ready to exit from the
LOOP, as shown in Example 4-20.

LEAVE can be used to exit from any of the alternative looping structures, as we’ll
examine in upcoming sections. In fact, you can also use LEAVE if you want to break
out of a named BEGIN-END block (introduced earlier in this chapter).

Example 4-19. Infinite loop (don’t try this at home!)

Infinite_loop: LOOP
    SELECT 'Welcome to my infinite loop from hell!!';
END LOOP inifinite_loop;

Example 4-20. Using LEAVE to terminate a loop

SET i=1;
myloop: LOOP
    SET i=i+1;
    IF i=10 then
            LEAVE myloop;
    END IF;
END LOOP myloop;
SELECT 'I can count to 10';



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Iterative Processing with Loops | 95

ITERATE Statement
The ITERATE statement is used to restart execution at the beginning of a loop, with-
out executing any of the remaining statements in the loop. ITERATE has the following
syntax:

ITERATE label;

When MySQL encounters the ITERATE statement, it recommences execution at the
start of the nominated loop. In Example 4-21, we print all odd numbers less than 10.
ITERATE is used to repeat the loop if the number we have is not odd. LEAVE is used to
terminate the loop once we reach 10.

While this loop is useful to illustrate the use of LEAVE and ITERATE to control a loop, it
is a rather poorly constructed algorithm. We could easily have halved the number of
loop iterations by incrementing the loop variable i by two rather than by one.

ITERATE causes the execution of the loop to restart at the top of the loop. If you are
using a REPEAT loop (see the next section), this means that the loop will re-execute
unconditionally, bypassing the UNTIL condition that would otherwise terminate the
loop. This may result in unexpected behavior. In a WHILE loop, ITERATE will result in
the WHILE condition being re-evaluated before the next iteration of the loop.

We can construct just about any conceivable form of loop using the LOOP, LEAVE, and
ITERATE statements. However, in practice these “manual” loops are awkward when
compared to some of the alternatives we are about to consider. The WHILE and REPEAT
statements described in the following sections allow us to create loops that are easier
to write, read, and maintain.

REPEAT … UNTIL Loop
The REPEAT and UNTIL statements can be used to create a loop that continues until
some logical condition is met. The syntax for REPEAT...UNTIL is:

[label:] REPEAT
statements

Example 4-21. Using ITERATE to return to the start of a loop

SET i=0;
loop1: LOOP
    SET i=i+1;
    IF i>=10 THEN          /*Last number - exit loop*/
         LEAVE loop1;
    ELSEIF MOD(i,2)=0 THEN /*Even number - try again*/
         ITERATE loop1;
    END IF;

    SELECT CONCAT(i," is an odd number");

END LOOP loop1;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

UNTIL expression
END REPEAT [label]

A REPEAT loop continues until the expression defined in the UNTIL clause evaluates to
TRUE. In essence, a REPEAT loop is logically equivalent to a LOOP-LEAVE-END LOOP
block like this one:

some_label:LOOP
statements

    IF expression THEN LEAVE some_label; END IF;
END LOOP;

The REPEAT loop is somewhat easier to maintain because it is more obvious which
conditions will cause the loop to terminate. The LEAVE statement in a simple loop
could be anywhere, while the UNTIL statement is always associated with the END
REPEAT clause at the very end of the loop. Furthermore, we don’t need to specify a
label for the REPEAT loop since the UNTIL condition is always specific to the current
loop. However, we still recommend using labels with REPEAT loops to improve read-
ability, especially if the loops are nested.

Example 4-22 shows using REPEAT to print out odd numbers less than 10. Compare
this syntax with that of our previous example using the LOOP and LEAVE statements.

There are a few things worth noting about the REPEAT loop:

• A REPEAT loop is always guaranteed to run at least once—that is, the UNTIL condi-
tion is first evaluated after the first execution of the loop. For loops that should
not run even once unless some condition is satisfied, use WHILE (see the next
section).

• Using ITERATE in a REPEAT loop can lead to unexpected outcomes, since doing so
bypasses the UNTIL test and may result in the loop executing even though the
UNTIL condition is no longer satisfied. Therefore, you will probably not want to
use ITERATE in a REPEAT loop.

WHILE Loop
A WHILE loop executes as long as a condition is true. If the condition is not true to
begin with, then the loop will never execute—unlike the REPEAT loop, which is guar-
anteed to execute at least once.

Example 4-22. Example of a REPEAT loop

SET i=0;
loop1: REPEAT
    SET i=i+1;
    IF MOD(i,2)<>0 THEN /*Even number - try again*/
       Select concat(i," is an odd number");
    END IF;
UNTIL i >= 10
END REPEAT;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Iterative Processing with Loops | 97

The WHILE loop has the following syntax:

[label:] WHILE expression DO
statements

END WHILE [label]

A WHILE loop is functionally equivalent to a simple LOOP-LEAVE-END LOOP construction
that has a LEAVE clause as its very first statement, as described in the “LEAVE State-
ment” section. Example 4-23 demonstrates the LOOP-LEAVE-END-LOOP.

Example 4-24 shows our odd-numbers-less-than-10 loop implemented using WHILE.

Nested Loops
We often want to nest loops. In the simple code in Example 4-25, we print out the
elementary “times table” using a nested LOOP-LEAVE-END LOOP structure.

Example 4-23. LOOP-END LOOP that implements same functionality as WHILE loop

myloop: LOOP
    IF expression THEN LEAVE myloop; END IF;
    other statements;

END LOOP myloop;

Example 4-24. Odd numbers less than 10 implemented as a WHILE loop

SET i=1;
loop1: WHILE i<=10 DO
    IF MOD(i,2)<>0 THEN /*Even number - try again*/
       SELECT CONCAT(i," is an odd number");
    END IF;
    SET i=i+1;
END WHILE loop1;

Example 4-25. Example of nesting loops

DECLARE i,j INT DEFAULT 1;
outer_loop: LOOP
    SET j=1;
    inner_loop: LOOP
        SELECT concat(i," times ", j," is ",i*j);
        SET j=j+1;
        IF j>12 THEN
            LEAVE inner_loop;
        END IF;
    END LOOP inner_loop;
    SET i=i+1;
    IF i>12 THEN
        LEAVE outer_loop;
    END IF;
END LOOP outer_loop;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Blocks, Conditional Statements, and Iterative Programming

When nesting loops, it is particularly useful to label the start and the end of the loop
so as to clearly associate the start of each loop with its end. Of course, if we need to
use LEAVE, we must label the loop.

Parting Comments on Loops
We’ve now seen three simple and identical looping algorithms implemented using
the three looping constructs available within the MySQL stored program language.
Each of the three loop constructs is capable of implementing virtually any loop logic
that you might need to implement.

The example loops given in this chapter are fairly simplistic and have little real-world
relevance. We did this partially for the sake of clarity, but also because the reality is
that in stored programming, almost all your looping constructs will involve iterating
through the rows returned by a SELECT statement, which is the subject of the next
chapter.

Conclusion
In this chapter we looked at conditional and iterative control structures in the
MySQL stored program language. Almost any nontrivial program will need to make
some kind of decision based on input data, and these decisions will usually be
expressed as IF or CASE statements.

Looping is another extremely common programming task—especially common in
stored programs that need to iterate through the outputs from some SQL statement.
MySQL provides a number of alternative ways to format a loop, including a simple
loop terminated by a LEAVE statement, a REPEAT UNTIL loop, and a WHILE loop.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

99

Chapter 5 CHAPTER 5

Using SQL in Stored Programming5

While we can use the MySQL stored program language to perform traditional pro-
gramming tasks, in reality almost all stored programs will engage in an interaction
with the database through the execution of SQL statements. This chapter focuses on
how you can use SQL within your stored programs.

In this chapter we’ll look at the various ways in which you can use SQL inside of
stored programs:

• Simple (non-SELECT) SQL statements that do not return a result set can be freely
embedded within stored procedures and functions.

• A SELECT statement that returns only a single row can pass its result INTO local
variables.

• A SELECT statement that returns multiple rows can form the basis for a cursor
that allows you to loop through each row, taking whatever action you deem
appropriate for that row.

• Any SELECT statement can be included in a stored procedure (but not in a stored
function) “unbound” by an INTO clause or a CURSOR statement. The result set
from such a SQL statement will be returned to the calling program (but not, alas,
to a calling stored procedure).

• SQL statements can be prepared dynamically using MySQL server-side prepared
statements (in stored procedures only).

Using Non-SELECT SQL in Stored Programs
When we include a SQL statement that does not return a result set—such as an
UPDATE, INSERT, or SET statement—within a stored program, it will execute exactly as
it would if it were executed in some other context (such as if it were called from PHP
or issued from the MySQL command line).



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 5: Using SQL in Stored Programming

SQL statements within stored programs follow the same syntax as they would out-
side of the stored program. The SQL statements have full access to any stored pro-
gram variables, which can be used wherever a literal or expression would normally
be provided to the SQL.

You can use all the major categories of SQL statements inside stored programs.
DML, DDL, and utility statements can be used without restriction.

Example 5-1 uses a combination of DDL and DML to create and manipulate the data
in a table.

Using SELECT Statements with an INTO Clause
If you have a SELECT statement that returns only a single row, you can return that row
into stored program variables by using the INTO statement within the SELECT state-
ment. The format for such a SELECT is:

Example 5-1. Embedding non-SELECT statements in stored programs

CREATE PROCEDURE simple_sqls( )
BEGIN
    DECLARE i INT DEFAULT 1;

    /* Example of a utility statement */
    SET autocommit=0;

    /* Example of DDL statements */
DROP TABLE IF EXISTS test_table ;
CREATE TABLE test_table

         (id        INT PRIMARY KEY,
          some_data VARCHAR(30))
      ENGINE=innodb;

    /* Example of an INSERT using a procedure variable */
    WHILE (i<=10) DO

INSERT INTO TEST_TABLE VALUES(i,CONCAT("record ",i));
         SET i=i+1;
    END WHILE;

    /* Example of an UPDATE using procedure variables*/
    SET i=5;

UPDATE test_table
       SET some_data=CONCAT("I updated row ",i)
     WHERE id=i;

    /* DELETE with a procedure variable */
DELETE FROM test_table

     WHERE id>i;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating and Using Cursors | 101

SELECT expression1 [, expression2 ....]
  INTO variable1 [, variable2 ...]
other SELECT statement clauses

Example 5-2 shows how we can retrieve details from a single customer. The cus-
tomer ID is passed in as a parameter.

If the SQL statement returns more than one row, a runtime error will result. For
instance, if we omitted the WHERE clause in Example 5-2, the following error would
result when we tried to run the stored procedure:

mysql> CALL get_customer_details(2) ;
ERROR 1172 (42000): Result consisted of more than one row

Creating and Using Cursors
To handle a SELECT statement that returns more than one row, we must create and
then manipulate a cursor. A cursor is an object that provides programmatic access to
the result set returned by your SELECT statement. Use a cursor to iterate through the
rows in the result set and take action for each row individually.

Currently, MySQL only allows us to fetch each row in the result set from first to last
as determined by the SELECT statement. We cannot fetch from the last to first row,
and cannot jump directly to a specific row in the result set.

Defining a Cursor
Define a cursor with the DECLARE statement, which has the following syntax:

DECLARE cursor_name CURSOR FOR SELECT_statement;

As we mentioned in Chapter 3, cursor declarations must occur after all of our vari-
able declarations. Declaring a cursor before declaring our variables generates error
1337, as shown in Example 5-3.

Example 5-2. Using a SELECT-INTO statement

CREATE PROCEDURE get_customer_details(in_customer_id INT)
BEGIN
    DECLARE l_customer_name     VARCHAR(30);
    DECLARE l_contact_surname   VARCHAR(30);
    DECLARE l_contact_firstname VARCHAR(30);

SELECT customer_name, contact_surname,contact_firstname
INTO l_customer_name,l_contact_surname,l_contact_firstname

      FROM customers
     WHERE customer_id=in_customer_id;

    /* Do something with the customer record */

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 5: Using SQL in Stored Programming

A cursor is always associated with a SELECT statement; Example 5-4 shows a simple
cursor declaration that retrieves certain columns from the customers table.

A cursor can reference stored program variables within the WHERE clause or (less fre-
quently) the column list. In Example 5-5, the cursor includes a reference to a stored
procedure parameter, both in the WHERE clause and in the SELECT list. When the cur-
sor is opened, it will use the value of the parameter variable to determine which rows
to return.

Cursor Statements
The MySQL stored program language supports three statements for performing
operations on cursors:

OPEN
Initializes the result set for the cursor. We must open a cursor before fetching
any rows from that cursor. The syntax for the OPEN statement is very simple:

OPEN cursor_name;

FETCH
Retrieves the next row from the cursor and moves the cursor “pointer” to the
following row in the result set. It has the following syntax:

FETCH cursor_name INTO variable list;

Example 5-3. Declaring a cursor before a variable generates a 1337 error

mysql> CREATE PROCEDURE bad_cursor( )
BEGIN
        DECLARE c CURSOR FOR SELECT * from departments;
        DECLARE i INT;
END;

ERROR 1337 (42000): Variable or condition declaration after cursor or handler declaration

Example 5-4. Simple cursor declaration

DECLARE cursor1 CURSOR FOR
        SELECT customer_name, contact_surname,contact_firstname
            FROM customers;

Example 5-5. Cursor definition including a stored procedure variable

CREATE PROCEDURE cursor_demo (in_customer_id INT)
BEGIN
  DECLARE v_customer_id   INT;
  DECLARE v_customer_name VARCHAR(30);
  DECLARE c1 CURSOR FOR
      SELECT in_customer_id,customer_name
        FROM customers
       WHERE customer_id=in_customer_id;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating and Using Cursors | 103

The variable list must contain one variable of a compatible data type for each
column returned by the SELECT statement contained in the cursor declaration.
We’ll discuss FETCH in more detail later in this chapter.

CLOSE
Deactivates the cursor and releases the memory associated with that cursor. The
syntax for this statement is:

CLOSE cursor_name;

We should close a cursor when we have finished fetching from it, or when we
need to open that cursor again after changing a variable that affects the cursor’s
result set.

In the following sections, we will see many examples of these statements in action.

Fetching a Single Row from a Cursor
This is the most basic use of a cursor: we open a cursor, fetch a single row, and then
close the result set, as shown in Example 5-6 (opening the cursor defined in
Example 5-4). This is logically equivalent to a simple SELECT with an INTO clause.

Fetching an Entire Result Set
The most common way that cursors are processed is to fetch each row identified by
the cursor’s SELECT statement, perform one or more operations on the data retrieved,
and then close the cursor after the last row has been retrieved.

Example 5-7 shows how we can declare and open a cursor, then fetch rows from the
cursor in a loop, and finally close the cursor.

While this code might seem sensible and complete, there is a problem: if we attempt
to fetch a row after the last row in the cursor has been fetched, MySQL will raise the

Example 5-6. Fetching a single row from a cursor

OPEN cursor1;
FETCH cursor1 INTO l_customer_name,l_contact_surname,l_contact_firstname;
CLOSE cursor1;

Example 5-7. Simple (flawed) cursor loop

    DECLARE c_dept CURSOR FOR
            SELECT department_id
              FROM departments;

    OPEN c_dept;
    dept_cursor: LOOP
        FETCH c_dept INTO l_dept_id;
    END LOOP dept_cursor;
    CLOSE c_dept;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 5: Using SQL in Stored Programming

“no data to fetch” error (MySQL error 1329; SQLSTATE 02000). So the code in
Example 5-7 will abort as shown here:

mysql> call simple_cursor_loop( );
ERROR 1329 (02000): No data to FETCH

To avoid this error, we declare an error handler that will catch “no data to fetch” and
set a flag (implemented as a local variable). We then interrogate that variable to
determine if the last row has been fetched. Using this technique, we can terminate
our loop and close the cursor with intuitive, easy-to-understand code.

We discuss error handlers in detail in Chapter 6. However, in this situation, we will
add the following statement to our code:

DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_row_fetched=1;

This handler instructs MySQL to do two things when the “no data to fetch” scenario
occurs:

1. Set the value of the “last row variable” (l_last_row_fetched) to 1.

2. Allow the program to continue executing.

Our program can now check the value of l_last_row_fetched. If it is set to 1, then we
know that the last row has been fetched, and we can terminate the loop and close the
cursor.

It is very important that we reset the “end of result set” indicator after the cursor has
been closed. Otherwise, the next time we try to fetch from this cursor, the program
will immediately terminate the loop, thinking that we are done.

Example 5-8 shows all of these steps: declare the CONTINUE handler, loop through the
rows of the result set, leave the loop if the variable has been set, and then clean up.

Almost all cursor loops require a NOT FOUND handler to avoid raising a
fatal “no data to fetch” condition.

Example 5-8. Simple cursor loop

DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_row_fetched=1;

SET l_last_row_fetched=0;
OPEN cursor1;
cursor_loop:LOOP
    FETCH cursor1 INTO l_customer_name,l_contact_surname,l_contact_firstname;
    IF l_last_row_fetched=1 THEN
         LEAVE cursor_loop;
    END IF;
    /*Do something with the row fetched*/
END LOOP cursor_loop;
CLOSE cursor1;
SET l_last_row_fetched=0;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating and Using Cursors | 105

Note that we don’t have to process all the rows in the result set; we can issue the
LEAVE statement at any time to terminate the cursor loop if we have processed all the
data we need.

Types of Cursor Loops
We can use any of the three looping constructs (simple loop, WHILE loop, and REPEAT
UNTIL loop) to iterate through the rows returned by a cursor. In each case, we need to
construct the loop so that the loop will terminate when the “last row variable” is set
by the NOT FOUND handler.

Consider the cursor and the NOT FOUND handler shown in Example 5-9.

The simplest construct is the LOOP-LEAVE-END LOOP sequence. In this case, our cursor
loop would look like that shown in Example 5-10.

The logic of Example 5-10 is simple: we open the cursor and then iteratively fetch
the rows. If we try to fetch beyond the end of the result set, the handler sets no_more_
departments to 1 and we call the LEAVE statement to terminate the loop. Finally, we
close the cursor and reset the no_more_departments variable.

The WHILE loop is very familiar to programmers and might therefore seem like a natu-
ral choice for constructing a cursor loop. In fact, however, you will very likely find
that the REPEAT UNTIL loop is a more appropriate construct for a cursor loop. The
REPEAT always executes its body at least once before evaluating the continuation
expression. In the context of cursor processing, we usually will want to fetch at least
once before checking to see if we are done processing the cursor’s result set. Hence,
using the REPEAT UNTIL loop can produce more readable code, as shown in
Example 5-11.

Example 5-9. Cursor declaration with associated handler

DECLARE dept_csr CURSOR FOR
     SELECT department_id,department_name, location
       FROM departments;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

Example 5-10. A LOOP-LEAVE-END LOOP cursor loop

OPEN dept_csr;
dept_loop1:LOOP
    FETCH dept_csr INTO l_department_id,l_department_name,l_location;
    IF no_more_departments=1 THEN
        LEAVE dept_loop1;
    END IF;
    SET l_department_count=l_department_count+1;
END LOOP;
CLOSE dept_csr;
SET no_more_departments=0;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 5: Using SQL in Stored Programming

However, this loop only works because we did nothing with each row fetched by the
cursor. Fetching rows from a cursor just for the heck of it is very unusual—it is far
more common to do something with the rows returned. For instance, in our first
LOOP-LEAVE-END LOOP example, we at least counted the rows returned by the cursor.
However, since the final fetch returns no rows, we need a way to avoid processing
after that final fetch. So in fact, even if we use the REPEAT UNTIL loop, we still need a
LEAVE statement to avoid processing the nonexistent row returned (or rather, not
returned) by the final fetch. Thus, if we want to count the number of rows returned
by the cursor (or do anything else with the results) we will need to include loop
labels and a LEAVE statement, as in the amended version of our previous example,
shown in Example 5-12.

Example 5-11. Cursor loop with REPEAT UNTIL loop

DECLARE dept_csr CURSOR FOR
    SELECT department_id,department_name, location
      FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
REPEAT
    FETCH dept_csr INTO l_department_id,l_department_name,l_location;
UNTIL no_more_departments
END REPEAT;
CLOSE dept_csr;
SET no_more_departments=0;

Example 5-12. Most REPEAT UNTIL loops also need a LEAVE statement

DECLARE dept_csr CURSOR FOR
    SELECT department_id,department_name, location
      FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
dept_loop:REPEAT
     FETCH dept_csr INTO l_department_id,l_department_name,l_location;
          IF no_more_departments THEN

LEAVE dept_loop;
          END IF;
          SET l_department_count=l_department_count+1;
UNTIL no_more_departments
END REPEAT dept_loop;
CLOSE dept_csr;
SET no_more_departments=0;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating and Using Cursors | 107

The necessity of including a LEAVE statement in almost every REPEAT UNTIL loop
makes the presence of the UNTIL clause redundant—although it arguably improves
readability and protects you against the possibility of an infinite loop if your LEAVE
statement fails to execute (perhaps you miscoded the IF clause). In the end, valid
cursor loops can be established in either fashion, and there is no compelling case to
recommend one style over the other. All we can say is that your code as a whole will
be more readable if you use a consistent style for all of your cursor loops.

An alternative to a LEAVE statement would be an IF statement that executes whatever
post-processing occurs once we determine that the FETCH has reached the end of the
result set. Example 5-13 shows how we could construct this loop for our example. In
this case, an IF statement is added that performs row processing only if the no_more_
departments variable has not been set.

The third style of cursor loop involves the WHILE-END WHILE loop. WHILE evaluates its
condition before the first execution of the loop, so it is a less logical choice than
REPEAT-UNTIL or LOOP-END LOOP, since logically we cannot know if we have reached the
end of the cursor until we have fetched at least one row. On the other hand, WHILE is
probably the looping construct used in the widest variety of other programming lan-
guages, so it might confer a clearer understanding of the program’s intentions to
those who are not familiar with the MySQL stored program language.

In any case, the WHILE loop also requires a LEAVE statement if there is any processing
of the cursor results attempted within the loop, so the code in Example 5-14 looks
very similar to our previous examples.

Example 5-13. Using an IF block as an alternative to a LEAVE statement in a REPEAT UNTIL
cursor loop

DECLARE dept_csr CURSOR FOR
    SELECT department_id,department_name, location
      FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
dept_loop:REPEAT
     FETCH dept_csr INTO l_department_id,l_department_name,l_location;
          IF no_more_departments=0 THEN
             SET l_department_count=l_department_count+1;
          END IF;
UNTIL no_more_departments
END REPEAT dept_loop;
CLOSE dept_csr;
SET no_more_departments=0;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 5: Using SQL in Stored Programming

Nested Cursor Loops
It is not uncommon to nest cursor loops. For instance, one loop might retrieve a list
of interesting customers, while an inner loop retrieves all the orders for those cus-
tomers. The most significant issue relating to this sort of nesting is that the NOT FOUND
handler variable will be set whenever either cursor completes—so you are going to
need to be very careful to ensure that a NOT FOUND condition does not cause both cur-
sors to be closed.

For instance, consider the nested cursor loops shown in Example 5-15.

Example 5-14. A cursor WHILE loop

DECLARE dept_csr CURSOR FOR
    SELECT department_id,department_name, location
      FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
dept_loop:WHILE(no_more_departments=0) DO
     FETCH dept_csr INTO l_department_id,l_department_name,l_location;
     IF no_more_departments=1 THEN
          LEAVE dept_loop;
     END IF;
     SET l_department_count=l_department_count+1;
END WHILE dept_loop;
CLOSE dept_csr;
SET no_more_departments=0;

Example 5-15. A (flawed) nested cursor loop

CREATE PROCEDURE bad_nested_cursors( )
  READS SQL DATA
BEGIN

  DECLARE l_department_id INT;
  DECLARE l_employee_id   INT;
  DECLARE l_emp_count     INT DEFAULT 0 ;
  DECLARE l_done          INT DEFAULT  0;

  DECLARE dept_csr cursor  FOR
    SELECT department_id FROM departments;

  DECLARE emp_csr cursor  FOR
    SELECT employee_id FROM employees
     WHERE department_id=l_department_id;

  DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_done=1;

  OPEN dept_csr;
dept_loop: LOOP   -- Loop through departments



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating and Using Cursors | 109

This stored procedure contains a subtle bug. When the first “inner” loop through the
emp_csr cursor completes, the value of l_done is set to 1. Consequently, at the next
iteration through the “outer” loop through the dept_csr, the value of l_done is still
set to 1 and the outer loop is inadvertently terminated. As a result, we only ever pro-
cess a single department. There are two possible solutions to this problem: the easier
of the two is simply to reset the “not found” variable at the end of each loop, as in
Example 5-16.

    FETCH dept_csr into l_department_id;

IF l_done=1 THEN
LEAVE dept_loop;

    END IF;

    OPEN emp_csr;
    SET l_emp_count=0;

emp_loop: LOOP      -- Loop through employee in dept.
      FETCH emp_csr INTO l_employee_id;

IF l_done=1 THEN
LEAVE emp_loop;

      END IF;
      SET l_emp_count=l_emp_count+1;
    END LOOP;
    CLOSE emp_csr;

    SELECT CONCAT('Department ',l_department_id,' has ',
           l_emp_count,' employees');

  END LOOP dept_loop;
  CLOSE dept_csr;

END;

Example 5-16. A correct nested cursor example

CREATE PROCEDURE good_nested_cursors1( )
   READS SQL DATA
BEGIN

  DECLARE l_department_id INT;
  DECLARE l_employee_id   INT;
  DECLARE l_emp_count     INT DEFAULT 0 ;
  DECLARE l_done          INT DEFAULT  0;

  DECLARE dept_csr cursor  FOR
    SELECT department_id FROM departments;
  DECLARE emp_csr cursor  FOR
    SELECT employee_id FROM employees
     WHERE department_id=l_department_id;

Example 5-15. A (flawed) nested cursor loop (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 5: Using SQL in Stored Programming

It is always good practice to reset the value of a “not found” variable once it has been
used so that subsequent cursor iterations are not affected.

Always reset the “not found” variable set by a NOT FOUND handler after
you terminate a cursor loop. Failure to do this may cause subsequent
or nested cursor loops to terminate prematurely.

A slightly more complex—but arguably more robust solution—is to give each cursor
its own handler. Because you can only have one NOT FOUND handler active within any
particular block, this can only be done by enclosing each cursor in its own block. For
instance, we could place the sales cursor in its own block with its own NOT FOUND han-
dler, as in Example 5-17.

  DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_done=1;

  OPEN dept_csr;
dept_loop: LOOP   -- Loop through departments

    FETCH dept_csr into l_department_id;

    IF l_done=1 THEN
LEAVE dept_loop;

    END IF;

    OPEN emp_csr;
    SET l_emp_count=0;

emp_loop: LOOP      -- Loop through employee in dept.
      FETCH emp_csr INTO l_employee_id;

      IF l_done=1 THEN
LEAVE emp_loop;

      END IF;
      SET l_emp_count=l_emp_count+1;
    END LOOP;
    CLOSE emp_csr;

SET l_done=0;

    SELECT CONCAT('Department ',l_department_id,' has ',
           l_emp_count,' employees');

  END LOOP dept_loop;
  CLOSE dept_csr;

END;

Example 5-17. Nested cursors using nested blocks

DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_customer=1;

SET l_last_customer=0;
OPEN customer_csr;

Example 5-16. A correct nested cursor example (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating and Using Cursors | 111

Note that we now have a separate “not found” variable for each cursor, and we have
eliminated any possibility that the closing of one cursor could affect the status of
another. However, also note that we still reset the “not found” variables after we
completed each cursor loop—this remains highly recommended since you may still
wish to reopen a cursor within the same block.

Exiting the Cursor Loop Prematurely
Don’t assume that you can only exit the cursor loop when the last row has been
retrieved—you can issue a LEAVE statement at any time that you think that your pro-
cessing has been completed. You may be looking for only one or a limited number of
candidate records in the result set, or you may have detected some other condition
suggesting that further processing is unnecessary.

Cursor Error Conditions
Cursor statements must occur in the sequence OPEN-FETCH-CLOSE. Any variation on
this sequence will result in runtime errors.

For instance, if you try to CLOSE or FETCH from a cursor that is not open, you will
encounter a Cursor is not open error, as shown in Example 5-18.

cust_loop:LOOP      /* Loop through overdue customers*/

    FETCH customer_csr INTO l_customer_id;
    IF l_last_customer=1 THEN LEAVE cust_loop; END IF; /*no more rows*/
    SET l_customer_count=l_customer_count+1;

sales_block: BEGIN
        DECLARE l_last_sale INT DEFAULT 0;
        DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_sale=1;
        OPEN  sales_csr;
        sales_loop:LOOP    /* Get all sales for the customer */

            FETCH sales_csr INTO l_sales_id;
            IF l_last_sale=1 THEN LEAVE sales_loop; END IF; /*no more rows*/

            CALL check_sale(l_sales_id);  /* Check the sale status */
            SET l_sales_count=l_sales_count+1;

        END LOOP sales_loop;
        SET l_last_sale=0;
        CLOSE sales_csr;

END sales_block;

END LOOP cust_loop;
SET l_last_customer=0;
CLOSE customer_csr;

Example 5-17. Nested cursors using nested blocks  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 5: Using SQL in Stored Programming

Attempting to open a cursor that is already open results in a Cursor is already open
error, as shown in Example 5-19.

Using Unbounded SELECT Statements
MySQL stored procedures (but not functions) can return result sets to the calling
program (though not, unfortunately, directly to another stored procedure). A result
set is returned from a stored procedure whenever a SQL statement that returns a
result set is not associated with either an INTO clause or a cursor. We call these SQL
statements unbounded. Such SQL statements will usually be SELECT statements,
although other statements that return result sets—SHOW, EXPLAIN, DESC, and so on—
can also be included within the stored procedure.

We have used unbounded SELECT statements throughout many of our examples in
order to return information about stored procedure execution. You’ll most likely do
the same either for debugging purposes or to return some useful status information
to the user or calling program. Example 5-20 shows an example of a stored proce-
dure that uses this feature to return a list of employees within a specific department.

Example 5-18. Cursor is not open error

mysql> CREATE PROCEDURE csr_error2( )
BEGIN
        DECLARE x INT DEFAULT 0;
        DECLARE c cursor for select 1 from departments;
        CLOSE c;

END;

Query OK, 0 rows affected (0.00 sec)
mysql> CALL csr_error2( );

ERROR 1326 (24000): Cursor is not open

Example 5-19. Cursor is already open error

mysql> CREATE PROCEDURE csr_error3( )
BEGIN
        DECLARE x INT DEFAULT 0;
        DECLARE c cursor for select 1 from departments;
        OPEN c;
        OPEN c;

END;
//

Query OK, 0 rows affected (0.00 sec)
mysql> CALL csr_error3( );

ERROR 1325 (24000): Cursor is already open



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Unbounded SELECT Statements | 113

When run, the stored procedure from Example 5-20 produces the following output:

mysql> CALL emps_in_dept(31) //
+-------------------+----------+
| department_name   | location |
+-------------------+----------+
| ADVANCED RESEARCH | PAYSON   |
+-------------------+----------+
1 row in set (0.00 sec)

+-------------+----------+-----------+
| employee_id | surname  | firstname |
+-------------+----------+-----------+
|         149 | EPPLING  | LAUREL    |
|         298 | CHARRON  | NEWLIN    |
|         447 | RAMBO    | ROSWALD   |
|         596 | GRESSETT | STANFORD  |
|         745 | KANE     | CARLIN    |
|         894 | ABELL    | JAMIE     |
|        1043 | BROOKS   | LYNN      |
|        1192 | WENSEL   | ZENAS     |
|        1341 | ZANIS    | ALDA      |
|        1490 | PUGH     | ALICE     |
|        1639 | KUEHLER  | SIZA      |
|        1788 | RUST     | PAINE     |
|        1937 | BARRY    | LEO       |
+-------------+----------+-----------+
13 rows in set (0.00 sec)

In some respects, using stored procedures to return result sets in this way provides
similar functionality to creating a view to support specific queries. Like a view, the
stored procedure can encapsulate complex SQL operations, thus making it easier for
a user to retrieve data without necessarily having to understand the complexities of
the schema design. Encapsulating SQL inside a stored procedure can also improve
security, because you can perform complex validation checks or even encryption/
decryption before returning the result set.

Unlike a view, a stored procedure can return multiple result sets, as shown in
Example 5-20. Returning multiple result sets can be a convenient way to encapsulate
all of the logic required to produce multiple sets of application data in a single call to
the database.

Example 5-20. Using unbounded SELECTs to return data to the calling program

CREATE PROCEDURE emps_in_dept(in_department_id INT)
BEGIN
    SELECT department_name, location
      FROM departments
     WHERE department_id=in_department_id;

    SELECT employee_id,surname,firstname
      FROM employees
     WHERE department_id=in_department_id;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 5: Using SQL in Stored Programming

Retrieving the Result Sets in the Calling Program
It is relatively easy to retrieve a result set from a stored procedure. Provided that the
stored procedure returns only a single result set, it can be handled in the same way as
a normal SQL call. Example 5-21 shows a PHP program using the mysqli interface
that retrieves a single result set from a stored procedure call.

Example 5-21. Retrieving a stored procedure result set from PHP

1  <h1>Department listing</h1>
2  <table border="1" width="90%">
3     <tr> <td><b>Department ID</b></td>
4          <td><b>Department Name</b></td>
5  <?php
6     $hostname="localhost";
7     $username="root";
8     $password="secret";
9     $database="sqltune";
10
11    $p1="";
12    $p2="";
13
14
15    $dbh = new mysqli($hostname, $username, $password, $database);
16
17    /* check connection */
18    if (mysqli_connect_errno( )) {
19       printf("Connect failed: %s\n", mysqli_connect_error( ));
20       exit( );
21    }
22
23    if ($result_set = $dbh->query("call department_list( )"))
24    {
25        printf('');
26        while($row=$result_set->fetch_object( ))
27        {
28           printf("<tr><td>%s</td><td>%s</td></tr>\n",
29                    $row->department_id, $row->department_name);
30       }
31    }
32    else // Query failed - show error
33    {
34       printf("<p>Error retrieving stored procedure result set:%d (%s) %s\n",
35              mysqli_errno($dbh),mysqli_sqlstate($dbh),mysqli_error($dbh));
36       $dbh->close( );
37       exit( );
38    }
39    /* free result set */
40    $result_set->close( );
41    $dbh->close( );
42
43  ?>



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Unbounded SELECT Statements | 115

The significant lines of code from Example 5-21 include:

The output of the PHP program is shown in Figure 5-1.

The ability to return multiple result sets from a stored procedure can be either a
blessing or a curse, depending on your perspective. The multiple result set feature
can allow you to return multiple logically related sets of data in a single operation.

44  </table>
45  </body>
46  </html>

Line(s) Explanation

23 Call the department_list stored procedure, which will return a result set containing a list of departments.
The $result_set object represents the result set that is returned.

26 Iteratively call the fetch_object method, which returns an object representing a single row.

28 and 29 Extract individual columns from the $row object, by using the department_id and department_name
properties, which contain the values for the corresponding columns.

Figure 5-1. Output of a PHP program that retrieves a stored procedure result set

Example 5-21. Retrieving a stored procedure result set from PHP (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 5: Using SQL in Stored Programming

For instance, all the result sets necessary to populate a multilevel master-detail report
can be requested from the database in one operation. This could result in a greater
level of separation between presentation (often web) logic and data access (data-
base) logic.

However, handling multiple result sets may require unfamiliar processing require-
ments in our client-side programming. Some third-party report-generating tools may
be unprepared for the possibility of multiple result sets being sent out by a single
database call. In fact, some of these third-party tools may be unable to cope with a
stored procedure sending out a result set at all.

Luckily, the major programming interfaces we use with MySQL—PHP, Java, Perl,
Python, and .NET C# and VB.NET—are all capable of handling multiple result sets.
In Chapters 13 through 17, we explore in detail how to process result sets and per-
form other operations on MySQL stored procedures in these languages. To give you
a preview of the general process, Example 5-22 shows how we retrieve multiple
results sets from a MySQL stored procedure in Java.

Let’s step through the important parts of Example 5-22:

Example 5-22. Retrieving multiple result sets from a stored procedure in Java

1    private void empsInDept(Connection myConnect, int deptId) throws SQLException {
2
3         CallableStatement cStmt = myConnect
4                   .prepareCall("{CALL sp_emps_in_dept(?)}");
5         cStmt.setInt(1, deptId);
6         cStmt.execute( );
7         ResultSet rs1 = cStmt.getResultSet( );
8         while (rs1.next( )) {
9              System.out.println(rs1.getString("department_name") + " "
10                       + rs1.getString("location"));
11         }
12         rs1.close( );
13
14         /* process second result set */
15         if (cStmt.getMoreResults( )) {
16              ResultSet rs2 = cStmt.getResultSet( );
17              while (rs2.next( )) {
18                   System.out.println(rs2.getInt(1) + " " + rs2.getString(2) + " "
19                        + rs2.getString(3));
20             }
21             rs2.close( );
22         }
23         cStmt.close( );
24     }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Unbounded SELECT Statements | 117

Returning Result Sets to Another Stored Procedure
We know that we can return result sets to a calling program (such as PHP)—but is
there a way to return the result set to another stored procedure?

Unfortunately, the only way to pass a result set from one stored procedure to another
is to pass the results via a temporary table. This is an awkward solution, and—
because the temporary table has scope throughout the entire session—it creates
many of the same maintainability issues raised by the use of global variables. But if
one stored program needs to supply another stored program with results, then a tem-
porary table can be the best solution.

Let’s look at an example. In Example 5-23, we have a stored procedure that is
responsible for creating a temporary table that contains all overdue sales. Although
this SQL is simple enough that we could replicate the SQL in every stored procedure
that needs to process overdue orders, our performance is improved if we create this
list only once during our batch run, and modularity and maintainability are
improved if we define this query in only one place.

In Example 5-24 we see a stored procedure that calls the previous stored procedure
and consumes the rows placed in the temporary table. In practice, this is pretty much
equivalent to passing the result set from one stored procedure to another.

Line(s) Explanation

3 Create a CallableStatement object corresponding to the stored procedure from Example 5-20.

5 Provide the parameter (department_id) to the stored procedure.

6 Execute the stored procedure.

7 Create a ResultSet object corresponding to the first result set.

8-11 Loop through the rows in that result set and print the results to the console.

15 Use the getMoreResults method to move to the next result set.

16 Create a ResultSet object for the second result set.

17-20 Retrieve the rows from the result set and print them to the console.

Example 5-23. Stored procedure that creates a temporary table

CREATE PROCEDURE sp_overdue_sales ( )

BEGIN
  DROP TEMPORARY TABLE IF EXISTS overdue_sales_tmp;
  CREATE TEMPORARY TABLE overdue_sales_tmp AS
  SELECT sales_id,customer_id,sale_date,quantity,sale_value
    FROM sales
   WHERE sale_status='O';

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 5: Using SQL in Stored Programming

Note that in MySQL, temporary tables have scope only within the specific session
that creates the table, and they are automatically de-allocated when that session
completes. So we don’t have to worry about cleaning up the temporary table or be
concerned that the table could be simultaneously updated by another session.

Performing Dynamic SQL with Prepared Statements
MySQL supports a facility known as server-side prepared statements, which provides
an API-independent way of preparing a SQL statement for repeated execution effi-
ciently and securely. Prepared statements are interesting from a stored programming
perspective because they allow us to create dynamic SQL calls.

We create a prepared statement with the PREPARE statement:

PREPARE statement_name FROM sql_text

The SQL text may contain placeholders for data values that must be supplied when
the SQL is executed. These placeholders are represented by ? characters.

The prepared statement is executed with the, EXECUTE statement:

EXECUTE statement_name [USING variable [,variable...]]

Example 5-24. Stored procedure that consumes data from a temporary table

CREATE PROCEDURE sp_issue_invoices( )

BEGIN
  DECLARE l_sale_id INT;
  DECLARE l_last_sale INT DEFAULT 0;

  DECLARE sale_csr CURSOR FOR
    SELECT sales_id
      FROM overdue_sales_tmp;

  DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_sale=1;

CALL sp_overdue_sales( );

  OPEN sale_csr;
  sale_loop:LOOP
    FETCH sale_csr INTO l_sale_id;
    IF l_last_sale THEN
      LEAVE sale_loop;
    END IF;
    CALL sp_issue_one_invoice(l_sale_id);
  END LOOP sale_loop;
  CLOSE sale_csr;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Performing Dynamic SQL with Prepared Statements | 119

The USING clause can be used to specify values for the placeholders specified in the
PREPARE statement. These must be supplied as user variables (prefixed with the @
character), which we described in Chapter 3.

Finally, we can drop the prepared statement with the DEALLOCATE statement:

DEALLOCATE PREPARE statement_name

An example of using prepared statements within the MySQL command-line client is
shown in Example 5-25.

Now, the idea of prepared statements is to reduce the overhead of re-parsing (prepar-
ing) a SQL statement for execution if all that has changed is a few data values, and to
enhance security by allowing SQL statement parameters to be supplied in a way that
prevents SQL injection (for more about SQL injection, see Chapter 18). Stored pro-
cedures don’t need prepared statements for these reasons, since the SQL statements
in stored procedures are already “prepared” for execution. Moreover, SQL injection
is not really a threat in stored programs (ironically enough, unless you use prepared
statements!).

However, prepared statements come in handy in stored programs, because they
allow you to execute dynamic SQL from within a procedure (but not from within a
trigger or function). A SQL statement is dynamic if it is constructed at runtime
(whereas a static SQL statement is one that is constructed at the time of compilation

Example 5-25. Using prepared statements

mysql> PREPARE prod_insert_stmt FROM "INSERT INTO product_codes VALUES(?,?)";
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql>
mysql> SET @code='QB';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @name='MySQL Query Browser';
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE prod_insert_stmt USING @code,@name;
Query OK, 1 row affected (0.00 sec)

mysql> SET @code='AD';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @name='MySQL Administrator';
Query OK, 0 rows affected (0.02 sec)

mysql> EXECUTE prod_insert_stmt USING @code,@name;
Query OK, 1 row affected (0.00 sec)

mysql> DEALLOCATE PREPARE prod_insert_stmt;
Query OK, 0 rows affected (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 5: Using SQL in Stored Programming

of the program unit). You will generally rely on dynamic SQL only when you don’t
have all the information you need at compile time to complete your statement. This
usually occurs because you need input from a user or from some other data source.

The stored procedure in Example 5-26 offers a demonstration of running dynamic
SQL as a prepared statement; it will, in fact, execute any SQL that is passed in as an
argument.

SQL executed as a prepared statement within a stored procedure acts pretty much
the same way as a static SQL statement that is embedded inside the stored proce-
dure. However, the EXECUTE statement does not support an INTO clause, nor is it pos-
sible to define a cursor from a prepared statement. Therefore, any results from a
prepared statement will be returned to the calling program and cannot be trapped in
the stored procedure. To catch the rows returned by a dynamic SQL call, store them
in a temporary table, as outlined in the section “Returning Result Sets to Another
Stored Procedure,” earlier in this chapter.

You should rely on dynamic SQL only when needed. It is more complex and less effi-
cient than static SQL, but it does allow you to implement otherwise impossible tasks
and create useful, generic utility routines. For instance, the stored procedure in
Example 5-27 accepts a table name, column name, WHERE clause, and value; the pro-
cedure uses these parameters to build up an UPDATE statement that can update any
table column value.

Example 5-26. Stored procedure with dynamic SQL

CREATE PROCEDURE execute_immediate(in_sql VARCHAR(4000))
BEGIN

  SET @tmp_sql=in_sql;
  PREPARE s1 FROM @tmp_sql;
  EXECUTE s1;
  DEALLOCATE PREPARE s1;

END;

Example 5-27. Stored procedure that can update any column in any table

CREATE PROCEDURE set_col_value
       (in_table     VARCHAR(128),
        in_column    VARCHAR(128),
        in_new_value VARCHAR(1000),
        in_where     VARCHAR(4000))

BEGIN
   DECLARE l_sql VARCHAR(4000);
   SET l_sql=CONCAT_ws(' ',
               'UPDATE',in_table,
                  'SET',in_column,'=',in_new_value,
               ' WHERE',in_where);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Performing Dynamic SQL with Prepared Statements | 121

We could call this program to zero-out the salary of employee ID 1 (eat this, CEO!)
by invoking the procedure as follows:

mysql> CALL set_col_value('employees','salary','0','employee_id=1')

Another common application of dynamic SQL is to build up conditional WHERE
clauses. Often, we construct user interfaces in which the user may specify multiple
search criteria. Handling the “missing” conditions without dynamic SQL can lead to
complex and awkward SQL, which can be difficult for MySQL to optimize.
Example 5-28 shows a simple example of a search procedure that allows the user to
specify any combination of customer name, contact name, or phone number.

The SQL in Example 5-28 is not yet unbearably complex, but as the number of can-
didate search columns increases, the maintainability of this statement will rapidly
diminish. Even with this statement, however, we may be legitimately concerned that
the SQL is not correctly optimized for the specific search criteria supplied by the end
user. We may therefore wish to build up a more customized search query.
Example 5-29 shows a procedure in which we construct the WHERE clause dynami-
cally to match the search criteria supplied by the user and call that SQL dynamically
using prepared statements.

   SET @sql=l_sql;
   PREPARE s1 FROM @sql;
   EXECUTE s1;
   DEALLOCATE PREPARE s1;
END;

Example 5-28. Search procedure without dynamic SQL

CREATE PROCEDURE sp_customer_search
    (in_customer_name VARCHAR(30),
     in_contact_surname VARCHAR(30),
     in_contact_firstname VARCHAR(30),
     in_phoneno VARCHAR(10))

BEGIN
  SELECT *
    FROM customers
   WHERE (customer_name LIKE in_customer_name
          OR in_customer_name IS NULL)
     AND (contact_surname LIKE in_contact_surname
          OR in_contact_surname IS NULL)
     AND (contact_firstname LIKE in_contact_firstname
          OR in_contact_firstname IS NULL)
     AND (phoneno LIKE in_phoneno
          OR in_phoneno IS NULL) ;

END;

Example 5-27. Stored procedure that can update any column in any table  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 5: Using SQL in Stored Programming

Although the procedure in Example 5-29 is longer and more complicated than the
static example shown in Example 5-28, it may execute faster because we have elimi-
nated redundant WHERE clauses from the SQL that is finally executed. In that way, we

Example 5-29. Search procedure with dynamic SQL

CREATE PROCEDURE sp_customer_search_dyn
    (in_customer_name VARCHAR(30),
     in_contact_surname VARCHAR(30),
     in_contact_firstname VARCHAR(30),
     in_phoneno VARCHAR(10))

BEGIN
  DECLARE l_where_clause VARCHAR(1000) DEFAULT 'WHERE';

  IF in_customer_name IS NOT NULL THEN
      SET l_where_clause=CONCAT(l_where_clause,
         ' customer_name="',in_customer_name,'"');
  END IF;

  IF in_contact_surname IS NOT NULL THEN
     IF l_where_clause<>'WHERE' THEN
        SET l_where_clause=CONCAT(l_where_clause,' AND ');
     END IF;
     SET l_where_clause=CONCAT(l_where_clause,
         ' contact_surname="',in_contact_surname,'"');
  END IF;

  IF in_contact_firstname IS NOT NULL THEN
     IF l_where_clause<>'WHERE' THEN
        SET l_where_clause=CONCAT(l_where_clause,' AND ');
     END IF;
     SET l_where_clause=CONCAT(l_where_clause,
         ' contact_firstname="',in_contact_firstname,'"');
  END IF;

  IF in_phoneno IS NOT NULL THEN
     IF l_where_clause<>'WHERE' THEN
        SET l_where_clause=CONCAT(l_where_clause,' AND ');
     END IF;
     SET l_where_clause=CONCAT(l_where_clause,
         ' phoneno="',in_phoneno,'"');
  END IF;

  SET @sql=CONCAT('SELECT * FROM customers ',
                  l_where_clause);

  PREPARE s1 FROM @sql;
  EXECUTE s1;
  DEALLOCATE PREPARE s1;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Handling SQL Errors: A Preview | 123

give MySQL better data on which to base its decisions regarding indexes and other
optimizations.

You will probably not need to use dynamic SQL and prepared statements very often,
but they can certainly save the day when you are faced with the need to construct a
SQL statement based on user input or stored program parameters. However, a final
word of caution: when you construct SQL based on user input, you allow for the
security attack known as SQL injection to occur, and SQL injection in stored proce-
dures can pose a particularly high risk because of the unique execution context of
stored procedures. We discuss SQL injection in stored programs in detail within
Chapter 18.

Handling SQL Errors: A Preview
Error handling in MySQL stored programs is such an important and complex topic
that we have dedicated an entire chapter—Chapter 6—to this topic. However, let’s
provide a quick summary here.

By default, if a SQL statement within a stored program generates an error, the stored
program will cease execution and the error will be returned to the calling program. If
you don’t want this to happen, you must specify an error handler using the follow-
ing syntax:

DECLARE {CONTINUE | EXIT} HANDLER FOR
    {SQLSTATE sqlstate_code| MySQL error code| condition_name}

stored_program_statement

The handler nominates an error condition—using a MySQL error code, an ANSI-
standard SQLSTATE, or a named condition—and describes what is to happen if the
error is encountered. The handler can do one of two things:

• Allow execution to CONTINUE.

• Immediately exit the block or stored program containing the handler.

The handler specifies stored program statements that will be executed when the han-
dler is activated. These statements often set a status variable that could be checked
within the main line of the program but that could also specify a BEGIN-END block
containing many lines of code.

We have already looked at the use of handlers in determining when a cursor has
returned the last row of its result set (see “Fetching an Entire Result Set” earlier in
this chapter).

We discuss handlers in depth in the next chapter.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 5: Using SQL in Stored Programming

Conclusion
In this chapter we reviewed the facilities MySQL provides for including SQL within
stored programs. The following types of SQL statements can appear in stored
programs:

• Simple embedded non-SELECT statements, including DML statements (INSERT,
DELETE, UPDATE) and DDL statements (CREATE, DROP, ALTER, etc.) can be included
within stored programs without any particular restrictions.

• SELECT statements that return only one row may include an INTO clause that
stores the results of the SELECT statement into stored program variables.

• SELECT statements allow you to iterate through the rows returned by a multirow
SELECT statement by using a cursor. Cursors involve a bit more programming
effort, including a looping structure and a condition handler to prevent “no data
to fetch” errors when all rows from the cursor have been retrieved. Neverthe-
less, cursors will probably be your main mechanism for performing complex
data processing in stored programs.

• “Unbounded” SELECT statements—those without an INTO clause or a CURSOR
statement—can be included within stored procedures (but not within stored
functions). The output from these SELECT statements will be returned to the call-
ing program (but not to a calling stored procedure). You will need to employ
special code in your calling program to handle result sets from stored proce-
dures, especially if more than a single result set is returned.

SQL statements can also be prepared dynamically using MySQL server-side pre-
pared statements.

If your SQL statements generate an error, your stored program will terminate and
return control to the calling program unless you create an error handler that
“catches” the error and takes appropriate action. We saw a simple example of an
error handler in this chapter and looked at NOT FOUND handlers that handle the end of
a cursor result set. In the next chapter we’ll cover the topic of error handlers in
greater detail.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

125

Chapter 6 CHAPTER 6

Error Handling6

The perfect programmer, living in a perfect world, would always write programs that
anticipate every possible circumstance. Those programs would either always work
correctly, or fail “gracefully” by providing comprehensive diagnostic information to
the support team and very readable messages to the user.

For a certain class of applications—software supporting life support systems or the
space shuttle, for instance—this level of perfection is actually a part of the require-
ments, because any unexpected failure of the software would be catastrophic. How-
ever, in the world of business applications, we usually make certain assumptions
about our execution environment—we assume the MySQL server will be running,
that our tables have not been dropped, that the host machine is not on fire, and so
on. If any of these conditions occurs, then we accept that our application will fail. In
many other circumstances, we can and should anticipate potential failures and write
code to manage those situations. This is where exception handling comes into play.

When a stored program encounters an error condition, execution ceases and an error
is returned to the calling application. That’s the default behavior. What if we need a
different kind of behavior? What if, for example, we want to trap that error, log it, or
report on it, and then continue execution of our application? For that kind of con-
trol, we need to define exception handlers in our programs.

When developing MySQL stored programs, a very common scenario—fetching to
the end of a result set—also requires that we define an exception handler.

In this chapter we explain how to create various types of exception handlers and how
to improve the readability of error handling by using “named” conditions. We also
identify several gaps in exception-handling functionality in MySQL 5, and explore
ways of compensating for these omissions.

Introduction to Error Handling
Let’s begin by looking at several examples of stored program error handling.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 6: Error Handling

A Simple First Example
Consider a simple stored procedure that creates a location record, as shown in
Example 6-1.

This procedure works fine when the location does not already exist, as shown in the
following output:

mysql> CALL sp_add_location('Guys place','30 Blakely Drv',
                            'Irvine CA','92618-20');

Query OK, 1 row affected, 1 warning (0.44 sec)

However, if we try to insert a department that already exists, MySQL raises an error:

mysql> CALL sp_add_location('Guys place','30 Blakely Drv',
                            'Irvine CA','92618-20');

ERROR 1062 (23000): Duplicate entry 'Guys place' for key 1

If the stored procedure is called by an external program such as PHP, we could prob-
ably get away with leaving this program “as is.” PHP, and other external programs,
can detect such error conditions and then take appropriate action. If the stored pro-
cedure is called from another stored procedure, however, we risk causing the entire
procedure call stack to abort. That may not be what we want.

Since we can anticipate that MySQL error 1062 could be raised by this procedure, we
can write code to handle that specific error code. Example 6-2 demonstrates this
technique. Rather than allow the exception to propagate out of the procedure
unhandled (causing failures in the calling program), the stored procedure traps the
exception, sets a status flag, and returns that status information to the calling
program.

The calling program can then decide if this failure warrants termination or if it
should continue execution.

Example 6-1. Simple stored procedure without error handling

CREATE PROCEDURE sp_add_location
         (in_location   VARCHAR(30),
          in_address1   VARCHAR(30),
          in_address2   VARCHAR(30),
          zipcode       VARCHAR(10))
    MODIFIES SQL DATA
BEGIN
   INSERT INTO locations
     (location,address1,address2,zipcode)
    VALUES
     (in_location,in_address1,in_address2,zipcode);
END$$



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Error Handling | 127

We’ll review in detail the syntax of the HANDLER clause later in this chapter. For now,
it is enough to understand that the DECLARE CONTINUE HANDLER statement tells MySQL
that “if you encounter MySQL error 1062 (duplicate entry for key), then continue
execution but set the variable p_status to 'Duplicate Entry'.”

As expected, this implementation does not return an error to the calling program,
and we can examine the status variable to see if the stored procedure execution was
successful. In Example 6-3 we show a stored procedure that creates new department
records. This procedure calls our previous procedure to add a new location. If the
location already exists, the stored procedure generates a warning and continues.
Without the exception handling in sp_add_location, this procedure would terminate
when the unhandled exception is raised.

Example 6-2. Simple stored procedure with error handling

CREATE PROCEDURE sp_add_location
         (in_location    VARCHAR(30),
          in_address1    VARCHAR(30),
          in_address2    VARCHAR(30),
          zipcode        VARCHAR(10),
          OUT out_status VARCHAR(30))
    MODIFIES SQL DATA
BEGIN
   DECLARE CONTINUE HANDLER FOR 1062
      SET out_status='Duplicate Entry';

   SET out_status='OK';
   INSERT INTO locations
     (location,address1,address2,zipcode)
    VALUES
     (in_location,in_address1,in_address2,zipcode);
END;

Example 6-3. Calling a stored procedure that has an error handler

CREATE PROCEDURE sp_add_department
       (in_department_name VARCHAR(30),
        in_manager_id      INT,
        in_location        VARCHAR(30),
        in_address1        VARCHAR(30),
        in_address2        VARCHAR(30),
        in_zipcode         VARCHAR(10)
       )
    MODIFIES SQL DATA
BEGIN
    DECLARE l_status VARCHAR(20);

CALL sp_add_location(in_location,in_address1,in_address2,
                         in_zipcode, l_status);
      IF l_status='Duplicate Entry' THEN
            SELECT CONCAT('Warning: using existing definition for location ',
                      in_location) AS warning;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 6: Error Handling

Handling Last Row Conditions
One of the most common operations in a MySQL stored program involves fetching
one or more rows of data. You can do this in a stored program through the use of a
cursor (explained in Chapter 5). However, MySQL (and the ANSI standard) consid-
ers an attempt to fetch past the last row of the cursor an error. Therefore, you almost
always need to catch that particular error when looping through the results from a
cursor.

Consider the simple cursor loop shown in Example 6-4. At first glance, you might
worry that we might inadvertently have created an infinite loop, since we have not
coded any way to leave the dept_loop loop.

Bravely, we run this program and find that the seemingly infinite loop fails as soon as
we attempt to fetch beyond the final row in the result set:

mysql> CALL sp_fetch_forever( );
ERROR 1329 (02000): No data to FETCH

Since we likely want to do something with the data after we’ve fetched it, we cannot
let this exception propagate out of the procedure unhandled. So we will add a decla-
ration for a CONTINUE HANDLER in the procedure, setting a flag to indicate that the last
row has been fetched. This technique is shown in Example 6-5.

    END IF;

    INSERT INTO departments (manager_id,department_name,location)
    VALUES(in_manager_id,in_department_name,in_location);

END;

Example 6-4. Cursor loop without a NOT FOUND handler

CREATE PROCEDURE sp_fetch_forever( )
  READS SQL DATA
BEGIN
    DECLARE l_dept_id  INT;
    DECLARE c_dept CURSOR FOR
            SELECT department_id
              FROM departments;

    OPEN c_dept;
    dept_cursor: LOOP
        FETCH c_dept INTO l_dept_id;
    END LOOP dept_cursor;
    CLOSE c_dept;
END

Example 6-3. Calling a stored procedure that has an error handler (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Condition Handlers | 129

In plain English, the handler on line 10 says “When a fetch from a cursor returns no
more rows, continue execution, but set the variable l_last_row to 1.” After retriev-
ing each row, we check the l_last_row variable and exit from the cursor loop if the
last row is returned. Without this handler, our cursor loop will fetch too many times
and raise an exception.

Now that you have seen two simple examples of declaring handlers for error situa-
tions that you can anticipate, let’s explore this functionality in more detail.

Condition Handlers
A condition handler defines the actions that the stored program is to take when a
specified event—such as a warning or an error—occurs.

Here is the syntax of the DECLARE HANDLER command:

DECLARE {CONTINUE | EXIT} HANDLER FOR
    {SQLSTATE sqlstate_code| MySQL error code| condition_name}

handler_actions

Note that handlers must be defined after any variable or cursor declarations, which
makes sense, since the handlers frequently access local variables or perform actions
on cursors (such as closing them). They must also be declared before any executable
statements. Chapter 4 includes more details on the rules governing the positioning of
statements within a block.

Example 6-5. Cursor loop with a NOT FOUND handler

1  CREATE PROCEDURE sp_not_found( )
2      READS SQL DATA
3  BEGIN
4      DECLARE l_last_row INT DEFAULT 0;
5      DECLARE l_dept_id  INT;
6      DECLARE c_dept CURSOR FOR
7            SELECT department_id
8              FROM departments;
9     /* handler to set l_last_row=1 if a cursor returns no more rows */
10 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_row=1;
11
12     OPEN c_dept;
13     dept_cursor: LOOP
14          FETCH c_dept INTO l_dept_id;
15          IF (l_last_row=1) THEN
16               LEAVE dept_cursor;
17          END IF;
18          /* Do something with the data*/
19
20     END LOOP dept_cursor;
21     CLOSE c_dept;
22
23  END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 6: Error Handling

The hander declaration has three main clauses;

• Handler type (CONTINUE, EXIT)

• Handler condition (SQLSTATE, MySQL error code, named condition)

• Hander actions

Let’s look at each of these clauses in turn.

Types of Handlers
Condition handlers can be one of two types:

EXIT
When an EXIT handler fires, the currently executing block is terminated. If this
block is the main block for the stored program, the procedure terminates, and
control is returned to the procedure or external program that invoked the proce-
dure. If the block is enclosed within an outer block inside of the same stored
program, control is returned to that outer block.

CONTINUE
With a CONTINUE handler, execution continues with the statement following the
one that caused the error to occur.

In either case, any statements defined within the hander (the handler actions) are run
before either the EXIT or CONTINUE takes place.

Let’s look at examples of both types of handlers. Example 6-6 shows a stored proce-
dure that creates a department record and attempts to gracefully handle the situa-
tion in which the specified department already exists.

Example 6-6. Example of an EXIT handler

1  CREATE PROCEDURE add_department
2        (in_dept_name VARCHAR(30),
3         in_location VARCHAR(30),
4         in_manager_id INT)
5      MODIFIES SQL DATA
6  BEGIN
7      DECLARE duplicate_key INT DEFAULT 0;
8      BEGIN
9           DECLARE EXIT HANDLER FOR 1062 /* Duplicate key*/ SET duplicate_key=1;
10
11          INSERT INTO departments (department_name,location,manager_id)
12          VALUES(in_dept_name,in_location,in_manager_id);
13
14          SELECT CONCAT('Department ',in_dept_name,' created') as "Result";
15     END;
16
17     IF duplicate_key=1 THEN
18          SELECT CONCAT('Failed to insert ',in_dept_name,



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Condition Handlers | 131

Let’s examine the logic for Example 6-6:

Following is the output from this stored procedure for both unsuccessful and suc-
cessful execution:

MySQL> CALL add_department('OPTIMIZER RESEARCH','SEATTLE',4) //

+----------------------------------------------------+
| Result                                             |
+----------------------------------------------------+
| Failed to insert OPTIMIZER RESEARCH: duplicate key |
+----------------------------------------------------+
1 row in set (0.02 sec)

MySQL> CALL add_department('CUSTOMER SATISFACTION','DAVIS',4);

+------------------------------------------+
| Result                                   |
+------------------------------------------+
| Department CUSTOMER SATISFACTION created |
+------------------------------------------+
1 row in set (0.00 sec)

Example 6-7 provides an example of the same functionality implemented with a
CONTINUE handler. In this example, when the handler fires, execution continues with
the statement immediately following the INSERT statement. This IF statement checks
to see if the handler has fired, and if it has, it displays the failure message. Other-
wise, the success message is displayed.

19                       ': duplicate key') as "Result";
20     END IF;
21 END$$

Lines(s) Explanation

7 Declare a status variable that will record the status of our insert attempt.

8-15 This BEGIN-END block encloses the INSERT statement that will attempt to create the department row. The
block includes the EXIT handler that will terminate the block if a 1062 error occurs.

11 Attempt to insert our row—if we get a duplicate key error, the handler will set the variable and terminate the
block.

14 This line executes only if the EXIT handler did not fire, and reports success to the user. If the handler fired,
then the block was terminated and this line would never be executed.

17 Execution will then continue on this line, where we check the value of the variable and—if the hander has
fired—advise the user that the insert was unsuccessful.

Example 6-7. Example of a CONTINUE handler

CREATE PROCEDURE add_department
       (in_dept_name VARCHAR(30),
        in_location VARCHAR(30),

Example 6-6. Example of an EXIT handler (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 6: Error Handling

Handler Conditions
The handler condition defines the circumstances under which the handler will be
invoked. The circumstance is always associated with an error condition, but you
have three choices as to how you define that error:

• As a MySQL error code.

• As an ANSI-standard SQLSTATE code.

• As a named condition. You may define your own named conditions (described
in the later section “Named Conditions”) or use one of the built-in conditions
SQLEXCEPTION, SQLWARNING, and NOT FOUND.

        in_manager_id INT)
  MODIFIES SQL DATA
BEGIN
    DECLARE duplicate_key INT DEFAULT 0;

    DECLARE CONTINUE HANDLER FOR 1062 /* Duplicate key*/
            SET duplicate_key=1;

    INSERT INTO departments (department_name,location,manager_id)
    VALUES(in_dept_name,in_location,in_manager_id);

    IF duplicate_key=1 THEN
         SELECT CONCAT('Failed to insert ',in_dept_name,
                            ': duplicate key') as "Result";
    ELSE
              SELECT CONCAT('Department ',in_dept_name,' created') as "Result";
    END IF;
END$$

EXIT or CONTINUE?
The choice between creating an EXIT handler and creating a CONTINUE handler is based
primarily on program flow-of-control considerations.

An EXIT handler will exit from the block in which it is declared, which precludes the
possibility that any other statements in the block (or the entire procedure) might be
executed. This type of handler is most suitable for catastrophic errors that do not allow
for any form of continued processing.

A CONTINUE handler allows subsequent statements to be executed. Generally, you will
detect that the handler has fired (through some form of status variable set in the han-
dler) and determine the most appropriate course of action. This type of handler is most
suitable when you have some alternative processing that you will execute if the excep-
tion occurs.

Example 6-7. Example of a CONTINUE handler (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Condition Handlers | 133

MySQL has its own set of error codes that are unique to the MySQL server. A han-
dler condition that refers to a numeric code without qualification is referring to a
MySQL error code. For instance, the following handler will fire when MySQL error
code 1062 (duplicate key value) is encountered:

DECLARE CONTINUE HANDLER FOR 1062 SET duplicate_key=1;

SQLSTATE error codes are defined by the ANSI standard and are database-indepen-
dent, meaning that they will have the same value regardless of the underlying data-
base. So, for instance, Oracle, SQL Server, DB2, and MySQL will always report the
same SQLSTATE value (23000) when a duplicate key value error is encountered. Every
MySQL error code has an associated SQLSTATE code, but the relationship is not one-
to-one; some SQLSTATE codes are associated with many MySQL codes; HY000 is a
general-purpose SQLSTATE code that is raised for MySQL codes that have no specific
associated SQLSTATE code.

The following handler will fire when SQLSTATE 23000 (duplicate key value) is
encountered:

DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET duplicate_key=1;

SQLSTATE or MySQL Error Code?
In theory, using the SQLSTATE codes will make your code more portable to other data-
base platforms and might therefore seem to be the best choice. However, there are a
number of reasons to use MySQL error codes rather than SQLSTATE codes when writing
MySQL stored programs:

• In reality, it is unlikely that you will move your stored programs to another
RDBMS. The Oracle and SQL Server stored program languages are totally
incompatible with MySQL. The DB2 stored program language is somewhat
compatible (both are based on the SQL:2003 standard). It is very likely, how-
ever, that you will use MySQL-specific syntax as you write your application,
which will prevent your stored code from being portable.

• Not all MySQL error codes have SQLSTATE equivalents. Although every MySQL
error code is associated with some SQLSTATE error code, often it will be a gen-
eral-purpose SQLSTATE that is not specific (such as HY000). Therefore, you will
almost certainly have to code some handlers that refer directly to MySQL error
codes. You’ll probably find that the advantages of using a consistent handler for-
mat will outweigh the theoretical portability advantage of SQLSTATE error codes.

We will, for the most part, use MySQL error codes in this book.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 6: Error Handling

When the MySQL client encounters an error, it will report both the MySQL error
code and the associated SQLSTATE code, as in the following output:

mysql> CALL nosuch_sp( );

ERROR 1305 (42000): PROCEDURE sqltune.nosuch_sp does not exist

In this case, the MySQL error code is 1305 and the SQLSTATE code is 42000.

Table 6-1 lists some of the error codes you might expect to encounter in a MySQL
stored program together with their SQLSTATE equivalents. Note, again, that many
MySQL error codes map to the same SQLSTATE code (many map to HY000, for
instance), which is why you may wish to sacrifice portability and use MySQL error
codes— rather than SQLSTATE codes—in your error handlers.

Table 6-1. Some common MySQL error codes and SQLSTATE codes

MySQL error code SQLSTATE code Error message

1011 HY000 Error on delete of ‘%s’ (errno: %d)

1021 HY000 Disk full (%s); waiting for someone to free some space . . .

1022 23000 Can’t write; duplicate key in table ‘%s’

1027 HY000 ‘%s’ is locked against change

1036 HY000 Table ‘%s’ is read only

1048 23000 Column ‘%s’ cannot be null

1062 23000 Duplicate entry ‘%s’ for key %d

1099 HY000 Table ‘%s’ was locked with a READ lock and can’t be updated

1100 HY000 Table ‘%s’ was not locked with LOCK TABLES

1104 42000 The SELECT would examine more than MAX_JOIN_SIZE rows; check your
WHERE and use SET SQL_BIG_SELECTS=1 or SET SQL_MAX_JOIN_
SIZE=# if the SELECT is okay

1106 42000 Incorrect parameters to procedure ‘%s’

1114 HY000 The table ‘%s’ is full

1150 HY000 Delayed insert thread couldn’t get requested lock for table %s

1165 HY000 INSERT DELAYED can’t be used with table ‘%s’ because it is locked
with LOCK TABLES

1242 21000 Subquery returns more than 1 row

1263 22004 Column set to default value; NULL supplied to NOT NULL column ‘%s’ at
row %ld

1264 22003 Out of range value adjusted for column ‘%s’ at row %ld

1265 1000 Data truncated for column ‘%s’ at row %ld

1312 0A000 SELECT in a stored program must have INTO

1317 70100 Query execution was interrupted

1319 42000 Undefined CONDITION: %s

1325 24000 Cursor is already open



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Condition Handlers | 135

You can find a complete and up-to-date list of error codes in Appendix B of the
MySQL reference manual, available online at http://dev.mysql.com/doc/.

Handler Examples
Here are some examples of handler declarations:

• If any error condition arises (other than a NOT FOUND), continue execution after
setting l_error=1:

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET l_error=1;

• If any error condition arises (other than a NOT FOUND), exit the current block or
stored program after issuing a ROLLBACK statement and issuing an error message:

DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
    ROLLBACK;
    SELECT 'Error occurred – terminating';
END;

• If MySQL error 1062 (duplicate key value) is encountered, continue execution
after executing the SELECT statement (which generates a message for the calling
program):

DECLARE CONTINUE HANDER FOR 1062
    SELECT 'Duplicate key in index';

• If SQLSTATE 23000 (duplicate key value) is encountered, continue execution after
executing the SELECT statement (which generates a message for the calling
program):

DECLARE CONTINUE HANDER FOR SQLSTATE '23000'
    SELECT 'Duplicate key in index';

1326 24000 Cursor is not open

1328 HY000 Incorrect number of FETCH variables

1329 2000 No data to FETCH

1336 42000 USE is not allowed in a stored program

1337 42000 Variable or condition declaration after cursor or handler declaration

1338 42000 Cursor declaration after handler declaration

1339 20000 Case not found for CASE statement

1348 HY000 Column ‘%s’ is not updatable

1357 HY000 Can’t drop a %s from within another stored routine

1358 HY000 GOTO is not allowed in a stored program handler

1362 HY000 Updating of %s row is not allowed in %s trigger

1363 HY000 There is no %s row in %s trigger

Table 6-1. Some common MySQL error codes and SQLSTATE codes (continued)

MySQL error code SQLSTATE code Error message



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 6: Error Handling

• When a cursor fetch or SQL retrieves no values, continue execution after setting
l_done=1:

DECLARE CONTINUE HANDLER FOR NOT FOUND
    SET l_done=1;

• Same as the previous example, except specified using a SQLSTATE variable rather
than a named condition:

DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'
    SET l_done=1;

• Same as the previous two examples, except specified using a MySQL error code
variable rather than a named condition or SQLSTATE variable:

DECLARE CONTINUE HANDLER FOR 1329
    SET l_done=1;

Handler Precedence
As we’ve described, MySQL lets you define handler conditions in terms of a MySQL
error code, a SQLSTATE error, or a named condition such as SQLEXCEPTION. It is possi-
ble, therefore, that you could define several handlers in a stored program that would
all be eligible to fire when a specific error occurred. Yet only one handler can fire in
response to an error, and MySQL has clearly defined rules that determine the prece-
dence of handlers in such a situation.

To understand the problem, consider the code fragment in Example 6-8. We have
declared three different handlers, each of which would be eligible to execute if a
duplicate key value error occurs. Which handler will execute? The answer is that the
most specific handler will execute.

Handlers based on MySQL error codes are the most specific type of handler, since an
error condition will always correspond to a single MySQL error code. SQLSTATE
codes can sometimes map to many MySQL error codes, so they are less specific.
General conditions such as SQLEXCEPTION and SQLWARNING are not at all specific.
Therefore, a MySQL error code takes precedence over a SQLSTATE exception, which,
in turn, takes precedence over a SQLEXCEPTION condition.

If multiple exception handlers are eligible to fire upon an error, the
most specific handler will be invoked. This means that a MySQL error
code handler fires before a SQLSTATE handler, which, in turn, fires
before a SQLEXCEPTION handler.

Example 6-8. Overlapping condition handlers

DECLARE EXIT HANDLER FOR 1062 SELECT 'MySQL error 1062 encountered';
DECLARE EXIT HANDLER FOR SQLEXCEPTION SELECT 'SQLException encountered';
DECLARE EXIT HANDLER FOR SQLSTATE '23000' SELECT 'SQLSTATE 23000';

INSERT INTO departments VALUES (1, 'Department of Fred',22,'House of Fred');



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Condition Handlers | 137

This strictly defined precedence allows us to define a general-purpose handler for
unexpected conditions, while creating a specific handler for those circumstances that
we can easily anticipate. So, for instance, in Example 6-9, the first handler will be
invoked if something catastrophic happens (perhaps a jealous colleague drops your
database tables), while the second will fire in the more likely event that someone tries
to create a duplicate row within your database.

Note, however, that we generally don’t advise creating SQLEXCEPTION handlers until
MySQL implements the SIGNAL statement; see “Missing SQL:2003 Features” later in
this chapter.

Scope of Condition Handlers
The scope of a handler determines which statements within the stored program are
covered by the handler. In essence, the scope of a handler is the same as for a stored
program variable: the handler applies to all statements in the block in which it is
defined, including any statements in nested blocks. Furthermore, handlers in a
stored program also cover statements that execute in any stored program that might
be called by the first program, unless that program declares its own handler.

For instance, in Example 6-10 the handler will be invoked when the INSERT state-
ment executes (because it violates a NOT NULL constraint). The handler fires because
the INSERT statement is contained within the same block as the handler—even
though the INSERT statement is in a nested block.

However, in Example 6-11 the handler will not be invoked—the scope of the han-
dler is limited to the nested block, and the INSERT statement occurs outside that
block.

Example 6-9. Example of overlapping condition handling

DECLARE EXIT HANDLER FOR 1062
    SELECT 'Attempt to create a duplicate entry occurred';
DECLARE EXIT HANDLER FOR SQLEXCEPTION
    SELECT 'Unexpected error occurred –
                 make sure Fred did not drop your tables again';

Example 6-10. Handler scope includes statements within BEGIN-END blocks

DECLARE CONTINUE HANDLER FOR 1048 SELECT 'Attempt to insert a null value';
BEGIN
    INSERT INTO departments (department_name,manager_id,location)
    VALUES (NULL,1,'Wouldn''t you like to know?');
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 6: Error Handling

Handler scope extends to any stored procedures or functions that are invoked within
the handler scope. This means that if one stored program calls another, a handler in
the calling program can trap errors that occur in the program that has been called.
So, for instance, in Example 6-12, the handler in calling_procedure( ) traps the null
value exception that occurs in sub_procedure ( ).

Of course, a handler in a procedure will override the scope of a hander that exists in
a calling procedure. Only one handler can ever be activated in response to a specific
error condition.

Example 6-11. Handlers within a nested block do not cover statements in enclosing blocks

BEGIN
BEGIN

 DECLARE CONTINUE HANDLER FOR 1216 select
                'Foreign key constraint violated';

END;
    INSERT INTO departments (department_name,manager_id,location)
         VALUES ('Elbonian HR','Catbert','Catbertia');
END;

Example 6-12. A handler can catch conditions raised in called procedures

CREATE PROCEDURE calling_procedure( )
BEGIN
  DECLARE EXIT HANDLER FOR 1048 SELECT 'Attempt to insert a null value';
  CALL sub_procedure( );
END;

Query OK, 0 rows affected (0.00 sec)

--------------
CREATE PROCEDURE sub_procedure( )
BEGIN
  INSERT INTO departments (department_name,manager_id,location)
  VALUES (NULL,1,'Wouldn''t you like to know');
  SELECT 'Row inserted';

END;

Query OK, 0 rows affected (0.00 sec)

CALL calling_procedure( );

+--------------------------------+
| Attempt to insert a null value |
+--------------------------------+
| Attempt to insert a null value |
+--------------------------------+
1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Missing SQL:2003 Features | 139

Named Conditions
So far, our examples have used conditions based on MySQL error codes, SQLSTATE
codes, or predefined named conditions (SQLEXCEPTION, SQLWARNING, NOT FOUND). These
handlers do the job required, but they do not result in particularly readable code,
since they rely on the hardcoding of literal error numbers. Unless you memorize all
or most of the MySQL error codes and SQLSTATE codes (and expect everyone main-
taining your code to do the same), you are going to have to refer to a manual to
understand exactly what error a handler is trying to catch.

You can improve the readability of your handlers by defining a condition declara-
tion, which associates a MySQL error code or SQLSTATE code with a meaningful name
that you can then use in your handler declarations. The syntax for a condition decla-
ration is:

DECLARE condition_name CONDITION FOR {SQLSTATE sqlstate_code | MySQL_error_code};

Once we have declared our condition name, we can use it in our code instead of a
MySQL error code or SQLSTATE code. So instead of the following declaration:

DECLARE CONTINUE HANDLER FOR 1216 MySQL_statements;

we could use the following more readable declaration:

DECLARE foreign_key_error CONDITION FOR 1216;

DECLARE CONTINUE HANDLER FOR foreign_key_error MySQL_statements;

Create named conditions using condition declarations, and use these
named conditions in your handlers to improve the readability and
maintainability of your stored program code.

Missing SQL:2003 Features
The SQL:2003 specification includes a few useful features that—at the time of writ-
ing—are not currently implemented in the MySQL stored program language. The
absence of these features certainly limits your ability to handle unexpected condi-
tions, but we expect that they will be implemented in MySQL server 5.2. Specifically:

• There is no way to examine the current MySQL error code or SQLSTATE code.
This means that in an exception handler based on a generic condition such as
SQLEXCEPTION, you have no way of knowing what error just occurred.

• You cannot raise an exception of your own to indicate an application-specific
error or to re-signal an exception after first catching the exception and examin-
ing its context.

We’ll describe these situations in the following sections and suggest ways to deal
with them.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 6: Error Handling

Directly Accessing SQLCODE or SQLSTATE
Implementing a general-purpose exception handler would be a good practice, except
that if you cannot reveal the reason why the exception occurred, you make debug-
ging your stored programs difficult or impossible. For instance, consider
Example 6-13.

Receiving an error message like this is not much help—in fact, there is almost noth-
ing more frustrating than receiving such an error message when trying to debug an
application. Obscuring the actual cause of the error makes the condition handler
worse than useless in most circumstances.

The SQL:2003 specification allows for direct access to the values of SQLCODE (the
“vendor”—in this case MySQL—error code) and the SQLSTATE code. If we had access
to these codes, we could produce a far more helpful message such as shown in
Example 6-14.

We can partially emulate the existence of a SQLCODE or SQLSTATE variable by defining a
more comprehensive set of condition handlers that create appropriate SQLCODE vari-
ables when they are fired. The general approach would look like Example 6-15.

Example 6-13. General-purpose—but mostly useless—condition handler

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
    SET l_status=-1;
    Set l_message='Some sort of error detected somewhere in the application';
END;

Example 6-14. A more useful—but not supported—form of condition handler

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
    SET l_status=-1;
    SET l_message='Error '||sqlcode||' encountered';
END;

Example 6-15. Using multiple condition handlers to expose the actual error code

DECLARE sqlcode INT DEFAULT 0;
DECLARE status_message VARCHAR(50);

DECLARE CONTINUE HANDLER FOR duplicate_key
BEGIN
     SET sqlcode=1052;
     SET status_message='Duplicate key error';
END;

DECLARE CONTINUE HANDLER FOR foreign_key_violated
BEGIN
     SET sqlcode=1216;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Missing SQL:2003 Features | 141

In most circumstances, it is best not to define a SQLEXCEPTION handler, because with-
out the ability to display the SQLSTATE or SQLSTATE, it is better to let the exception
occur and allow the calling application to have full access to the error codes and mes-
sages concerned.

Until MySQL implements a SQLSTATE or SQLSTATE variable, avoid creat-
ing a general-purpose SQLEXCEPTION handler. Instead, create handlers
for individual error conditions that generate appropriate messages and
status codes.

Creating Your Own Exceptions with the SIGNAL Statement
So far in this chapter, we have talked about how you can handle errors raised by
MySQL as it executes SQL statements within the stored program. In addition to
these system-raised exceptions, however, you will surely have to deal with errors that
are specific to an application’s domain of requirements and rules. If that rule is vio-
lated in your code, you may want to raise your own error and communicate this
problem back to the user. The SQL:2003 specification provides the SIGNAL statement
for this purpose.

The SIGNAL statement allows you to raise your own error conditions. Unfortunately,
at the time of writing, the SIGNAL statement is not implemented within the MySQL
stored program language (it is currently scheduled for MySQL 5.2).

You can’t use the SIGNAL statement in MySQL 5.0, but we are going to describe it
here, in case you are using a later version of MySQL in which the statement has been
implemented. Visit this book’s web site (see the Preface for details) to check on the
status of this and other enhancements to the MySQL stored program language.

So let’s say that we are creating a stored procedure to process employee date-of-birth
changes, as shown in Example 6-16. Our company never employs people under the age
of 16, so we put a check in the stored procedure to ensure that the updated date of
birth is more than 16 years ago (the curdate( ) function returns the current
timestamp).

     SET status_message='Foreign key violated';
END;

DECLARE CONTINUE HANDLER FOR NOT FOUND
BEGIN
     SET sqlcode=1329;
     SET status_message='No record found';
END;

Example 6-15. Using multiple condition handlers to expose the actual error code (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 6: Error Handling

This implementation will work, but it has a few disadvantages. The most significant
problem is that if the procedure is called from another program, the procedure will
return success (at least, it will not raise an error) even if the update was actually
rejected. Of course, the calling program could detect this by examining the p_status
variable, but there is a good chance that the program will assume that the procedure
succeeded since the procedure call itself does not raise an exception.

We have designed the procedure so that it depends on the diligence of the program-
mer calling the procedure to check the value of the returning status argument. It is all
too tempting and easy to assume that everything went fine, since there was no error.

To illustrate, if we try to set an employee’s date of birth to the current date from the
MySQL command line, everything seems OK:

mysql> CALL sp_update_employee_dob(1,now( ),@status);
Query OK, 0 rows affected (0.01 sec)

It is only if we examine the status variable that we realize that the update did not
complete:

mysql> SELECT @status;
+------------------------------------+
| @status                            |
+------------------------------------+
| Employee must be 16 years or older |
+------------------------------------+
1 row in set (0.00 sec)

This stored procedure would be more robust, and less likely to allow errors to slip
by, if it actually raised an error condition when the date of birth was invalid. The
ANSI SQL:2003 SIGNAL statement allows you to do this:

SIGNAL takes the following form:

SIGNAL SQLSTATE sqlstate_code|condition_name [SET MESSAGE_TEXT=string_or_variable];

You can create your own SQLSTATE codes (there are some rules for the numbers you
are allowed to use) or use an existing SQLSTATE code or named condition. When

Example 6-16. Example stored procedure with date-of-birth validation

CREATE PROCEDURE sp_update_employee_dob
    (p_employee_id INT, p_dob DATE, OUT p_status varchar(30))
BEGIN

IF DATE_SUB(curdate( ), INTERVAL 16 YEAR) <p_dob THEN
         SET p_status='Employee must be 16 years or older';
    ELSE
         UPDATE employees
            SET date_of_birth=p_dob
          WHERE employee_id=p_employee_id;
          SET p_status='Ok';
    END IF;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Missing SQL:2003 Features | 143

MySQL implements SIGNAL, you will probably be allowed to use a MySQL error code
(within designated ranges) as well.

When the SIGNAL statement is executed, a database error condition is raised that acts
in exactly the same way as an error that might be raised by an invalid SQL statement
or a constraint violation. This error could be returned to the calling program or
could be trapped by a handler in this or another stored program. If SIGNAL were avail-
able to us, we might write the employee date-of-birth birth procedure, as shown in
Example 6-17.

If we ran this new procedure from the MySQL command line (when MySQL imple-
ments SIGNAL), we would expect the following output:

mysql> CALL sp_update_employee(1,now( ));
ERROR 90001 (99001): Employee must be 16 years or older

Using SIGNAL, we could make it completely obvious to the user or calling program
that the stored program execution failed.

Emulating the SIGNAL Statement
The absence of the SIGNAL statement makes some stored program logic awkward,
and in some cases demands that calling applications examine OUT variables, rather
than SQL return codes, to check the results of some operations.

There is, however, a way to force an error to occur and pass some diagnostic infor-
mation back to the calling application. You can, in other words, emulate SIGNAL in
MySQL 5.0, but we warn you: this solution is not pretty!

Where we would otherwise want to use the SIGNAL statement to return an error to
the calling application, we can instead issue a SQL statement that will fail—and fail
in such a way that we can embed our error message within the standard error
message.

Example 6-17. Using the SIGNAL statement (expected to be implemented in MySQL 5.2)

CREATE PROCEDURE sp_update_employee_dob
    (p_employee_id int, p_dob date)
BEGIN
    DECLARE employee_is_too_young CONDITION FOR SQLSTATE '99001';

    IF DATE_SUB(curdate( ), INTERVAL 16 YEAR) <P_DOB THEN
         SIGNAL employee_is_too_young
            SET MESSAGE_TEST='Employee must be 16 years or older';
    ELSE
        UPDATE employees
           SET date_of_birth=p_dob
         WHERE employee_id=p_employee_id;
    END IF;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 6: Error Handling

The best way to do this is to issue a SQL statement that attempts to reference a non-
existent table or column. The name of the nonexistent column or table can include
the error message itself, which will be useful because the name of the column or table
is included in the error message.

Example 6-18 shows how we can do this. We try to select a nonexistent column
name from a table and we make the nonexistent column name comprise our error
message. Note that in order for a string to be interpreted as a column name, it must
be enclosed by backquotes (these are the quote characters normally found on your
keyboard to the left of the 1 key).

If we try to run the stored procedure from the MySQL command line, passing in an
invalid date of birth, we get a somewhat informative error message:

MySQL> CALL sp_update_employee_dob2(2,now( )) ;

ERROR 1054 (42S22): Unknown column 'Error: employee_is_too_young; Employee must be 16
years or older' in 'field list'

The error code is somewhat garbled, and the error code is not in itself accurate, but
at least we have managed to signal to the calling application that the procedure did
not execute successfully and we have at least provided some helpful information.

We can somewhat improve the reliability of our error handling—and also prepare
for a future in which the SIGNAL statement is implemented—by creating a generic
procedure to implement our SIGNAL workaround. Example 6-19 shows a procedure
that accepts an error message and then constructs dynamic SQL that includes that
message within an invalid table name error.

Example 6-18. Using a nonexistent column name to force an error to the calling program

CREATE PROCEDURE sp_update_employee_dob2
    (p_employee_id INT, p_dob DATE)
BEGIN

    IF datediff(curdate( ),p_dob)<(16*365) THEN
         UPDATE `Error: employee_is_too_young; Employee must be 16 years or older`
            SET x=1;
    ELSE
        UPDATE employees
           SET date_of_birth=p_dob
         WHERE employee_id=p_dob;
    END IF;
END;

Example 6-19. Standard procedure to emulate SIGNAL

CREATE PROCEDURE `my_signal`(in_errortext VARCHAR(255))
BEGIN
   SET @sql=CONCAT('UPDATE `',
            in_errortext,
            '` SET x=1');



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Putting It All Together | 145

We could now implement our employee date-of-birth update routine to call this rou-
tine, as shown in Example 6-20.

Not only does this routine result in cleaner code that is easier to maintain, but when
MySQL does implement SIGNAL, we will only need to update our code in a single pro-
cedure.

Putting It All Together
We have now covered in detail the error-handling features of MySQL. We’ll finish
up this discussion by offering an example that puts all of these features together. We
will take a simple stored procedure that contains no exception handling and apply
the concepts from this chapter to ensure that it will not raise any unhandled excep-
tions for all problems that we can reasonably anticipate.

The example stored procedure creates a new departments row. It takes the names of
the new department, the manager of the department, and the department’s location.
It retrieves the appropriate employee_id from the employees table using the man-
ager’s name. Example 6-21 shows the version of the stored procedure without excep-
tion handling.

   PREPARE my_signal_stmt FROM @sql;
   EXECUTE my_signal_stmt;
   DEALLOCATE PREPARE my_signal_stmt;
END$$

Example 6-20. Using our SIGNAL emulation procedure to raise an error

CREATE PROCEDURE sp_update_employee_dob2(p_employee_id INT, p_dob DATE)

BEGIN

    IF datediff(curdate( ),p_dob)<(16*365) THEN
         CALL my_signal('Error: employee_is_too_young; Employee must be 16
                         years or older');
    ELSE
         UPDATE employees
            SET date_of_birth=p_dob
          WHERE employee_id=p_employee_id;
    END IF;
END$$

Example 6-21. Stored procedure without error handling

CREATE PROCEDURE sp_add_department
      (p_department_name         VARCHAR(30),
       p_manager_surname         VARCHAR(30),
       p_manager_firstname       VARCHAR(30),

Example 6-19. Standard procedure to emulate SIGNAL (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 6: Error Handling

This program reflects the typical development process for many of us: we concen-
trate on implementing the required functionality (the “positive”) and generally pay
little attention to (or more likely, want to avoid thinking about) what could possibly
go wrong. The end result is a stored program that contains no error handling.

So either before you write the program (ideally) or after the first iteration is done,
you should sit down and list out all the errors that might be raised by MySQL when
the program is run.

Here are several of the failure points of this stored procedure:

• If the manager’s name is incorrect, we will fail to find a matching manager in the
employees table. We will then attempt to insert a NULL value for the MANAGER_ID
column, which will violate its NOT NULL constraint.

• If the location argument does not match a location in the locations table, the
foreign key constraint between the two tables will be violated.

• If we specify a department_name that already exists, we will violate the unique
constraint on the department_name.

The code in Example 6-22 demonstrates these failure scenarios.

       p_location                VARCHAR(30),
       out p_sqlcode             INT,
       out p_status_message      VARCHAR(100))
  MODIFIES SQL DATA
BEGIN

    DECLARE l_manager_id         INT;
    DECLARE csr_mgr_id cursor for
         SELECT employee_id
           FROM employees
          WHERE surname=UPPER(p_manager_surname)
            AND firstname=UPPER(p_manager_firstname);

    OPEN csr_mgr_id;
    FETCH csr_mgr_id INTO l_manager_id;

    INSERT INTO departments (department_name,manager_id,location)
    VALUES(UPPER(p_department_name),l_manager_id,UPPER(p_location));

    CLOSE csr_mgr_id;
END$$

Example 6-22. Some of the errors generated by a stored procedure without
error handling

mysql> CALL sp_add_department
    ('Optimizer Research','Yan','Bianca','Berkshire',@p_sqlcode,@p_status_message)

ERROR 1062 (23000): Duplicate entry 'OPTIMIZER RESEARCH' for key 2

Example 6-21. Stored procedure without error handling (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Putting It All Together | 147

The good news is that MySQL detects these problems and will not allow bad data to
be placed into the table. If this stored procedure will be called only by the host lan-
guage, such as PHP or Java, we could declare ourselves done. If, on the other hand,
this program might be called from another MySQL stored program, then we need to
handle the errors and return status information so that the calling stored program
can take appropriate action. Example 6-23 shows a version of the stored procedure
that handles all the errors shown in Example 6-22.

mysql> CALL sp_add_department
    ('Optimizer Research','Yan','Binca','Berkshire',@p_sqlcode,@p_status_message);

ERROR 1048 (23000): Column 'MANAGER_ID' cannot be null

mysql> CALL sp_add_department('Advanced Research','Yan','Bianca','Bercshire',@p_
sqlcode,@p_status_message)

ERROR 1216 (23000): Cannot add or update a child row: a foreign key constraint fails

Example 6-23. Stored procedure with error handling

1  CREATE PROCEDURE sp_add_department2
2      (p_department_name         VARCHAR(30),
3       p_manager_surname         VARCHAR(30),
4       p_manager_firstname       VARCHAR(30),
5       p_location                VARCHAR(30),
6       OUT p_sqlcode             INT,
7       OUT p_status_message      VARCHAR(100))
8  BEGIN
9
10 /* START Declare Conditions */
11
12   DECLARE duplicate_key CONDITION FOR 1062;
13   DECLARE foreign_key_violated CONDITION FOR 1216;
14
15 /* END Declare Conditions */
16
17 /* START Declare variables and cursors */
18
19     DECLARE l_manager_id       INT;
20
21       DECLARE csr_mgr_id CURSOR FOR
22        SELECT employee_id
23          FROM employees
24         WHERE surname=UPPER(p_manager_surname)
25            AND firstname=UPPER(p_manager_firstname);
26
27   /* END Declare variables and cursors */
28
29   /* START Declare Exception Handlers */
30
31     DECLARE CONTINUE HANDLER FOR duplicate_key

Example 6-22. Some of the errors generated by a stored procedure without
error handling (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 6: Error Handling

Let’s go through Example 6-23 and review the error-handling code we have added.

32       BEGIN
33         SET p_sqlcode=1052;
34         SET p_status_message='Duplicate key error';
35       END;
36
37    DECLARE CONTINUE HANDLER FOR foreign_key_violated
38     BEGIN
39       SET p_sqlcode=1216;
40       SET p_status_message='Foreign key violated';
41     END;
42
43     DECLARE CONTINUE HANDLER FOR not FOUND
44      BEGIN
45        SET p_sqlcode=1329;
46        SET p_status_message='No record found';
47      END;
48
49  /* END Declare Exception Handlers */
50
51  /* START Execution */
52
53    SET p_sqlcode=0;
54    OPEN csr_mgr_id;
55    FETCH csr_mgr_id INTO l_manager_id;
56
57    IF p_sqlcode<>0 THEN       /* Failed to get manager id*/
58      SET p_status_message=CONCAT(p_status_message,' when fetching manager id');
59    ELSE
60                          /* Got manager id, we can try and insert */
61      INSERT INTO departments (department_name,manager_id,location)
62      VALUES(UPPER(p_department_name),l_manager_id,UPPER(p_location));
63      IF p_sqlcode<>0 THEN/* Failed to insert new department */
64        SET p_status_message=CONCAT(p_status_message,
65                             ' when inserting new department');
66      END IF;
67    END IF;
68
69    CLOSE csr_mgr_id;
70
71 / * END Execution */
72
73  END

Line(s) Significance

12 and 13 Create condition declarations for duplicate key (1062) and foreign key (1216) errors. As we noted earlier,
these declarations are not strictly necessary, but they improve the readability of the condition handlers we
will declare later.

31-48 Define handlers for each of the exceptions we think might occur. The condition names match those we defined in
lines 10 and 11. We didn’t have to create a NOTFOUND condition, since this is a predefined condition name. Each
handler sets an appropriate value for the output status variables p_sqlcode andp_status_message.

Example 6-23. Stored procedure with error handling (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Putting It All Together | 149

Running the stored procedure from the MySQL command line shows us that all the
exceptions are now correctly handled. Example 6-24 shows the output generated by
various invalid inputs.

57 On this line we check the value of the p_sqlcode variable following our fetch from the cursor that retrieves
the manager’s employee_id. If p_sqlcode is not 0, then we know that one of our exception handlers
has fired. We add some context information to the message—identifying the statement we were execut-
ing—and avoid attempting to execute the insert into the departments table.

53 Check the value of the p_sqlcode variable following our insert operation. Again, if the value is nonzero,
we know that an error has occurred, and we add some context information to the error message. At line 53,
we don’t know what error has occurred—it could be either the foreign key or the unique index constraint.
The handler itself controls the error message returned to the user, and so we could add handling for more
error conditions by adding additional handlers without having to amend this section of code.

Example 6-24. Output from stored procedure with exception handling

mysql> CALL sp_add_department2('Optimizer Research','Yan','Bianca','Berkshire',
@p_sqlcode,@p_status_message)

Query OK, 0 rows affected (0.17 sec)

mysql> SELECT @p_sqlcode,@p_status_message

+------------+---------------------------------------------------+
| @p_sqlcode | @p_status_message                                 |
+------------+---------------------------------------------------+
| 1052       | Duplicate key error when inserting new department |
+------------+---------------------------------------------------+
1 row in set (0.00 sec)

mysql> CALL sp_add_department2('Optimizer Research','Yan','Binca','Berkshire',
@p_sqlcode,@p_status_message)

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p_sqlcode,@p_status_message

+------------+------------------------------------------+
| @p_sqlcode | @p_status_message                        |
+------------+------------------------------------------+
| 1329       | No record found when fetching manager id |
+------------+------------------------------------------+
1 row in set (0.00 sec)

mysql> call sp_add_department2('Advanced Research','Yan','Bianca','Bercshire',
@p_sqlcode,@p_status_message)

Query OK, 0 rows affected (0.12 sec)

mysql> SELECT @p_sqlcode,@p_status_message

Line(s) Significance



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 6: Error Handling

Handling Stored Program Errors in the Calling
Application
Throughout this chapter, we’ve often talked about “returning the error to the calling
application.” In our examples we have used the MySQL command-line client to rep-
resent the calling application since this client is common to all environments and
readers, and it allows you (and us) to quickly test out the stored program.

In production environments, however, the calling application will not be the MySQL
command-line program, but possibly a web-based application using PHP, Perl, Java,
Python, or .NET (C# or Visual Basic) to interface with the MySQL stored program.
In Chapters 12 through 17, we look in detail at how to invoke stored programs from
a variety of languages. We also cover various techniques for retrieving status and
error messages from these languages. However, since we’re on the topic of error han-
dling, let’s briefly look at how we can process errors generated by a stored program
called from each of these languages.

PHP
PHP provides a variety of ways of interacting with MySQL. There are four major
interfaces available:

PEAR (PHP Extension and Application Repository)
The PEAR repository includes a standard, database-independent module called
PEAR DB that can be used to interface with almost any relational database.

mysql
PHP includes a MySQL-specific interface inventively called the mysql extension.

mysqli
Commencing with PHP 5, a new interface—mysqli—was introduced (according
to the developer, the “i” stands for “any one of: improved, interface, ingenious,
incompatible, or incomplete”). This interface provides better support for new
features of MySQL.

PDO (PHP Data Objects)
PDO, a new interface with PHP 5.1, provides a PHP 5N compatible, object-ori-
ented, database-independent interface.

+------------+----------------------------------------------------+
| @p_sqlcode | @p_status_message                                  |
+------------+----------------------------------------------------+
| 1216       | Foreign key violated when inserting new department |
+------------+----------------------------------------------------+
1 row in set (0.00 sec)

Example 6-24. Output from stored procedure with exception handling (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Handling Stored Program Errors in the Calling Application | 151

The mysqli and PDO interfaces provide the best support for MySQL stored pro-
grams and other new features of MySQL 5.0.

In Chapter 13, we show in detail how to use stored programs with each of the major
PHP interfaces and provide examples of both procedural and nonprocedural styles.
For now, let’s look at a simple example showing how to process errors using the
object-oriented variant of the mysqli interface.

In Example 6-25, a simple stored procedure—one without OUT parameters or result
sets—is executed on line 8. If the method call returns failure, we can examine vari-
ous properties of the database connection object ($dbh in this example). $dbh->errno
contains the MySQL error code, $dbh->error contains the error message, and $dbh->
sqlstate contains the SQLSTATE code.

Perl
The Perl DBI interface provides a consistent interface to various relational databases.
The error-handling techniques for Perl are very similar to those of PHP.

DBI objects—such as database and statement handles—include the following
properties:

Err
Contains the database-specific return code (in our case, the MySQL error code).

Errstr
Contains the full message text.

State
Contains the SQLSTATE variable. However, the SQLSTATE variable usually includes
only a generic success or failure code.

Example 6-25. Error handling in the PHP 5 mysqli interface

1  $dbh = new mysqli($hostname, $username, $password, $database);
2  /* check connection */
3  if (mysqli_connect_errno( )) {
4     printf("Connect failed: %s\n", mysqli_connect_error( ));
5     exit( );
6  }
7
8  if ($dbh->query("call error_test_proc(1)"))  /*execute stored procedure*/
9  {
10    printf("Stored procedure execution succeeded");
11  }
12  else // Stored procedure failed - show error
13  {
14     printf("<p>Stored procedure error: MySQL error %d (SQLSTATE %s)\n %s\n",
15 $dbh->errno,$dbh->sqlstate,$dbh->error);
16  }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 6: Error Handling

Each of these items can be referenced as a method or a property, so, for instance, you
can reference the last MySQL error code for the connect handle $dbh as either $dbh::
err or $dbh->err.

Example 6-26 shows a simple Perl code fragment that executes a stored procedure
and checks the error status. On line 5 we execute a simple stored procedure (one
without parameters or result sets). If the stored procedure call fails, we interrogate
the error methods from the database handle.

Java/JDBC
MySQL provides a Java JDBC 3.0 driver—MySQL Connector/J—that allows Java
programs to interact with a MySQL server.

Like most modern object-oriented languages, Java uses structured exception han-
dling to allow for flexible and efficient interception and handling of runtime errors.
Rather than check the error status of every database call, we enclose our JDBC state-
ments within a try block. If any of these statements causes a SQLException error, then
the catch handler will be invoked to handle the error.

The catch handler has access to a SQLException object that provides various methods
and properties for diagnosing and interpreting the error. Of most interest to us are
these three methods:

getErrorCode( )
Returns the MySQL-specific error code

getSQLState( )
Returns the ANSI-standard SQLSTATE code

getMessage( )
Returns the full text of the error message

Example 6-27 shows an example of invoking a simple stored procedure that involves
no OUT parameters or result sets. On line 8 we create a statement object, and on line 9

Example 6-26. Error handling in Perl DBI

1   $dbh = DBI->connect("DBI:mysql:$database:$host:$port",
2                "$user", "$password",
3              { PrintError => 0}) || die $DBI::errstr;
4
5   if ($dbh->do("call error_test_proc(1)"))
6   {
7       printf("Stored procedure execution succeeded\n");
8   }
9   else
10  {
11       printf("Error executing stored procedure: MySQL error %d (SQLSTATE %s)\n %s\n",
12 $dbh->err,$dbh->state,$dbh->errstr);
13  }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Handling Stored Program Errors in the Calling Application | 153

we use the execute method of that object to execute the stored procedure. If an error
occurs, the catch block on line 11 is invoked, and the relevant methods of the
SQLException object are used to display the details of the error.

Python
Python can connect to MySQL using the MySQLdb extension. This extension gener-
ates Python exceptions if any MySQL errors are raised during execution. We enclose
our calls to MySQL in a try block and catch any errors in an except block.

Example 6-28 shows how we can connect to MySQL and execute a stored procedure
in Python. Line 1 commences the try block, which contains our calls to MySQL. On
line 2 we connect to MySQL. On line 7 we create a cursor (SQL statement handle),
and on line 8 we execute a stored procedure call.

If any of these calls generates a MySQL error condition, we jump to the except block
on line 11. The MySQLdb.Error object (aliased here as e) contains two elements: ele-
ment 0 is the MySQL error code, and element 1 is the MySQL error message.

Example 6-27. Stored procedure error handling in Java/JDBC

1  try {
2     Class.forName("com.mysql.jdbc.Driver").newInstance( );
3
4     String ConnectionString="jdbc:mysql://" + hostname + "/" + database + "?user=" +
5            username + "&password=" + password;
6     System.out.println(ConnectionString);
7     Connection conn = DriverManager.getConnection(ConnectionString);
8     Statement stmt=conn.createStatement( );
9     stmt.execute("call error_test_proc(1)");
10  }
11  catch(SQLException SQLEx) {
12     System.out.println("MySQL error: "+SQLEx.getErrorCode( )+
13            " SQLSTATE:" +SQLEx.getSQLState( ));
14     System.out.println(SQLEx.getMessage( ));
15  }

Example 6-28. Stored procedure error handling in Python

1      try:
2              conn = MySQLdb.connect (host = 'localhost',
3                            user = 'root',
4                            passwd = 'secret',
5                            db = 'prod',
6                            port=3306)
7              cursor1=conn.cursor( )
8              cursor1.execute("CALL error_test_proc( )")
9              cursor1.close( )
10
11       except MySQLdb.Error, e:
12              print "Mysql Error %d: %s" % (e.args[0], e.args[1])



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 6: Error Handling

C# .NET
MySQL provides an ADO.NET connector—MySQL Connector/Net—that allows
any .NET-compatible language to interact with a MySQL server.

In this chapter we provide a short example of handling stored procedure errors from
a C# program. More details are provided in Chapter 17.

As in Java, C# provides an exception-handling model that relieves the developer of
the necessity of checking for error conditions after every statement execution.
Instead, commands to be executed are included within a try block. If an error occurs
for any of these statements, execution switches to the catch block, in which appro-
priate error handling can be implemented.

Example 6-29 shows an example of error handling for a simple stored procedure
(one without output parameters or result sets) in C#. A statement object for the
stored procedure is created on line 15, and the statement is executed on line 17. If a
MySqlException (essentially any MySQL error) occurs, the error handler defined on
line 19 is invoked.

catch blocks have access to a MySQLException object; this object includes Message and
Number properties, which contain the MySQL error message and error number,
respectively.

Example 6-29. Error handling in C#/ADO.NET

1   MySqlConnection myConnection;
2   myConnection = new MySqlConnection( );
3   myConnection.ConnectionString = "database="+database+";server="+server+
4                                ";user id="+user+";Password="+password;
5   try  {
6       myConnection.Open( );
7   }
8   catch (MySqlException MyException)            {
9       Console.WriteLine("Connection error: MySQL code: "+MyException.Number
10                       +" "+ MyException.Message);
11  }
12
13   try {
14
15      MySqlCommand myCommand = new MySqlCommand("call error_test_proc(1)",
16                                                 myConnection);
17      myCommand.ExecuteNonQuery( );
18   }
19   catch (MySqlException MyException)            {
20      Console.WriteLine("Stored procedure error: MySQL code: " + MyException.Number
21                        + "  " + MyException.Message);
22   }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 155

Visual Basic .NET
The process for handling stored program errors in Visual Basic .NET (VB.NET) is
practically identical to that of C#.

Example 6-30 shows an example of error handling for a simple stored procedure
(one without output parameters or result sets) in VB.NET. A statement object for the
stored procedure is created on lines 16 and 17, and the statement is executed on line
18. If a MySqlException (essentially any MySQL error) occurs, the error handler
defined in lines 20-24 is invoked.

Catch blocks have access to a MySQLException object; this object includes Message and
Number properties, which contain the MySQL error message and error number,
respectively.

Conclusion
In this chapter we examined the MySQL error handlers that allow you to catch error
conditions and take appropriate corrective actions. Without error handlers, your
stored programs will abort whenever they encounter SQL errors, returning control to
the calling program. While this might be acceptable for some simple stored pro-
grams, it is more likely that you will want to trap and handle errors within the stored

Example 6-30. Stored procedure error handling in VB.NET

1   Dim myConnectionString As String = "Database=" & myDatabase & _
2        " ;Data Source=" & myHost & _
3        ";User Id=" & myUserId & ";Password=" & myPassword
4
5   Dim myConnection As New MySqlConnection(myConnectionString)
6
7   Try
8       myConnection.Open( )
9   Catch MyException As MySqlException
10       Console.WriteLine("Connection error: MySQL code: " & MyException.Number & _
11                      " " + MyException.Message)
12   End Try
13
14   Try
15
16       Dim myCommand As New MySqlCommand("call error_test_proc(1)")
17       myCommand.Connection = myConnection
18       myCommand.ExecuteNonQuery( )
19
20   Catch MyException As MySqlException
21       Console.WriteLine("Stored procedure error: MySQL code: " & _
22 MyException.Number & "  " & _
23 MyException.Message)
24   End Try



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Error Handling

program environment, especially if you plan to call one stored program from
another. In addition, you need to declare handlers for cursor loops so that an error is
not thrown when the last row is retrieved from the cursor.

Handlers can be constructed to catch all errors, although this is currently not best
practice in MySQL, since you do not have access to an error code variable that would
allow you to differentiate between possible error conditions or to report an appropri-
ate diagnostic to the calling program. Instead, you should declare individual han-
dlers for error conditions that can reasonably be anticipated. When an unexpected
error occurs, it is best to let the stored program abort so that the calling program has
access to the error codes and messages.

Handlers can be constructed that catch either ANSI-standard SQLSTATE codes or
MySQL-specific error codes. Using the SQLSTATE codes leads to more portable code,
but because specific SQLSTATE codes are not available for all MySQL error condi-
tions, you should feel free to construct handlers against MySQL-specific error
conditions.

To improve the readability of your code, you will normally want to declare named
conditions against the error codes you are handling, so that the intention of your
handlers is clear. It is far easier to understand a handler that traps DUPLICATE_KEY_
VALUE than one that checks for MySQL error code 1062.

At the time of writing, some critical SQL:2003 error-handling functionality has yet to
be implemented in MySQL, most notably the ability to directly access the SQLSTATE
or SQLSTATE variables, as well as the ability to raise an error condition using the
SIGNAL statement. In the absence of a SQLSTATE or SQLCODE variable, it is good practice
for you to define handlers against all error conditions that can reasonably be antici-
pated that populate a SQLCODE-like variable that you can use within your program
code to detect errors and take appropriate action. We expect MySQL to add these
“missing” features in version 5.2—you should check to see if they have been imple-
mented in the time since this book was written (see the book’s web site for details).
Note also that it is currently possible to provide a workaround (though a somewhat
awkward one) for the missing SIGNAL statement if you find that it is absolutely neces-
sary in your programs.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART II

II.Stored Program Construction

This part of the book describes how you can use the elements described in Part I to
build functional and useful stored programs. In Chapter 7 we outline the commands
available for creating and modifying stored programs and provide some advice on
how to manage your stored program source code. Chapter 8 outlines transaction
handling in stored programs, while Chapter 9 details the built-in functions that can
be used in stored programs. Chapters 10 and 11 detail two “special” types of stored
programs: Chapter 10 shows how you can create and use stored functions;
Chapter 11 describes triggers, which are stored programs that are invoked in
response to DML executed on a database table.

Chapter 7, Creating and Maintaining Stored Programs

Chapter 8, Transaction Management

Chapter 9, MySQL Built-in Functions

Chapter 10, Stored Functions

Chapter 11, Triggers





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

159

Chapter 7 CHAPTER 7

Creating and Maintaining
Stored Programs7

In this chapter, we’ll explain how to create, maintain, and delete stored programs.

By definition, a stored program exists in the database (it wouldn’t be stored other-
wise, right?). So the fundamental process of creating a stored program involves sub-
mitting SQL statements to MySQL, just as creating a table involves submitting the
CREATE TABLE statement. The basic process of creating and maintaining a stored pro-
gram is very similar to that of creating any other kind of database object: you write
some SQL to create the object and you (hopefully) save that SQL somewhere safe so
that you can reuse it later. At some later time you may alter the object (or drop and
recreate it), and you may want to find out information about it.

Creating Stored Programs
The CREATE PROCEDURE, CREATE FUNCTION, and CREATE TRIGGER statements allow you to
create the various stored program objects: procedures, functions, and triggers.

You are no doubt familiar with the CREATE statements used to create tables, indexes,
and other objects. There are some minor differences between the process of creating
these objects and the process of creating stored programs. In addition to describing
these differences, the following subsections describe the various environments in which
you can issue the CREATE PROCEDURE, CREATE FUNCTION, and CREATE TRIGGER statements.

Before we dig into the syntax for creating and maintaining stored programs, let’s
look at the mechanics of editing the stored program text and submitting it to
MySQL. There are three main ways you can edit your stored program code and sub-
mit it to MySQL:

• Edit the stored program using a standard editor such as vi, Emacs, or Notepad,
and then use the MySQL command-line console to submit the statements.

• Edit and create the stored program inside the MySQL Query Browser.

• Use a third-party graphical tool—such as Quest Software’s Toad for MySQL—
to create the stored program.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 7: Creating and Maintaining Stored Programs

Editing Stored Programs Using a System Editor
It is not a good idea to create a stored program by typing code directly into the
MySQL command-line client. Instead, we normally use a GUI program such as the
MySQL Query Browser (see the next section, “Using the MySQL Query Browser”) or
use a text editor or program editor to create the procedure and then load it into the
database using the MySQL command-line client.

In Figure 7-1 we demonstrate creating a stored procedure using the Emacs editor on
Linux. Emacs allows you to create a “shell” window—shown in the lower half of the
Emacs window in Figure 7-1—in which you can execute the MySQL client.

In the top window in Figure 7-1, we create a text file called helloworld.sql. It con-
tains a DROP PROCEDURE statement—used to delete the procedure in case it already
exists—and a CREATE PROCEDURE statement.

Figure 7-1. Editing a stored program in Linux with Emacs



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating Stored Programs | 161

In the lower window, we execute the MySQL command-line client and then use the
SOURCE statement to execute the commands held in the external file. Our stored pro-
cedure is now created.

In Windows, we could use a text or program editor, such as Notepad, and run the
MySQL client in a separate window. Figure 7-2 shows how to do that.

Using the MySQL Query Browser
Using a text editor and the command-line client to edit and create a stored program
is certainly feasible, as shown in the previous section, but it is hardly an efficient or
productive process. Your stored program development will probably be faster and
more pleasurable if you use a specialized graphical tool to create your program.

MySQL provides a graphical tool—the MySQL Query Browser (introduced in
Chapter 1)—to help us edit and create stored programs. The Query Browser also
allows us to execute simple SQL statements and perform some basic schema man-
agement. Let’s walk through the steps required to create a procedure using the
Query Browser.

Figure 7-2. Editing a stored program in Windows with Notepad



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 7: Creating and Maintaining Stored Programs

First we invoke the Create Stored Procedure/Function option from the Script menu,
as shown in Figure 7-3. This opens the Create Stored Procedure dialog box (see
Figure 7-4).

In the dialog box, type the name of the stored program and click the appropriate but-
ton to create either a stored procedure or a stored function.

The MySQL Query Browser loads a template file for the stored program. Into this
template we can enter the stored program code. In this case, we simply add the
SELECT 'Hello World'; text, as shown in Figure 7-5.

Finally, we click the Execute button to execute the script and create our procedure.
Make sure that you use the Execute option in the Script menu (middle left of the
window) rather than the Execute button (upper right). If we are successful, the pro-
cedure name should appear in the Schemata window on the right, as shown in
Figure 7-6.

Figure 7-3. Creating a stored procedure in the Query Browser (step 1)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating Stored Programs | 163

Our stored procedure has now been created.

Using Third-Party Tools
The MySQL Query Browser is a fine tool for creating and maintaining stored pro-
grams. However, there are many tools on the market that provide additional fea-
tures such as code formatting, improved editing features, and more powerful
administration and schema management capabilities. Some of these products are
also able to work with other RDBMS systems such as Oracle and SQL Server.

Quest Software’s Toad for MySQL, illustrated in Figure 7-7, is such an Integrated
Development Environment (IDE) product. Toad is a standard in the Oracle commu-
nity for stored program (PL/SQL) development and is available for Oracle, DB2, and
SQL Server as well as for MySQL.

Figure 7-4. Creating a stored procedure in the Query Browser (step 2)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 7: Creating and Maintaining Stored Programs

Figure 7-5. Creating a stored procedure in the Query Browser (step 3)

Figure 7-6. Creating a stored procedure in the Query Browser (step 4)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating Stored Programs | 165

Handling Semicolons in Stored Program Code
When you type the text of a stored program, you will need to deal with the issue of
semicolons in your code.

MySQL uses the semicolon to mark the end of a SQL statement. However, stored
programs usually contain semicolons within the program code, and this can cause
MySQL to get rather confused. For instance, in Example 7-1, note that while we are
typing in the text of a stored procedure, the first semicolon in the stored procedure
causes MySQL to try to compile the procedure, causing an error because the stored
procedure code is not yet complete.

Figure 7-7. Editing stored programs with Toad for MySQL

Example 7-1. Semicolons indicate end of SQL statement, causing an error when creating a stored
procedure

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 2 to server version: 5.0.16-nightly-20051017-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 7: Creating and Maintaining Stored Programs

To avoid this kind of error, we need to inform MySQL that we are not going to use
semicolons to define the end of a statement. In Example 7-2 we use the DELIMITER
statement to change the delimiter from ";" to "$$", allowing us to successfully create
the procedure.

Editing an Existing Stored Program
There are two approaches to editing the text of existing stored programs. The easiest
—though probably not the best—way to edit an existing stored program is to use the
MySQL Query Browser to edit the stored program in place. By “in place,” we mean
that you work directly with the copy of the stored program held in the database. A
better way is to edit an external text file that contains the stored procedure code. We
describe these approaches in the following subsections.

Editing a Program in Place
Editing a stored program in place is certainly easy, as shown in Figure 7-8. To edit an
existing stored program in this way, you simply locate and select the stored program
in the MySQL Query Browser’s Schemata browser, right-click, and select Edit Proce-
dure (or Edit Function) from the context menu. The relevant stored program code is
loaded from the database into the edit window where you can make your changes.
Clicking the Execute button runs the modified script and replaces the stored pro-
gram in the database.

mysql> CREATE PROCEDURE HelloWorld( )
    -> BEGIN
    ->    SELECT 'Hello World';
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'SELECT 'Hello
World'' at line 3
mysql>

Example 7-2. Using a nondefault delimiter when creating a stored object

mysql> DELIMITER $$

mysql> CREATE PROCEDURE HelloWorld( )
    -> BEGIN
    ->    SELECT 'Hello World';
    -> END$$
Query OK, 0 rows affected (0.00 sec)

Example 7-1. Semicolons indicate end of SQL statement, causing an error when creating a stored
procedure (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Editing an Existing Stored Program | 167

Maintaining Stored Programs in External Files
There are a number of reasons why you may not want to edit stored programs in
place, as we did in Figure 7-8:

• When you retrieve the text for a stored program from the database (as Query
Browser and other similar programs do), you may find that the text of the stored
program is slightly different from the version you originally created. In particu-
lar, the name of the stored routine may be quoted and the name of the database
prepended. This prepending of the database name is a bad idea if you want to
migrate stored programs to other databases.

• It is definitely best practice to use a source control system (such as Microsoft
SourceSafe, Subversion, or CVS) to store each changed iteration of your stored
program. This allows you to roll back changes to a stored program that turn out
to be problematic, and allows you to retrieve a specific version of a program
when multiple versions are in use.

Figure 7-8. Editing a stored program in place with the MySQL Query Browser



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 7: Creating and Maintaining Stored Programs

Some third-party MySQL development tools allow you to load and save your stored
program source directly into a version control system such as CVS. For instance, in
Toad for MySQL we can check files in and out of CVS or SourceSafe from within our
programming environment, as shown in Figure 7-9.

Regardless of whether your IDE directly supports integration with a version control
system, you should still use version control to maintain stored program code. Rather
than extract the stored program code from the database, you will extract it from an
external file before editing, and you will save the external file—and check it into your
version control system—when it is complete.

Figure 7-10 shows how we can perform these actions on a Linux system using the
MySQL Query Browser as our editing environment and RCS as our version control
system.

Figure 7-9. Toad for MySQL provides integration with version control systems



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Editing an Existing Stored Program | 169

Let’s work through the steps highlighted in Figure 7-10:

1. Before we get started, we need to extract the source file from the version control
system and lock it for editing. In the RCS system this is done with the co –l
command.

2. Now we can load the source file into an edit window in the MySQL Query
Browser.

3. After making our edits, we can save our changes to the database by clicking the
Execute button.

4. We can perform basic testing of the stored program by running it from within
the Query Browser. Double-clicking the stored program name in the Schemata
browser is one way to do this.

5. If we are satisfied that our changes are good, we can save them back to the disk
file we originally loaded.

6. Now we check the changes back into version control. In RCS this is done with
the ci command.

Figure 7-10. Maintaining stored program source code in a source control system

2 5 3

4

1

6



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 7: Creating and Maintaining Stored Programs

SQL Statements for Managing Stored Programs
This section summarizes the syntax of the statements used to create, modify, and
remove stored programs from the database. This section provides only an overview;
we’ll drill down into many of the details of these statements in other chapters.

CREATE PROCEDURE
The CREATE PROCEDURE statement—you guessed it—creates a stored procedure. The
syntax for the statement is:

CREATE PROCEDURE procedure_name ([parameter[,...])
    [LANGUAGE SQL]
    [ [NOT] DETERMINISTIC ]
    [ {CONTAINS SQL|MODIFIES SQL DATA|READS SQL DATA|NO SQL} ]
    [SQL SECURITY {DEFINER|INVOKER} ]
    [COMMENT comment_string]

procedure_statements

The procedure_name follows the normal conventions for the naming of database
objects (see Chapter 3).

The parameter list consists of a comma-separated list of arguments that can be pro-
vided to the stored procedure. We spent quite a bit of time on parameters in
Chapter 3, but to summarize, each parameter is of the form:

[{IN|OUT|INOUT} ] parameter_name datatype

By default, parameters are of the IN type: this means that their values must be speci-
fied by the calling program and that any modifications made to the parameter in the
stored program cannot be accessed from the calling program. OUT parameters, on the
other hand, can be modified by the stored program, and the modified values can be
retrieved from the calling program.

An INOUT parameter acts as both an IN and an OUT parameter: the calling program can
supply a value and can see whatever changes are made to the parameter inside the
stored procedure.

The following are descriptions of the other keywords you can specify in the CREATE
PROCEDURE statement:

LANGUAGE SQL
Indicates that the stored procedure uses the SQL:PSM standard stored proce-
dure language. Since MySQL currently supports only those stored procedures
written in this language, specifying this keyword is unnecessary at present. How-
ever, in future versions, MySQL might support stored procedures written in
other languages (Java, for instance), and if this occurs, you may need to specify
this keyword.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Statements for Managing Stored Programs | 171

SQL SECURITY {DEFINER|INVOKER}
Determines whether the stored procedure should execute using the permissions
of the user who created the stored procedure (DEFINER) or the permissions of the
user who is currently executing the stored procedure (INVOKER). The default is
DEFINER. We look at the implications of these two security modes in Chapter 18.

[NOT] DETERMINISTIC
Indicates whether the stored procedure will always return the same results if the
same inputs are provided. For instance, an SQRT function is deterministic because
the square root of a number never changes, while an AGE function is nondeter-
ministic because people are getting older all the time (sigh). By default, MySQL
will assume that a stored procedure (or function) is NOT DETERMINISTIC.

In fact, the only time this keyword is critical is when you are creating a stored
function (but because the CREATE PROCEDURE syntax allows you to specify it, we
mention it here): when binary logging is enabled, you need to specify either
DETERMINISTIC or one of NO SQL or READS SQL DATA to create your function. This
issue is examined in depth in Chapter 10.

NO SQL|CONTAINS SQL|READS SQL DATA|MODIFIES SQL DATA
Indicates the type of access to database data that the stored procedure will per-
form. If a program reads data from the database, you may specify the READS SQL
DATA keyword. If the program modifies data in the database, you could specify
MODIFIES SQL DATA. If the procedure or function performs no database accesses,
you may specify NO SQL.*

COMMENT comment_string
Specifies a comment that is stored in the database along with the procedure defi-
nition. You can see these comments in the INFORMATION_SCHEMA.ROUTINES table, in
the output of SHOW PROCEDURE/FUNCTION STATUS, and in a SHOW CREATE PROCEDURE or
SHOW CREATE FUNCTION statement.

The procedure code consists of one or more SQL or stored program language state-
ments. If there is more than one statement—and there almost always will be—then
the statements must be enclosed in a BEGIN-END block.

CREATE FUNCTION
The CREATE FUNCTION statement creates a stored function. This statement has a very
similar syntax to CREATE PROCEDURE:

* A strict interpretation of the ANSI standard suggests that NO SQL is only applicable for non-SQL languages
(PHP, Java, etc.). Although NO SQL is arguably only really intended for non-SQL stored procedures, the cur-
rent behavior of MySQL makes the NO SQL clause the best choice when you must specify a SQL clause for a
function that performs no database accesses.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 7: Creating and Maintaining Stored Programs

CREATE FUNCTION function_name ([parameter[,...])
       RETURNS datatype
    [LANGUAGE SQL]
    [ [NOT] DETERMINISTIC ]
    [ { CONTAINS SQL|NO SQL|MODIFIES SQL DATA|READS SQL DATA} ]
    [SQL SECURITY {DEFINER|INVOKER} ]
    [COMMENT comment_string]

function_statements

There are only a few fundamental differences between the syntax of CREATE PROCEDURE
and that of CREATE FUNCTION:

• CREATE FUNCTION includes a mandatory RETURNS statement that specifies the data
type that will be returned from the function call.

• With CREATE FUNCTION, you cannot specify the IN, OUT, or INOUT modifiers to
parameters. All parameters are implicitly IN parameters.

• The function body must contain one or more RETURN statements, which termi-
nate function execution and return the specified result to the calling program.

We look at stored functions in detail in Chapter 10.

CREATE TRIGGER
The CREATE TRIGGER statement creates a trigger. Its syntax follows:

CREATE [DEFINER = { user|CURRENT_USER }] TRIGGER trigger_name
       {BEFORE|AFTER}
       {UPDATE|INSERT|DELETE}
       ON table_name
       FOR EACH ROW

trigger_statements

As with other stored programs, the trigger name must conform to the general rules
for naming objects, as outlined in Chapter 3. There are several differences between
this statement syntax and that of CREATE PROCEDURE and CREATE FUNCTION:

DEFINER
This optional clause specifies the security privileges that the trigger code will
assume when it is invoked. The default CURRENT_USER setting results in the trig-
ger executing with the privileges of the account that executes the CREATE TRIGGER
statement. Specifying a user allows the trigger to execute with the privileges of
another account.

BEFORE or AFTER
These clauses control the sequence in which the trigger will fire—either before
or after the triggering statement is executed.

UPDATE, INSERT, or DELETE
These clauses specify the type of DML statement that will cause the trigger to be
invoked.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Getting Information About Stored Programs | 173

trigger_statements
This code can be one or more stored program language statements. If more than
one statement is specified, they must all be contained within a BEGIN-END block.

Triggers are described in detail in Chapter 11.

ALTER PROCEDURE/FUNCTION
You can use the ALTER statement to change the SQL SECURITY characteristic of a stored
procedure or stored function, or to change the comment associated with the proce-
dure or function. This statement cannot currently be issued for triggers. The syntax
of this statement is shown below:

ALTER {PROCEDURE|FUNCTION} procedure_or_function_name

    [SQL SECURITY {DEFINER|INVOKER}]
    [COMMENT comment_string ]

DROP PROCEDURE/FUNCTION/TRIGGER
You can use the DROP statement to remove a stored procedure, function, or trigger
from the database:

DROP {PROCEDURE|FUNCTION|TRIGGER} [IF EXISTS] program_name

IF EXISTS is only valid for stored procedures and triggers, not for triggers.

We frequently include a DROP PROCEDURE IF EXISTS statement in the same source file as
our CREATE statement to remove the previous definition of the procedure before creat-
ing the new version (see Figure 7-10 for an example of this).

Getting Information About Stored Programs
This section describes ways you can retrieve information about the stored programs
that exist in your database.

In releases of MySQL prior to 5.0, extracting information about objects in the data-
base was achieved by issuing SHOW statements. MySQL has extended the SHOW state-
ment in version 5 to include information about stored programs.

However, in 5.0, MySQL also introduced the INFORMATION_SCHEMA database, which
contains various tables that provide information about the objects that exist within
the server. These tables are typically referred to as the data dictionary or as server
metadata.

If you are a long-time user of the MySQL server, then using SHOW statements may
seem a more natural approach to obtaining information about stored programs.
However, the INFORMATION_SCHEMA tables—in addition to being ANSI standard—have



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 7: Creating and Maintaining Stored Programs

the advantage of being amenable to various handy SELECT operations, such as group-
ing, counting, joining, and advanced filtering operations. You can also use
INFORMATION_SCHEMA tables within your stored program code—something that is not
practical with SHOW statement output.

SHOW PROCEDURE/FUNCTION STATUS
The SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements return informa-
tion about the stored programs within the server. The syntax of this form of the SHOW
statement is:

SHOW {PROCEDURE|FUNCTION} STATUS [LIKE pattern]

Figure 7-11 provides an example of SHOW PROCEDURE status output.

SHOW CREATE PROCEDURE/FUNCTION
The SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements return the CREATE
statement necessary to re-create a particular stored program. Figure 7-12 shows the
output of this version of SHOW. Note that we used the “View Field pop-up editor”
right-click option to load the text output returned by this statement into a more
readable Field Viewer window.

INFORMATION_SCHEMA.ROUTINES Table
The INFORMATION_SCHEMA.ROUTINES table returns a variety of information about stored
procedures and functions. You can use the WHERE clause and column lists within the
SELECT statement to format this output in various interesting ways.

Figure 7-11. SHOW PROCEDURE STATUS



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Getting Information About Stored Programs | 175

This table does not contain information about triggers, but you can retrieve trigger
information from the INFORMATION_SCHEMA.TRIGGERS table described in the next section.

Figure 7-13 shows the structure of the INFORMATION_SCHEMA.ROUTINES table.

You can use INFORMATION_SCHEMA.ROUTINES to return any of the data returned by the
SHOW PROCEDURE STATUS, SHOW FUNCTION STATUS, SHOW CREATE PROCEDURE, and SHOW
CREATE FUNCTION statements. For instance, in Figure 7-14, we produce a report that
includes both the procedure/function definitions and other information about these
programs.

INFORMATION_SCHEMA.TRIGGERS Table
The INFORMATION_SCHEMA.TRIGGERS table contains details about all of the triggers that
are defined on the MySQL server. Figure 7-15 shows the output from a query against
this table (using the “View Field pop-up editor” right-click option to view the con-
tents of the action_statement column).

Figure 7-12. SHOW CREATE FUNCTION



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 7: Creating and Maintaining Stored Programs

Conclusion
In this chapter we looked at the process of creating and managing stored objects
(procedures, functions, and triggers). Let’s conclude with an outline of what we
regard as the best practices for creating and managing stored objects:

• Make sure that the reference (e.g., official) copy of each of your stored programs
exists as a file on disk, not as the copy stored in the MySQL server. Stored pro-
grams might need to be shared between multiple servers, and you therefore need
at least one copy—not on a server—that represents the current version.

• Use a version control system to maintain a copy of any version of a stored pro-
gram that is deployed to a MySQL server. In other words, subject stored pro-
gram code to the same discipline that you apply to other program code.

• When you are editing a stored program, check it out of the source control sys-
tem and load the checked-out copy into the MySQL Query Browser or other
tool.

Figure 7-13. Structure of the INFORMATION_SCHEMA.ROUTINES table



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 177

• When you are satisfied with your changes, save the stored program code to a
disk file and check it into the version control system.

• Deploy the stored program by creating command-line routines using the MySQL
client program, and embed these into Make files or other build/deploy scripts
that you can use to apply schema changes and other server object changes.

Figure 7-14. Viewing the INFORMATION_SCHEMA.ROUTINES table



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 7: Creating and Maintaining Stored Programs

Figure 7-15. Viewing the INFORMATION_SCHEMA.TRIGGERS table



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

179

Chapter 8 CHAPTER 8

Transaction Management8

A transaction is a set of one or more SQL statements that are logically grouped
together and that must be either applied to the database in their entirety or not
applied at all.

Consider the commonly cited example of a funds transfer from one account to
another. In its most simple form, this transfer will involve two UPDATE statements:
one to reduce the account balance in the “from” account, and another to increase the
account balance in the “to” account. Suppose that the “from” account has been
updated, but then the change to the “to” account cannot be completed. We must be
sure to undo that first update, or the money that was to be transferred will have, in
effect, “disappeared.”

We expect database transactions to conform to the ACID principle, which means
that transactions should be:

Atomic
The transaction is indivisible—either all the statements in the transaction are
applied to the database, or none are.

Consistent
The database remains in a consistent state before and after transaction execution.

Isolated
While multiple transactions can be executed by one or more users simulta-
neously, one transaction should not see the effects of other concurrent
transactions.

Durable
Once a transaction is saved to the database (an action referred to in database
programming circles as a commit), its changes are expected to persist. Even if the
user turns off her computer or the database server goes down, the changes will
be saved. This usually means that the result of the transaction must be written to
a nonvolatile form of storage, such as a hard disk (alternatively, it could be
redundantly stored in multiple memory stores, written to battery-backed mem-
ory, or written to solid state disk).



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 8: Transaction Management

Stored programs provide an excellent mechanism for defining, encapsulating, and
managing transactions. Without the features available in stored progams, the calling
program would need to issue the relevant SQL statements for the transaction and
provide the logic to control locking and handle transaction failure. With MySQL
stored program support, we can now encapsulate the multiple, interdependent SQL
statements of the transaction into a single stored program. The application code,
such as a PHP program, calls the stored program and transfers the responsibility for
transaction management to the program executing in the database server.

In this chapter we review transactional support in MySQL and show how to create a
transaction within a stored program. We also discuss how to deal with common
transaction-related issues, such as lock timeouts, deadlocks, and locking strategies.
We conclude by providing a general-purpose set of guidelines for transaction design.

Transactional Support in MySQL
MySQL is virtually unique in modern relational databases in that transactions are
not mandatory. Under certain circumstances, they are not even possible. In fact, with
MySQL, transactional support is a property not of the MySQL server itself, but of the
underlying storage engine employed. Currently, the two most popular storage
engines used with MySQL are MyISAM and InnoDB, although a small number of
users use BerkeleyDB:

MyISAM
MyISAM does not support transactions. Using a nontransactional storage engine
is fine for certain applications—in particular those that are overwhelmingly read-
only. Certainly, if you do not need to manage transactions, you can improve the
performance of some applications by avoiding the overhead associated with
transaction management. If, on the other hand, you are building an application
with a significant amount of updates and concurrent updates to the database,
you will probably want to avoid MyISAM and instead rely on a transactional
engine.

InnoDB
InnoDB is the most popular transaction-safe MySQL storage engine. It supports
ACID transactions as well as row-level locking and multiversion concurrency.

Berkeley DB
This storage engine also supports transactions but is currently less widely used
than InnoDB.

In a survey conducted by MySQL AB (http://dev.mysql.com/tech-resources/quickpolls/
storage-engines.html), about 60% of respondents reported using MyISAM as their
primary storage engine, while 37% used InnoDB and about 1% used BerkeleyDB.
However, these figures are likely to change over the next few years, as MySQL AB
releases additional storage engine types, many of which will be transactional.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transactional Support in MySQL | 181

This chapter assumes that you are using a transactional storage engine
such as InnoDB or BerkeleyDB.

First, we need to discuss the concept of isolation levels and sessions.

Isolation Levels
Before we can talk sensibly about transactions and isolation levels, we need to be
clear on the concept of a session. A database session is a unique connection to the
database that commences when you log on to MySQL and that terminates when you
disconnect—either explicitly or when MySQL notices that your client program has
“gone away.”

Every session has its own memory areas and—more importantly—can hold locks on
data or have a unique view of certain data. Isolation levels determine the degree to
which transactions in one session may affect the data seen or accessed by another
session. All isolation levels are compromises between concurrency—the ability for
multiple sessions to perform operations on the database at the same time—and con-
sistency—the degree to which a session sees a logical and correct view of the data
regardless of what activities might be going on in other sessions.

The isolation level of a transaction also determines the degree to which that transac-
tion conforms to the ACID properties described at the beginning of this chapter.
Each of the four isolation levels represents a different balance between the isolation
and concurrency of transactions. At the highest isolation levels, very few transac-
tions will be able to execute concurrently, but the chances of one transaction inter-
fering with another will be minimized. At the lower isolation levels, many
transactions will be able to execute concurrently, but the chances of conflicts
between transactions will be higher.

The ANSI standard defines four isolation levels, all of which are supported by
MySQL when using the InnoDB engine:

READ UNCOMMITTED
This is the lowest possible isolation level. Sometimes called dirty read, this level
permits a transaction to read rows that have not yet been committed. Using this
isolation level might improve performance, but the idea of one user retrieving
data changed by another user, which might not actually be committed, is usu-
ally unacceptable.

READ COMMITTED
At this isolation level, only committed rows can be seen by a transaction. Fur-
thermore, any changes committed after a statement commences execution can-
not be seen. For example, if you have a long-running SELECT statement in session



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 8: Transaction Management

A that queries from the BOOKS table, and session B inserts a row into BOOKS while
A’s query is still running, that new row will not be visible to the SELECT.

REPEATABLE READ
At this isolation level, no changes to the database that are made by other ses-
sions since the transaction commenced can be seen within the transaction, until
the transaction is committed or rolled back (cancelled). This means that if you
re-execute a SELECT within your transaction, it will always show the same results
(other than any updates that occurred in the same transaction).

SERIALIZABLE
At this isolation level, every transaction is completely isolated so that transac-
tions behave as if they had executed serially, one after the other. In order to
achieve this, the RDBMS will typically lock every row that is read, so other ses-
sions may not modify that data until the transaction is done with it. The locks
are released when you commit or cancel the transaction.

You can change the isolation level in your MySQL session with the SET statement:

SET TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED | READ COMMITTED
                                  |REPEATABLE READ | SERIALIZABLE}

Under normal circumstances, you should avoid changing the transaction isolation
level from the default of REPEATABLE READ. In particular, think carefully before setting
the isolation level to READ UNCOMMITTED or SERIALIZABLE. READ UNCOMMITTED can lead to
serious problems with the integrity of the data returned by the SELECT statement,
while SERIALIZABLE will have a noticeable, negative effect on performance and can
also increase the chance of “deadlocks” (described later in this chapter).

Transaction Management Statements
Use the following transaction management statements in MySQL stored programs:

START TRANSACTION
Signifies the commencement of a new transaction. If an existing transaction is
already in progress, then START TRANSACTION will issue an implicit COMMIT. When
you issue START TRANSACTION, the autocommit property (described in the next sec-
tion) is effectively and implicitly set to 0 until the transaction ends. We recom-
mend that you explicitly commit or roll back existing transactions before any
START TRANSACTION statements, since the implicit COMMIT might not be obvious to
someone reading or maintaining your code.

COMMIT
Saves all changes made in the transaction to the database and then terminates a
transaction. COMMIT also releases any locks that might be in effect, whether they
are explicit locks from FOR UPDATE or LOCK TABLES or implicit locks acquired as a
result of executing DML statements.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Defining a Transaction | 183

ROLLBACK
Undoes any changes to the database made by the transaction and then terminates
that transaction. Like COMMIT, ROLLBACK releases any locks held by the transaction.

SAVEPOINT savepoint_name
Creates a named savepoint identifier that can be the target of a ROLLBACK TO
SAVEPOINT statement.

ROLLBACK TO SAVEPOINT savepoint_name
Performs a rollback on all statements that have been executed since the speci-
fied savepoint was created. In this way, you can roll back only part of a transac-
tion, preserving some subset of your changes to still be saved. You may find
savepoints useful when you need to save part of your work after an error has
occurred. See the section “Working with Savepoints” later in this chapter for
more details.

SET TRANSACTION
Allows you to change the isolation level of your transaction. See the section “Iso-
lation Levels” earlier in this chapter for more details.

LOCK TABLES
Allows you to explicitly lock one or more tables. Note that LOCK TABLES implic-
itly closes any currently open transactions. We recommend that you explicitly
commit or roll back your transaction before any LOCK TABLES statements. We
rarely want to lock entire tables in the normal course of transaction processing,
so we don’t usually include LOCK TABLES statements in our transactional code.

Defining a Transaction
The default behavior of MySQL is to perform a COMMIT after the execution of each
individual SQL statement, effectively turning every statement into an individual
transaction. This approach is inadequate for most complex applications.

To enable transactions, allowing multiple SQL statements to be executed before a
COMMIT or ROLLBACK is performed, you must take one of the following two steps:

• Set the MySQL autocommit property or variable to 0. The default setting for
AUTOCOMMIT is 1.

• Explicitly initiate a transaction with the START TRANSACTION statement.

Since it is dangerous to assume that the MySQL environment is running with the
necessary transaction setting, you should generally include either a SET AUTOCOMMIT=0
or START TRANSACTION statement in any transactional stored program.

The SET autocommit=0 statement simply ensures that MySQL will not implicitly issue
a COMMIT after every SQL statement. Note, however, that if you have already initiated
a transaction, issuing SET autocommit will have no effect. START TRANSACTION, on the



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 8: Transaction Management

other hand, implicitly commits any currently outstanding changes in your session,
terminating the existing transaction and starting a new one.

We recommend that you leave nothing to chance when programming transactions in
MySQL stored programs. Therefore, we suggest that you always explicitly com-
mence a transaction with a START TRANSACTION statement and explicitly end your
transaction with a COMMIT or ROLLBACK.

Wherever possible, define explicitly the beginning and end of every
transaction with START TRANSACTION and COMMIT/ROLLBACK statements.
Place the START TRANSACTION statement at the beginning of your trans-
action, and terminate it with either COMMIT or ROLLBACK. If your pro-
gram ends with conditional logic as part of its error handling, you
may, in fact, need to use both of these statements—in different
branches of your IF or CASE statement.

Example 8-1 shows a transaction implemented in a stored procedure using a SET
AUTOCOMMIT statement.

Example 8-2 shows an example of defining a transaction using START TRANSACTION.

Example 8-1. Commencing a transaction using SET AUTOCOMMIT

CREATE PROCEDURE tfer_funds
       (from_account int, to_account int,tfer_amount numeric(10,2))
BEGIN
    SET autocommit=0;

    UPDATE account_balance
       SET balance=balance-tfer_amount
     WHERE account_id=from_account;

    UPDATE account_balance
       SET balance=balance+tfer_amount
     WHERE account_id=to_account;

    COMMIT;
END;

Example 8-2. Commencing a transaction using START TRANSACTION

CREATE PROCEDURE tfer_funds
       (from_account int, to_account int,tfer_amount numeric(10,2))
BEGIN
    START TRANSACTION;

    UPDATE account_balance
       SET balance=balance-tfer_amount
     WHERE account_id=from_account;

    UPDATE account_balance



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Savepoints | 185

As we’ve said, transactions normally complete when either a COMMIT or a ROLLBACK
statement is executed. However, be aware that some statements—usually Data Defi-
nition Language (DDL) statements—can cause implicit COMMITs. The statements that
implicitly commit, and should therefore be avoided when a transaction is active,
include the following:

Working with Savepoints
Savepoints allow you to perform a partial rollback of the changes in your transac-
tion. If you issue an unqualified ROLLBACK, any and all changes in your current ses-
sion are erased. If, however, you place a SAVEPOINT statement in your program, then
you can roll back to that point in your program (and your transaction). In other
words, any changes made before that statement can still be saved to the database
with a COMMIT.

Generally, savepoints are intended to allow you to recover from a statement-level
error without having to abort and restart your transaction. In these circumstances,
the transaction includes one or more statements that might fail, yet should not force
the invalidation of the entire transaction. Usually you will want to roll back to a save-
point, as part of handling the error, and then take the appropriate action, as indi-
cated by the particular error that was raised.

Example 8-3 demonstrates the use of a savepoint with a transaction that creates or
updates a location record, and then creates or updates a departments record that
resides at that location:

       SET balance=balance+tfer_amount
     WHERE account_id=to_account;

    COMMIT;
END;

ALTER FUNCTION ALTER PROCEDURE ALTER TABLE

BEGIN CREATE DATABASE CREATE FUNCTION

CREATE INDEX CREATE PROCEDURE CREATE TABLE

DROP DATABASE DROP FUNCTION DROP INDEX

DROP PROCEDURE DROP TABLE UNLOCK TABLES

LOAD MASTER DATA LOCK TABLES RENAME TABLE

TRUNCATE TABLE SET AUTOCOMMIT=1 START TRANSACTION

Example 8-3. Example of a transaction that uses a savepoint

1  CREATE PROCEDURE savepoint_example(in_department_name VARCHAR(30),
2                                     in_location VARCHAR(30),
3                                     in_address1 VARCHAR(30),

Example 8-2. Commencing a transaction using START TRANSACTION (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 8: Transaction Management

4                                     in_address2 VARCHAR(30),
5                                     in_zipcode           VARCHAR(10),
6                                     in_manager_id INT)
7  BEGIN
8      DECLARE sp_location_exists INT DEFAULT 0;
9      DECLARE duplicate_dept  INT DEFAULT 0;
10
11
12     START TRANSACTION;
13
14     -- Does the location exist?
15     SELECT COUNT(*)
16       INTO location_exists
17       FROM locations
18      WHERE location=in_location;
19
20     IF location_exists=0 THEN
21
22          INSERT INTO AUDIT_LOG (audit_message)
23                         VALUES (CONCAT('Creating new location',in_location));
24
25          INSERT INTO locations (location,address1,address2,zipcode)
26           VALUES (in_location,in_address1,in_address2,in_zipcode);
27     ELSE
28
29          UPDATE locations set address1=in_address1,
30                        address2=in_address2,
31                        zipcode=in_zipcode
32          WHERE location=in_location;
33
34    END IF;
35
36 SAVEPOINT savepoint_location_exists;
37
38    BEGIN
39         DECLARE DUPLICATE_KEY CONDITION FOR 1062;
40         DECLARE CONTINUE HANDLER FOR DUPLICATE_KEY /*Duplicate key value*/
41                 BEGIN
42                   SET duplicate_dept=1;
43                   ROLLBACK TO SAVEPOINT savepoint_location_exists;
44                 END;
45
46        INSERT INTO AUDIT_LOG (audit_message)
47               VALUES (CONCAT('Creating new department',in_department_name));
48
49        INSERT INTO DEPARTMENTS (department_name,location,manager_id)
50                         VALUES (in_department_name,in_location, in_manager_id);
51
52        IF duplicate_dept=1 THEN
53
54             UPDATE departments
55                SET location=in_location,

Example 8-3. Example of a transaction that uses a savepoint (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Savepoints | 187

Here is an explanation of this complex transaction logic:

Now that you have seen how to use the SAVEPOINT and ROLLBACK TO statements, we
need to point out two undesirable side effects of this approach and then offer a
restructuring of the program that renders savepoints unnecessary. These are the side
effects:

• The insert into the AUDIT_LOG table on line 46 will, indeed, be rolled back when
the department cannot be inserted. However, the overhead of inserting and then
rolling back that insert might not be trivial in a high-throughput environment.

• The execution flow of the transaction is unclear. The rollback is defined in the
handler on line 43, but actually will be triggered only when the insert fails on
line 49. It is hard to tell just by looking at the INSERT statement what will hap-
pen, making it difficult to understand the overall logic of the transaction. It is,
quite simply, more complicated than necessary.

56                       manager_id=in_manager_id
57              WHERE department_name=in_department_name;
58        END IF;
59
60    END;
61
62    COMMIT;
63
64 END;

Line(s) Explanation

12 The START TRANSACTION statement denotes the start of the transaction. We can place this statement after
our declarations, since they do not participate in any way in the transaction.

15 In this SQL statement we check to see if a matching location exists.

20-26 If the location does not exist (line 20), we insert an audit log record (lines 22-23) and then create the location
(lines 25-26).

29-32 If the location already exists, we update it with new detail.

36 Whether or not the location existed in line 20, it definitely exists now, so we establish a savepoint indicating
that we have gotten this much work done.

39-44 Define an error handler that will fire in the event of a duplicate key error. If the handler is invoked, it will issue a
rollback to our savepoint and then set the duplicate_dept variable so that we can detect that the rollback
has occurred. You will find more information about handler logic in Chapter 6.

46-50 Insert an audit record and then insert a new department. If a department already exists with this name, the
handler will fire, setting the duplicate_dept variable and rolling back to the savepoint. This partial rollback
will undo the audit log entry for the new department, but will preserve the inserts or update executed to ensure
that the location existed.

52-58 Check the duplicate_dept variable to see if there was a problem inserting the department. If so, then
update the existing DEPARTMENTS record with the new information.

Example 8-3. Example of a transaction that uses a savepoint (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 8: Transaction Management

We can rewrite this program to avoid the use of savepoints altogether (see
Example 8-4). A hint of this approach was offered earlier in the procedure (lines 20-
34): check to see if the record exists, then issue the INSERT or UPDATE as appropriate.
The resulting logic is more straightforward, and actually reduces the number of SQL
statements we need to code.

Example 8-4. Alternative to the SAVEPOINT implementation

CREATE PROCEDURE nosavepoint_example(in_department_name VARCHAR(30),
                                   in_location VARCHAR(30),
                                   in_address1 VARCHAR(30),
                                   in_address2 VARCHAR(30),
                                   in_zipcode  VARCHAR(10),
                                   in_manager_id INT)
BEGIN
    DECLARE location_exists    INT DEFAULT 0;
    DECLARE department_exists  INT DEFAULT 0;

    START TRANSACTION;

    -- Does the location exist?
    SELECT COUNT(*)
      INTO location_exists
      FROM locations
     WHERE location=in_location;

    IF location_exists=0 THEN

         INSERT INTO AUDIT_LOG (audit_message)
                        VALUES (CONCAT('Creating new location',in_location));

         INSERT INTO locations (location,address1,address2,zipcode)
          VALUES (in_location,in_address1,in_address2,in_zipcode);
    ELSE

         UPDATE locations set address1=in_address1,
                       address2=in_address2,
                       zipcode=in_zipcode
         WHERE location=in_location;

    END IF;

    -- Does the department exists?
    SELECT COUNT(*)
      INTO department_exists
         FROM departments
     WHERE department_name=in_department_name;

    IF department_exists=1 THEN

          UPDATE departments
                SET location=in_location,
                   manager_id=in_manager_id



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Savepoints | 189

Savepoints can be used to partially roll back transactions in the event
of an error. If you cannot achieve the same effect through the use of
exception handlers and conditional logic, then savepoints may be
required. Watch out for SAVEPOINT-based implementations, however,
that result in unnecessary and unnecessarily complicated code.

One good use of savepoints is to implement “nested” transactions inside of discrete
stored programs. You may with to implement a stored program that performs a small
transaction, but you don’t want a rollback in that program to abort any larger trans-
action that may be in progress. A savepoint is a good way to do this, since you can
easily roll back only the statements that you have issued within the procedure.
Example 8-5 shows a stored program that implements this approach.

            WHERE department_name=in_department_name;

    ELSE

        INSERT INTO AUDIT_LOG (audit_message)
               VALUES (CONCAT('Creating new department',in_department_name));

        INSERT INTO DEPARTMENTS (department_name,location,manager_id)
               VALUES (in_department_name,in_location, in_manager_id);

    END IF;

    COMMIT;

END;

Example 8-5. Example of a “nested” transaction using a savepoint

CREATE PROCEDURE nested_tfer_funds(
  in_from_acct INTEGER,
  in_to_acct   INTEGER,
  in_tfer_amount DECIMAL(8,2))
BEGIN

  DECLARE txn_error INTEGER DEFAULT 0 ;

  DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN
    SET txn_error=1;
  END;

SAVEPOINT savepoint_tfer;

  UPDATE account_balance
     SET balance=balance-in_tfer_amount
   WHERE account_id=in_from_acct;

Example 8-4. Alternative to the SAVEPOINT implementation (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 8: Transaction Management

The program in Example 8-5 creates a savepoint before issuing any DML state-
ments. Should any errors occur, the program issues a rollback to that savepoint to
ensure that the DML statements issued by the program—but only those state-
ments—are reversed.

Transactions and Locks
The ACID properties of a transaction can only be implemented by restricting simul-
taneous changes to the database. This is achieved by placing locks on modified data.
These locks persist until the transaction issues a COMMIT or ROLLBACK statement.

Without locks, a change made by one transaction could be overwritten by another
transaction that executes at the same time. Consider, for example, the scenario
shown in Figure 8-1, based on the tfer_funds procedure of Example 8-2. When two
different sessions run this program for the same account number, we encounter some
obvious difficulties if locks are not in place.

  IF txn_error THEN
ROLLBACK TO savepoint_tfer;

    SELECT 'Transfer aborted ';
  ELSE
    UPDATE account_balance
       SET balance=balance+in_tfer_amount
     WHERE account_id=in_to_acct;

     IF txn_error THEN
ROLLBACK TO savepoint_tfer;

        SELECT 'Transfer aborted ';
     END IF;
  END IF;

END;

Figure 8-1. Illustration of a transaction without locking

Example 8-5. Example of a “nested” transaction using a savepoint (continued)

Transaction A Transaction B Balance of Account #2

$2,000

$1,900

$2,300

$1,900

$2,300

UPDATE  account_balance
SET  balance=balance-100
WHERE  account_id=2

UPDATE  account_balance
SET  balance=balance+300
WHERE  account_id=2

COMMIT

COMMIT

Ti
m

e



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transactions and Locks | 191

In this scenario, account 2 starts with a balance of $2,000. Transaction A reduces the
balance of the account by $100. Before transaction A commits, transaction B
increases the account value by $300. Because transaction B cannot see the uncom-
mitted updates made by transaction A, it increases the balance to $2,300. Because we
allowed two transactions to simultaneously modify the same row, the database is
now in an inconsistent state. The end balance for the account will be the value set by
whichever transaction commits last. If transaction B is the last to commit, then the
owner of account 2 will have $100 more than she should. On the other hand, if
transaction A commits first, the account owner will be $300 out of pocket!

This clearly unacceptable result is completely avoidable when locks are placed on
rows that have been changed, as is illustrated in Figure 8-2.

Now, when transaction A updates account 2, the relevant row is locked and cannot
be updated by another transaction. Transaction B must wait for transaction A to be
committed before its update can proceed. When transaction A commits, transaction
B applies its update to the modified account balance, and the integrity of the account
balance is maintained.

The downside of this locking strategy is that transaction B must wait for transaction
A to complete. The more programs you have waiting for locks to clear, the less
throughput your transactional system will be able to support.

MySQL/InnoDB minimizes the amount of lock contention by locking at the row
level only. In our example, updates to other rows in the ACCOUNT_BALANCE table are
able to proceed without restriction. Furthermore, with InnoDB, reads do not nor-
mally cause locks to occur, and readers do not need to wait for locks to be released
before accessing data. Other transactional storage engines—and other RDBMS sys-
tems—may behave differently.

Figure 8-2. Illustration of a transaction with locking

Transaction A Transaction B Balance of Account #2

$2,000

$1,900

$1,900

$2,200

$2,200

UPDATE  account_balance
SET  balance=balance-100
WHERE  account_id=2

UPDATE  account_balance
SET  balance=balance+300
WHERE  account_id=2

COMMIT

COMMIT

Account #2 is locked and cannot be
updated until the transaction commits

Ti
m

e



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 8: Transaction Management

You can, however, place locks on rows that have only been read by using the FOR
UPDATE or LOCK IN SHARE MODE clause in the SELECT statement, and this is sometimes
required to implement a specific locking strategy (see “Optimistic and Pessimistic
Locking Strategies,” later in this chapter).

In the following subsections we’ll look at various types of locking situations, prob-
lems, and strategies.

Situations in Which Locks Arise
While it is possible for you to lock rows explicitly, you will generally rely on the stor-
age engine to lock rows (or an entire table) implicitly, which it will do under the fol-
lowing circumstances:

• When an UPDATE statement is executed, all rows modified will be locked.

• An INSERT statement will cause any primary or unique key records to be locked.
This will prevent a concurrent insert of a statement with an identical primary
key.

• You can lock entire tables with the LOCK TABLES statement. This is not generally
recommended, because it not only reduces concurrency, it operates above the
storage engine layer, which might mean that any storage engine deadlock resolu-
tion mechanisms may be ineffectual.

• If you use the FOR UPDATE or LOCK IN SHARE MODE clauses in a SELECT statement, all
of the rows returned by that SELECT statement will be locked.

Locking rows as they are read is an important technique that we’ll demonstrate in
subsequent examples. To read and simultaneously lock a row, you include the FOR
UPDATE or LOCK IN SHARE MODE clause in the SELECT statement, as follows:

SELECT SELECT_statement options
       [FOR UPDATE|LOCK IN SHARE MODE]

The two locking options differ in the following ways:

FOR UPDATE
When you use this clause, you acquire an exclusive lock on the row with the
same characteristics as an UPDATE on that row. Only one SELECT statement can
simultaneously hold a FOR UPDATE lock on a given row; other SELECT statements
(or DML statements) will have to wait until the transaction ends.

LOCK IN SHARE MODE
When you use this clause, it prevents any DML from being applied to the row
you have locked. However—unlike FOR UPDATE—any number of SHARE MODE locks
can be applied to a single row simultaneously.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transactions and Locks | 193

Deadlocks
A deadlock occurs when two transactions are each waiting for the other to release a
lock—they each block each other, and neither can proceed. For instance, consider
the situation in which one transaction attempts to transfer $100 from account 2 to
account 1. Simultaneously, another transaction attempts to transfer $300 from
account 1 to account 2. If the timing of the two transactions is sufficiently unfortu-
nate, then each may end up waiting for the other to release a lock, resulting in a
stalemate that will never end. Figure 8-3 shows the sequence of events.

When MySQL/InnoDB detects a deadlock situation, it will force one of the transac-
tions to roll back and issue an error message, as shown in Example 8-6. In the case of
InnoDB, the transaction thus selected will be the transaction that has done the least
work (in terms of rows modified).

Deadlocks can occur in any database system, but in row-level locking databases like
MySQL/InnoDB, the possibility of a deadlock is usually low. You can further reduce
the frequency of deadlocks by locking rows or tables in a consistent order, and by
keeping your transactions as short as possible.

If you are building (or debugging) an application in which deadlocks seem likely to
occur, and you cannot reorganize your transactions to avoid them, you can add logic
to your programs to handle deadlocks and retry the transaction.

Example 8-7 shows a modified version of the stored procedure in Example 8-2 that
will retry its transaction up to three times in the event of a deadlock.

Figure 8-3. Sequence of events that leads to a deadlock condition

Example 8-6. Example of a deadlock error

mysql> CALL tfer_funds(1,2,300);
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

Transaction A Transaction B Status

Account #2 is locked
UPDATE  account_balance
SET  balance=balance-100
WHERE  account_id=2

UPDATE  account_balance
SET  balance=balance–300
WHERE  account_id=1Ti

m
e Account #1 is locked

Waits for lock on account #1
to be released

UPDATE  account_balance
SET  balance=balance+100
WHERE  account_id=1

UPDATE  account_balance
SET  balance=balance+300
WHERE  account_id=2

Waits for lock on account #2
to be released



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 8: Transaction Management

Example 8-7. Stored procedure with deadlock-handling logic

1   CREATE PROCEDURE tfer_funds2
2          (from_account INT, to_account INT,
3           tfer_amount numeric(10,2), OUT out_status INT,
4           OUT out_message VARCHAR(30))
5   BEGIN
6
7       DECLARE deadlock INT DEFAULT 0;
8       DECLARE attempts INT DEFAULT 0;
9
10      tfer_loop:WHILE (attempts<3) DO
11           BEGIN
12                DECLARE deadlock_detected CONDITION FOR 1213;
13                DECLARE EXIT HANDLER FOR deadlock_detected
14                     BEGIN
15                          ROLLBACK;
16                          SET deadlock=1;
17                     END;
18                SET deadlock=0;
19
20                START TRANSACTION;
21
22                UPDATE account_balance
23                   SET balance=balance-tfer_amount
24                 WHERE account_id=from_account;
25
26                UPDATE account_balance
27                   SET balance=balance+tfer_amount
28                 WHERE account_id=to_account;
29
30                COMMIT;
31
32           END;
33           IF deadlock=0 THEN
34                LEAVE tfer_loop;
35           ELSE
36                SET attempts=attempts+1;
37           END IF;
38      END WHILE tfer_loop;
39
40      IF deadlock=1 THEN
41           SET out_status=-1;
42           SET out_message="Failed with deadlock for 3 attempts";
43
44      ELSE
45           SET out_status=0;
46           SET out_message=CONCAT("OK (",attempts," deadlocks)");
47      END IF;
48
49  END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transactions and Locks | 195

The error-handling techniques in Example 8-7 rely on statements introduced in
Chapter 6. Here is a line-by-line explanation of the code:

Going to this much effort to handle deadlocks will be overkill for most applications.
Unless your application design is particularly vulnerable to deadlocks, you will
encounter deadlocks so infrequently that you actually weaken your application by
including so much hard-to-maintain deadlock-handling code.

As noted above, there are usually other ways to avoid deadlock scenarios. For
instance, in Example 8-8 we lock the rows to be updated in numerical order before
issuing any UPDATEs. Because the rows are always locked in the same order, one
instance of this transaction should not cause a deadlock if another session runs the
same program.

Line(s) Explanation

10 Commence a WHILE loop that will control attempts to execute (and possibly re-execute) the transaction. The
WHILE loop condition of (attempts<3) ensures that we will try no more than three times to complete this
task.

11 Define an anonymous BEGIN block within the loop to contain the transaction. The END statement for this block
appears on line 32. The block allows us to trap an error within the body of the loop, but not exit the loop itself.

12-18 Prepare the block for the execution of the transaction. Define an EXIT handler and associate it with the deadlock
error. When a deadlock occurs, the handler will set a variable indicating failure, issue a ROLLBACK, and then ter-
minate the block, while remaining within the loop.

20-30 The SQL statements that make up the transaction for this program.

33-37 Determine if it is time to leave the loop or increment the counter. If a deadlock did not occur, the value of the
deadlock variable is 0, so we use the LEAVE statement to terminate the WHILE loop.

If deadlock equals 1, then the BEGIN-END block has terminated because of a deadlock, so we increment the
attempts variable and (provided that attempts has not yet reached 3) allow the loop to re-execute the SQL
statements and thereby retry the transaction.

40-47 On these lines we examine the deadlock and attempts variables to determine the final state of the transac-
tion. If deadlock=1, then our most recent attempt to execute the transaction failed with a deadlock, and—
since we have tried three times—we terminate with an error. Otherwise, we signal a successful end to the trans-
action, although we note how many times we encountered a deadlock in the process.

Example 8-8. Locking rows in order to avoid deadlock conditions

CREATE PROCEDURE tfer_funds3
       (from_account INT, to_account INT,tfer_amount NUMERIC(10,2))
BEGIN
    DECLARE local_account_id INT;
    DECLARE lock_cursor CURSOR FOR
        SELECT account_id
          FROM account_balance
         WHERE account_id IN (from_account,to_account)

ORDER BY account_id
FOR UPDATE;

    START TRANSACTION;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 8: Transaction Management

Lock Timeouts
A deadlock is the most severe result of locking. Yet, in many other situations, a pro-
gram in one session may be unable to read or write a particular row, because it is
locked by another session. In this case, the program can and—by default—will wait
for a certain period of time for the lock to be released. It will then either acquire the
lock or time out. You can set the length of time a session will wait for an InnoDB
lock to be released by setting the value of the innodb_lock_wait_timeout configura-
tion value, which has a default of 50 seconds.

When a timeout occurs, MySQL/InnoDB will roll back the transaction and issue an
error code 1205, as shown in Example 8-9.

So if you have very long-running transactions, you may want to increase the value of
innodb_lock_wait_timeout or introduce error-handling code to cope with the occa-
sional 1205 error.

In some circumstances—particularly when you mix MySQL/InnoDB and non-
InnoDB tables in the same transaction (a practice we do not normally recommend)—
MySQL/InnoDB may be unable to detect a deadlock. In such cases, the “lock wait
timeout” error will eventually occur. If you are mixing MySQL/InnoDB and non-
InnoDB tables, and you are particularly concerned about deadlocks, you may want
to implement error-handling logic for lock timeouts similar to that implemented for
deadlocks in Example 8-7.

OPEN lock_cursor;
FETCH lock_cursor INTO local_account_id;

    UPDATE account_balance
       SET balance=balance-tfer_amount
     WHERE account_id=from_account;

    UPDATE account_balance
       SET balance=balance+tfer_amount
     WHERE account_id=to_account;

CLOSE lock_cursor;

    COMMIT;
END;

Example 8-9. Lock timeout error

mysql> SELECT * FROM account_balance FOR UPDATE;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

Example 8-8. Locking rows in order to avoid deadlock conditions (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transactions and Locks | 197

Optimistic and Pessimistic Locking Strategies
If your transaction reads data that subsequently participates in an UPDATE, INSERT, or
DELETE, you need to take steps to ensure that the integrity of your transaction is not
jeopardized by the possibility of another transaction changing the relevant data
between the time you read it and the time you update it.

For instance, consider the transaction in Example 8-10. This variation on our funds
transfer transaction makes sure that there are sufficient funds in the “from” account
before executing the transaction. It first queries the account balance, and then takes
an action depending on that value (the balance must be greater than the transfer
amount).

Unfortunately, as currently written, this program might under the right circum-
stances allow the “from” account to become overdrawn. Since some amount of time
elapses between the query that establishes the current balance and the update

Example 8-10. Funds transfer program without locking strategy

CREATE PROCEDURE tfer_funds4
       (from_account int, to_account int,tfer_amount numeric(10,2),
        OUT status int, OUT message VARCHAR(30))
BEGIN
    DECLARE from_account_balance NUMERIC(10,2);

    SELECT balance
      INTO from_account_balance
      FROM account_balance
     WHERE account_id=from_account;

    IF from_account_balance >= tfer_amount THEN

         START TRANSACTION;

         UPDATE account_balance
            SET balance=balance-tfer_amount
          WHERE account_id=from_account;

         UPDATE account_balance
            SET balance=balance+tfer_amount
          WHERE account_id=to_account;
         COMMIT;

         SET status=0;
         SET message='OK';
    ELSE
         SET status=-1;
         SET message='Insufficient funds';
    END IF;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 8: Transaction Management

transaction that reduces that balance, it is possible that another transaction could
reduce the balance of the account within that period of time with its own UPDATE
statement. This program’s UPDATE would, then, cause a negative balance in the
account.

Figure 8-4 shows the business policy violation that can result from a poor locking strat-
egy. Transaction A determines that account 1 has sufficient funds before executing the
transfer, but in the meantime transaction B has reduced the available funds by $300.
When transaction A finally executes its update, the result is a negative balance.

There are two typical solutions to this kind of scenario:

The pessimistic locking strategy
Assume that concurrent updates are quite likely to occur, and write programs to
prevent them from happening. Generally, this means you will need to lock rows
as they are read. Other transactions that want to update the row must wait until
the “pessimistic transaction” ends.

The optimistic locking strategy
Assume that it is unlikely that anyone will update a row between the time we
view it and the time we update it. Since we cannot be sure that this assumption
is true, we must then, at the last possible moment, make sure that the row has
not been updated. If the row has been updated, the transaction cannot be
trusted and will have to be aborted.

Pessimistic locking strategy

Let’s explore the pessimistic strategy first, with a simple example. We ensure that
nobody modifies the balance of the “from” account by locking it with the FOR UPDATE
clause as we retrieve the balance. We can now rest assured that when we issue our
UPDATE statement, the balance of the account cannot have been altered. Example 8-11
shows how easy this is; all we needed to do was move the SELECT statement inside of
the transaction and cause it to lock the rows selected with the FOR UPDATE clause.

Figure 8-4. Error resulting from a poor locking strategy

Transaction A Transaction B Balance

$1,100
SELECT  balance
FROM  account_balance
WHERE  account_id =1

UPDATE  account_balance
SET  balance=balance–300
WHERE  account_id=1

Ti
m

e

$800

–$200
UPDATE  account_balance
SET  balance=balance –1000
WHERE  account_id=1



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transactions and Locks | 199

The pessimistic locking strategy usually results in the simplest and most robust code
—code that ensures consistency between SELECT and DML statements within your
transaction. The pessimistic strategy can, however, lead to long-held locks that
degrade performance (forcing a large number of sessions to wait for the locks to be
released). For instance, suppose that after you validate the balance of the transac-
tion, you are required to perform some long-running validation—perhaps you need
to check various other databases (credit checking, blocked accounts, online fraud,
etc.) before finalizing the transaction. In this case, you may end up locking the
account for several minutes—leading to disgruntlement if the customer happens to
be trying to withdraw funds at the same time.

Optimistic locking strategy

The optimistic locking strategy assumes that it is unlikely that the row will be
updated between the initial SELECT and the end of the transaction, and therefore does

Example 8-11. Pessimistic locking strategy

CREATE PROCEDURE tfer_funds5
       (from_account INT, to_account INT,tfer_amount NUMERIC(10,2),
        OUT status INT, OUT message VARCHAR(30))
BEGIN
    DECLARE from_account_balance NUMERIC(10,2);

    START TRANSACTION;

    SELECT balance
      INTO from_account_balance
      FROM account_balance
     WHERE account_id=from_account

FOR UPDATE;

    IF from_account_balance>=tfer_amount THEN

         UPDATE account_balance
            SET balance=balance-tfer_amount
          WHERE account_id=from_account;

         UPDATE account_balance
            SET balance=balance+tfer_amount
          WHERE account_id=to_account;
         COMMIT;

         SET status=0;
         SET message='OK';
    ELSE
         ROLLBACK;
         SET status=-1;
         SET message='Insufficient funds';
    END IF;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 8: Transaction Management

not attempt to lock that row. Instead, the optimistic strategy requires that we per-
form a check just before the update to ensure that the row has not been altered.

To detect if a row has been changed, we simply refetch the row—locking the row as
we do so—and compare the current values with the previous values.

Example 8-12 demonstrates the optimistic locking strategy. If the account row has
changed since the time of the initial balance check, the transaction will be aborted
(line 33), although alternatively you could retry the transaction.

Example 8-12. Optimistic locking strategy

1   CREATE PROCEDURE tfer_funds6
2           (from_account INT, to_account INT, tfer_amount NUMERIC(10,2),
3            OUT status INT, OUT message VARCHAR(30) )
4
5   BEGIN
6
7      DECLARE from_account_balance    NUMERIC(8,2);
8      DECLARE from_account_balance2   NUMERIC(8,2);
9      DECLARE from_account_timestamp1 TIMESTAMP;
10     DECLARE from_account_timestamp2 TIMESTAMP;
11
12     SELECT account_timestamp,balance
13       INTO from_account_timestamp1,from_account_balance
14       FROM account_balance
15      WHERE account_id=from_account;
16
17      IF (from_account_balance>=tfer_amount) THEN
18
19       -- Here we perform some long running validation that
20       -- might take a few minutes */
21       CALL long_running_validation(from_account);
22
23       START TRANSACTION;
24
25       -- Make sure the account row has not been updated since
26       -- our initial check
27       SELECT account_timestamp, balance
28         INTO from_account_timestamp2,from_account_balance2
29         FROM account_balance
30        WHERE account_id=from_account
31          FOR UPDATE;
32
33        IF (from_account_timestamp1 <> from_account_timestamp2 OR
34            from_account_balance    <> from_account_balance2)  THEN
35          ROLLBACK;
36          SET status=-1;
37          SET message=CONCAT("Transaction cancelled due to concurrent update",
38                             " of account"  ,from_account);
39       ELSE
40          UPDATE account_balance
41             SET balance=balance-tfer_amount



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Transaction Design Guidelines | 201

Optimistic locking strategies are often employed by transactions that involve user inter-
action, since there is sometimes the chance that a user will “go to lunch,” leaving a pes-
simistic lock in place for an extended period. Since stored programs do not involve
direct user interaction, optimistic strategies in stored programs are not required for this
reason. However, an optimistic strategy might still be selected as a means of reducing
overall lock duration and improving application throughput—at the cost of occasion-
ally having to retry the transaction when the optimism is misplaced.

Choosing between strategies

Don’t choose between optimistic and pessimistic strategies based on your personal-
ity or disposition. Just because your analyst assures you that you are a fairly fun-lov-
ing, optimistic guy or gal, that does not mean you should affirm this by always
choosing the optimistic locking strategy!

The choice between the two strategies is based on a trade-off between concurrency
and robustness: pessimistic locking is less likely to require transaction retries or fail-
ures, while optimistic locking minimizes the duration of locks, thus improving con-
currency and transaction throughput. Usually, we choose optimistic locking only if
the duration of the locks or the number of rows locked by the pessimistic solution
would be unacceptable.

Transaction Design Guidelines
A well-designed transaction should have the following properties:

• The integrity of the database will be maintained at all times.

• The duration and coverage of locks will be minimized. Locks should be applied
to as few rows as possible and maintained for the shortest possible duration.

42           WHERE account_id=from_account;
43
44          UPDATE account_balance
45             SET balance=balance+tfer_amount
46           WHERE account_id=to_account;
47
48          COMMIT;
49
50          SET status=0;
51          SET message="OK";
52       END IF;
53
54     ELSE
55       ROLLBACK;
56       SET status=-1;
57       SET message="Insufficient funds";
58     END IF;
59   END$$

Example 8-12. Optimistic locking strategy (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 8: Transaction Management

• Rollbacks will be minimal—transactions that eventually issue a rollback have
needlessly consumed resources.

• User expectations about the persistence of data will be met. For instance, a user
who clicks a Save or Apply button has a reasonable expectation that the data will
not disappear if he subsequently clicks Cancel on another page.

To achieve these goals, we recommend the following general guidelines for transac-
tion design:

Keep transactions small
A transaction should generally include as small a logical unit of work as possible
to reduce the duration of locks.

Avoid a transaction design that encourages rollbacks
For instance, rather than trying an insert and rolling back if there is a “duplicate
key” error, check for the existence of the key value before issuing the DML.

Avoid savepoints whenever possible
The existence of a savepoint may indicate that you have failed to check for suc-
cess criteria before issuing a DML statement and may indicate a transaction
design that encourages rollbacks.

By default, rely on a pessimistic locking strategy
Lock rows that you SELECT if the results of the SELECT statement affect DML exe-
cuted later in the transaction. Pessimistic locking is easy to implement and is a
robust solution. However, issue SELECTs with FOR UPDATE as late in the transac-
tion as possible to minimize duration of locks.

Consider optimistic locking for throughput-critical transactions
Optimistic locking requires more coding (to handle failed transactions) and may
lead to user frustration if the optimism is misplaced. However, optimistic lock-
ing can reduce lock duration and thereby increase throughput for high-volume
transactions.

Explicitly commence transactions and avoid leaving transactions “dangling”
Stored programs that issue transactional statements should generally take
responsibility for commencing and terminating the transaction, rather than
assuming that some external program is going to handle a COMMIT or ROLLBACK.

While these are reasonable guidelines, there are sometimes trade-offs that you will
need to consider:

• Unlike any other MySQL statement, the COMMIT statement always requires a
physical write to disk to complete. Therefore, although it is a good idea in gen-
eral to commit as soon as some logical unit of work is completed, there is a
strong performance incentive to commit infrequently when possible. This usu-
ally means that for OLTP operations, you commit when the logical transaction is
complete, whereas in batch programs and bulk operations, you commit infre-
quently. We discuss the performance implications of COMMIT in Chapter 21.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 203

• Checking all possible success criteria before issuing a DML statement might be
overly expensive in some cases. It might be preferable to let a DML statement fail
and then roll back to a savepoint under certain circumstances.

• The trade-offs for the optimistic and pessimistic locking strategies are heavily
dependent on the characteristics of your application.

• Modular design considerations may sometimes lead you to write a stored pro-
gram in such a way that the control of the overall transaction is delegated to a
higher-level program.

Conclusion
In this chapter we looked at how to manage transactions in MySQL stored pro-
grams, allowing us to group together related database changes, applying them all or
aborting them all as a single logical unit. Implementing transactions using stored
programs is a fairly natural choice, since a stored program can encapsulate complex
transaction logic into a single database call, providing good separation between data-
base and application logic.

To use transactions in MySQL, you will need to create tables using one of the trans-
actional storage engines—such as the InnoDB engine that ships with the MySQL
standard distributions.

By default, transactions are disabled in MySQL; to enable them you need to either
set AUTOCOMMIT=0 or (recommended) commence a transaction with the START
TRANSACTION statement. Transactions are normally terminated with a COMMIT or
ROLLBACK statement, though be aware that certain DDL statements can cause implicit
COMMITs to occur.

Savepoints can be used to partially roll back transactions in the event of an error. We
believe, however, that the reliance on savepoints is justified in only a very few spe-
cific circumstances.

Transactional databases use locking mechanisms to prevent data inconsistencies or
logical errors when rows are updated, inserted, and deleted. MySQL/InnoDB mini-
mizes the overhead of these locking mechanisms by using an efficient row-level lock-
ing mechanism in which readers never block other readers or writers. Even with this
row-level locking, though, you should construct your transactions to minimize the
duration of any locks taken out as a result of DML statements or SELECTs with the
FOR UPDATE or LOCK IN SHARE MODE clause.

In rare circumstances, errors can occur if a lock timeout is exceeded or if an irresolv-
able lock conflict arises (a deadlock). There are mechanisms for reducing the fre-
quency with which these occur, but you may want to add exception handlers to your
stored programs or restructure them to handle these occurrences.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 8: Transaction Management

Whenever you SELECT data that is used to construct DML statements later in a trans-
action, you need to ensure that the data is not changed between the time it is read
and the time the read data is used to modify the database. Locking the data as it is
read—a pessimistic locking strategy—is usually the simplest and most robust solu-
tion. However, an optimistic locking strategy—in which the data is confirmed just
prior to the DML being applied—can reduce the duration of locks and improve
transaction throughput in some circumstances.

Good transaction design can improve the reliability, integrity, and performance of
your application. In general, transactions—and the duration of locks—should be
kept as short as possible. However, the overriding consideration is to maintain data
integrity and the reliability of transaction processing.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

205

Chapter 9 CHAPTER 9

MySQL Built-in Functions9

This chapter provides a reference to the MySQL built-in functions that you can use
in your MySQL stored programs. You can use virtually all of the MySQL functions
that are available in SQL statements within stored programs, so if you are already
familiar with traditional MySQL functions, you can safely skip this chapter. Because
this is a reference chapter, we expect you will come back to it from time to time
when you need to use a particular function—so don’t feel guilty if you decide to skip
or only briefly review this chapter.

In general, you can use any of the standard MySQL functions inside stored pro-
grams except those functions that work on groups or sets of data. These functions—
often used in combination with the GROUP BY clause in a SQL statement—include
MAX, MIN, COUNT, AVERAGE, and SUM. These functions are not applicable in stored pro-
grams (other than in SQL statements embedded in the programs) because stored
program variables are scalar (consist of only a single value).

This chapter looks at the built-in functions that we anticipate you might want to use
in stored programs; we describe these in the following categories:

• String functions

• Numeric functions

• Date and time functions

• Other functions

MySQL includes a huge number of built-in functions, however, so we can’t cover all
of them in depth; for a complete list, refer to the online MySQL Reference Manual
(http://dev.mysql.com/doc/ ).

String Functions
String functions perform operations on string data types such as VARCHAR, CHAR, and TEXT.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 9: MySQL Built-in Functions

ASCII
string1=ASCII(string2)

ASCII returns the ASCII character code corresponding to the first character in the
provided input string.

Since the ASCII function returns only the ASCII code for the first character, we can
create a stored function to extend this capability to allow us to return the ASCII
codes corresponding to all of the characters in the string. Example 9-1 shows an
implementation of such a stored function. It uses the LENGTH and SUBSTR functions to
extract each character in the input string, and then uses the ASCII and CONCAT func-
tions to build up a string consisting of all of the ASCII codes corresponding to the
entire input string.

CHAR
string=CHAR(ascii code [,...])

Example 9-1. Using the ASCII function

CREATE FUNCTION ascii_string (in_string VARCHAR(80) )
 RETURNS VARCHAR(256)
 DETERMINISTIC
BEGIN
   DECLARE i INT DEFAULT 1;
      DECLARE string_len INT;
      DECLARE out_string VARCHAR(256) DEFAULT '';

      SET string_len=LENGTH(in_string);
      WHILE (i<string_len) DO
         SET out_string=CONCAT(out_string,ASCII(SUBSTR(in_string,i,1)),' ');
         SET i=i+1;
      END WHILE;
      RETURN (out_string);

END
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
SELECT ascii_string('MySQL Rocks!')
--------------

+---------------------------------------+
| ascii_string('MySQL Rocks!')          |
+---------------------------------------+
| 77 121 83 81 76 32 82 111 99 107 115  |
+---------------------------------------+
1 row in set (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

String Functions | 207

CHAR returns the characters corresponding to one or more ASCII codes provided.
Example 9-2 uses the CHAR function to create a temporary table containing the ASCII
characters for the first 128 ASCII codes.

Example 9-2. Using the CHAR function to generate an ASCII chart

CREATE PROCEDURE ascii_chart( )
BEGIN
        DECLARE i INT DEFAULT 1;

        CREATE TEMPORARY TABLE ascii_chart
            (ascii_code INT, ascii_char CHAR(1));

        WHILE (i<=128) DO
               INSERT INTO ascii_chart VALUES(i,CHAR(i));
               SET i=i+1;
        END WHILE;

END
--------------

Query OK, 0 rows affected (0.01 sec)

--------------
CALL ascii_chart( )
--------------

Query OK, 1 row affected (5.96 sec)

--------------
SELECT * FROM ascii_chart
--------------

+------------+------------+
| ascii_code | ascii_char |
+------------+------------+
|          1 | |
|          2 | |
|          3 | � |
|          4 | � |
|          5 | � |
|          6 | � |
|          7 |            |
|          8 |            |
|          9 |            |
|         10 |            |
|         11 | |
|         12 | |
|         13 |
|         14 |          |
|         15 | |
|         16 |          |
|         17 |          |



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 9: MySQL Built-in Functions

CHARSET
character_set=CHARSET(string)

CHARSET returns the character set of the supplied string.

SET var1=CHARSET("My name is Guy") ; ➝  latin1

CONCAT
string1=CONCAT(string2 [,...])

CONCAT returns a string consisting of the concatenation of all of the supplied input
strings. If any of the input strings is NULL, then CONCAT will also return NULL.

Example 9-3 uses the CONCAT function to create a well-formatted name including—if
appropriate—title and middle initial. First, we use the ISNULL function to check for
NULLs in the input string so as to avoid inadvertently returning a NULL string if one
of the inputs is NULL.

|         18 |  ↕ |
|         19 |  !!          |
|         20 |  ¶          |
|         21 |  §          |
|         22 |  —          |
|         23 | ↕ |
|         24 | ↑ |
|         25 | ↓ |
|         26 | →          |
|         27 | ←          |

Example 9-3. Using CONCAT to concatenate strings

CREATE FUNCTION concat_example(in_title VARCHAR(4),
        in_gender         CHAR(1),
        in_firstname      VARCHAR(20),
        in_middle_initial CHAR(1),
        in_surname        VARCHAR(20))

  RETURNS VARCHAR(60)
BEGIN
  DECLARE l_title         VARCHAR(4);
  DECLARE l_name_string   VARCHAR(60);

  IF ISNULL(in_title)  THEN
     IF in_gender='M' THEN
        SET l_title='Mr';
     ELSE
        SET l_title='Ms';
     END IF;
  END IF;

Example 9-2. Using the CHAR function to generate an ASCII chart (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

String Functions | 209

If your database is running in ANSI mode (sql_mode='ANSI') or if the sql_mode vari-
able includes the PIPES_AS_CONCAT setting, you can use the || (pipe) characters to con-
catenate strings. The use of pipe characters to indicate concatenation in stored
programs is dependent on the setting of sql_mode when the stored program is cre-
ated, not when it runs. So you can happily use the || method of concatenating strings
provided that you set sql_mode='ANSI'when you create the program. If the program
runs when sql_mode is set to some other value, the stored program will still return the
correct results.

Example 9-4 illustrates the use of ANSI mode and || characters to perform string
concatenation. Note that while sql_mode was set to 'ANSI' when the stored function
was created, the stored program still returned the correct results even though the
sql_mode had been set to 'TRADITIONAL' at runtime.

  IF ISNULL(in_middle_initial) THEN
     SET l_name_string=CONCAT(l_title,' ',in_firstname,' ',in_surname);
  ELSE
     SET l_name_string=CONCAT(l_title,' ',in_firstname,' ',
                          in_middle_initial,' ',in_surname);
  END IF;

  RETURN(l_name_string);
END;
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
SELECT concat_example(null,'F','Mary',null,'Smith')
--------------

+----------------------------------------------+
| concat_example(null,'F','Mary',null,'Smith') |
+----------------------------------------------+
| Ms Mary Smith                                |
+----------------------------------------------+
1 row in set (0.00 sec)

Example 9-4. Using || to concatenate when sql_mode=ANSI

set sql_mode='ANSI'
--------------

Query OK, 0 rows affected (0.00 sec)
--------------
CREATE FUNCTION concat_example_ansi(
        in_title          VARCHAR(4),
        in_gender         CHAR(1),
        in_firstname      VARCHAR(20),

Example 9-3. Using CONCAT to concatenate strings (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 9: MySQL Built-in Functions

CONCAT_WS
string1=CONCAT_WS(delimiter,string2 [,...])

CONCAT_WS acts like the CONCAT function, but it inserts the specified delimiter between
each string. Note in Example 9-3 that we manually inserted single space characters
between each string, as shown below:

        in_middle_initial CHAR(1),
        in_surname        VARCHAR(20))

  RETURNS VARCHAR(60)
BEGIN
  DECLARE l_title               VARCHAR(4);
  DECLARE l_name_string         VARCHAR(60);

  IF ISNULL(in_title)  THEN
     IF in_gender='M' THEN
        SET l_title='Mr';
     ELSE
        SET l_title='Ms';
     END IF;
  END IF;

  IF ISNULL(in_middle_initial) THEN
     SET l_name_string=l_title||' '||in_firstname||' '||in_surname;
  ELSE
     SET l_name_string=l_title||' '||in_firstname||' '||
                          in_middle_initial||' '||in_surname;
  END IF;

  RETURN(l_name_string);
END;
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
SET sql_mode='TRADITIONAL'
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
SELECT concat_example_ansi(null,'F','Mary',null,'Smith')
--------------

+---------------------------------------------------+
| concat_example_ansi(null,'F','Mary',null,'Smith') |
+---------------------------------------------------+
| Ms Mary Smith                                     |
+---------------------------------------------------+

Example 9-4. Using || to concatenate when sql_mode=ANSI (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

String Functions | 211

SET l_name_string=CONCAT(l_title,' ',in_firstname,' ',
                          in_middle_initial,' ',in_surname);

Using CONCAT_WS, we could simplify this statement as follows:

     SET l_name_string=CONCAT_WS(' ',l_title ,in_firstname ,
                          in_middle_initial,in_surname);

INSERT
string=INSERT(original_string,position,length,new_string)

INSERT inserts new_string into the original_string at the specified position, option-
ally overwriting up to length characters of the original string.

Example 9-5 shows how we might use the INSERT function to emulate the MySQL
REPLACE function to implement “search and replace” functionality. We first use the
INSTR function to find the location of the “find string” and then replace it with the
“replace string.” We set length to the length of the find string so that the find string
is overwritten with the replace string, even if the two strings are of different lengths.

Example 9-5. Using the INSERT function

CREATE FUNCTION my_replace
   (in_string      VARCHAR(255),
    in_find_str    VARCHAR(20),
    in_repl_str    VARCHAR(20))

  RETURNS VARCHAR(255)
BEGIN
  DECLARE l_new_string VARCHAR(255);
  DECLARE l_find_pos   INT;

  SET l_find_pos=INSTR(in_string,in_find_str);

  IF (l_find_pos>0) THEN
    SET l_new_string=INSERT(in_string,l_find_pos,LENGTH(in_find_str),in_repl_str);
  ELSE
    SET l_new_string=in_string;
  END IF;
  RETURN(l_new_string);

END
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
SELECT my_replace('We love the Oracle server','Oracle','MySQL')
--------------

+----------------------------------------------------------+
| my_replace('We love the Oracle server','Oracle','MySQL') |



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 9: MySQL Built-in Functions

INSTR
position=INSTR(string,substring)

INSTR returns the location of the first occurrence of a substring within a string. If no
occurrence of the substring is found, INSTR returns 0.

In Example 9-5 we used INSTR to locate the “find string” within a string prior to
using INSERT to replace that string with the “replace string.”

LCASE
string1=LCASE(string2)

LCASE returns an input string with any of its uppercase letters translated to lower-
case. Nonalphabetic characters are ignored.

Here are some examples of the effect of LCASE:

SET a=LCASE('McTavish Jewelers'); ➝  'mctavish jewelers'
SET b=LCASE('23rd June'); ➝  '23rd june'

LEFT
string=LEFT(string2,length)

LEFT returns the leftmost characters (the number is specified by length) in the input
string.

SET a=LEFT('Hi There',2); ➝ 'Hi'

LENGTH
characters=LENGTH(string)

LENGTH returns the number of bytes in the input string. For single-byte character sets
(e.g., English, Swedish), this is equivalent to the number of characters in the string.
However, for multibyte character sets (e.g., Kanji, Klingon), you may be better off
using the CHAR_LENGTH function, which returns the number of characters rather than
the number of bytes.

SET a=LENGTH(null); ➝ NULL
SET b=LENGTH(''); ➝  0
SET c=LENGTH('Guy'); ➝ 3
SET d=LENGTH('Guy '); ➝ 4

+----------------------------------------------------------+
| We love the MySQL server                                 |
+----------------------------------------------------------+
1 row in set (0.00 sec)

Example 9-5. Using the INSERT function (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

String Functions | 213

LOAD_FILE
string=LOAD_FILE(file_name)

LOAD_FILE loads the contents of the specified file into a variable of a suitable data
type—usually BLOB or TEXT. The file has to be accessible to the MySQL server—that
is, the file needs to exist on the machine that hosts the MySQL server, and the server
needs to have sufficient permissions to read the file.

Example 9-6 shows how we can use the LOAD_FILE function to load the contents of an
operating system file and report the number of bytes loaded. Note that on Windows
we need to use double-backslash characters, \\, instead of single slashes as directory
separators. Thus, in order to specify the file 'c:\tmp\mydata.txt' we specified 'c:\\
tmp\\mydata.txt'.

LOCATE
position=LOCATE(substring, string [,start_position] )

LOCATE is similar to the INSTR function in that it searches for the location of a sub-
string within a string. However, it also allows us to specify a starting position for the
search. If the substring is not found, LOCATE returns 0.

In Example 9-7 we use LOCATE to count the number of occurrences of a substring
within a string. Once we find an instance of the substring, we set the starting posi-
tion to just past that string and repeat until all instances of the substring have been
found.

Example 9-6. Using LOAD_FILE to read an OS file

CREATE PROCEDURE filesize(in_file_name VARCHAR(128))

BEGIN
  DECLARE mytext TEXT;
  SET mytext=LOAD_FILE(in_file_name);
  SELECT in_file_name||' contains '||length(mytext)||' bytes'
      AS output;
END
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
CALL filesize('c:\\tmp\\mydata.txt')
--------------

+-------------------------------------+
| output                              |
+-------------------------------------+
| c:\tmp\mydata.txt contains 98 bytes |
+-------------------------------------+
1 row in set (0.02 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 9: MySQL Built-in Functions

LPAD
string1=LPAD(string2,length,pad)

LPAD adds occurrences of the pad string to the input string until the output string
reaches the specified length.

SET a=LPAD('Hello',10,'.'); ➝  '.....Hello'
SET b=lpad('hi',10,'( )'); ➝  '()()()( )hi'

LTRIM
string1=LTRIM(string2)

LTRIM trims any leading spaces from a string.

SET a=LTRIM('      Hello'); ➝ 'Hello'

Example 9-7. Using LOCATE to find substrings

CREATE FUNCTION count_strings
      (in_string VARCHAR(256),in_substr VARCHAR(128))
  RETURNS INT
  DETERMINISTIC
BEGIN
  DECLARE l_count INT DEFAULT 0;
  DECLARE l_start INT DEFAULT 1;
  DECLARE l_pos   INT;

  MainLoop:
  LOOP
    SET l_pos=LOCATE(in_substr,in_string,l_start);
    IF l_pos=0 THEN
       LEAVE MainLoop;
    ELSE
      SET l_count=l_count+1;
      SET l_start=l_pos+1;
    END IF;

  END LOOP;
  RETURN(l_count);
END
--------------

Query OK, 0 rows affected (0.00 sec)

--------------
SELECT count_strings('She sells sea shells by the sea shore','sea') as count
--------------

+-------+
| count |
+-------+
|     2 |
+-------+
1 row in set (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

String Functions | 215

REPEAT
string1=REPEAT(string2,count)

REPEAT returns a string in which the input string is repeated count times.

SET a=REPEAT('Dive! ',3); ➝  'Dive! Dive! Dive!'

REPLACE
string1=REPLACE(string2,search_string,replace_string)

REPLACE returns a string in which all occurrences of the search_string are replaced by
the replace_string.

SET a=REPLACE('Monty & David','&','and'); ➝  'Monty and David'

RPAD
string1=RPAD(string2,length,pad)

RPAD adds a sequence of pad characters to the string up to the specified length.

SET var1=RPAD("MySQL",10,".") ; ➝  MySQL.....

RTRIM
string1=RTRIM(string2)

RTRIM trims any trailing spaces from a string.

SET a=RTRIM('Guy    '); ➝ 'Guy'

STRCMP
position=STRCMP(string1,string2)

STRCMP compares two strings and determines if the first string is “before” or “after”
the second string in the ASCII collation sequence. The function returns -1 if the first
string is before the second string, 1 if the first string collates after the second string,
and 0 if the two strings are identical.

SET a=STRCMP('Guy','Guy') ➝  0
SET b=STRCMP('Guy','Steven') ➝ -1
SET c=STRCMP('Steven','Guy') ➝  1

SUBSTRING
string1=SUBSTRING(string2, position [,length])

SUBSTRING returns a portion of the supplied string starting at the specified position
from the beginning of the string (starting at 1). If a negative position is specified,
then the substring commences from the end of the string; for example, -2 indicates



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 9: MySQL Built-in Functions

the second to last character of the string. If length is omitted, SUBSTRING returns all of
the remaining portion of the input string.

SET a=SUBSTR('MySQL AB',7) ➝ 'AB'
SET b=SUBSTR('MySQL AB',-2) ➝ 'AB'
SET c=SUBSTR('MySQL AB',3,3) ➝ 'SQL'

TRIM
string1=TRIM([[BOTH|LEADING|TRAILING] [padding] FROM]string2)

TRIM strips leading and/or trailing characters from a string. By default, it trims both
leading and trailing spaces.

  SET a=TRIM(LEADING '>' FROM '>>>>>>>>>Fred'); ➝ 'Fred'
  SET b=TRIM(BOTH '-' FROM '---------Fred-------'); ➝ 'Fred'
  SET c=TRIM(BOTH FROM '           Guy            ') ➝ 'Guy';
  SET d=TRIM('              Guy                '); ➝ 'Guy'

UCASE
string1=UCASE(string2)

UCASE converts a string to uppercase.

Other String Functions
Table 9-1 lists the string functions not covered in previous sections. Some of these
functions are aliases for functions we have already discussed, while others are rarely
used in mainstream MySQL programming. You can find out more about these func-
tions by reading the section “Functions and Operators” in the MySQL Reference
Manual, available online.

Table 9-1. Additional string functions

Function Syntax Description

BINARY string1=BINARY(string2) Returns the binary representation of a
string. This function can be used to force
case-sensitive comparisons when they
would otherwise not occur.

BIT_LENGTH bits=BIT_LENGTH(string) Returns the number of bits in a string.

CHAR_LENGTH length=CHAR_LENGTH(string) Returns the number of characters in a
string. LikeLENGTH, except that it returns
the number of characters, rather than the
number of bytes, for multibyte character
sets.

CHARACTER_
LENGTH

length=CHARACTER_LENGTH(string) Alias for CHAR_LENGTH.

COMPRESS string1=COMPRESS(string2) Returns a compressed version of a string.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

String Functions | 217

DECODE string1=DECODE(string2,password) Decrypts a string that has been encrypted
with ENCRYPT.

ELT string1=ELT(number,string2[,...]) Returns one of the elements in a list.

ENCODE string1=ENCODE(string2,password) Encrypts a string. The string can be
decrypted with DECODE.

ENCRYPT string1=ENCRYPT(string2,seed) Encrypts a string. The string cannot be
decrypted with DECODE.

EXPORT_SET string=ENCODE_SET(number,on_string,
off_string,seperator,no_of_bits)

Returns the binary representation of a
number encoded with strings for on and
off bits.

FIELD number=FIELD(string1,string2[,...]) Searches for a string in a list of strings.

INET_ATON number=INET_ATON(IPAddress) Converts an IP address into a numeric rep-
resentation.

INET_NTOA IPAddress=INET_NTOA(number) Converts a number into a corresponding IP
address.

LOWER string1=LOWER(string2) Synonym for LCASE.

MID string1=MID(string2,start [,length]) Returns a substring. Similar to SUBSTR.

OCTET_LENGTH length=OCTET_LENGTH(string) Alias for LENGTH.

ORD position=ORD(string) Returns the ordinal value of the character
in the ASCII character set.

PASSWORD string1=PASSWORD(string2) Encrypts the given string as a MySQL pass-
word.

POSITION position=POSITION(substring IN string) Returns the position of the substring in the
string. Similar to LOCATE.

QUOTE string1=QUOTE(string2) Returns a string with special characters
preceded by an escape character.

REVERSE string1=REVERSE(string2) Reverses the order of characters in a
string.

RIGHT string1=RIGHT(string2,length) Returns the rightmost portion of a string.

SHA string1=SHA(string2) Returns a 160-bit Secure Hash Algorithm
(SHA) checksum for the string.

SHA1 string1=SHA1(string2) Alias for SHA.

SOUNDEX string1=SOUNDEX(string2) Returns the SOUNDEX for a string. In the-
ory, two strings that “sound alike” will
have similar SOUNDEX values.

SPACE spaces=SPACE(count) Returns the specified number of space
characters.

SUBSTRING_INDEX string1=SUBSTRING_INDEX(string2,
delimiter,count)

Returns a string from a character-delim-
ited set of strings.

UNCOMPRESSED_
LENGTH

length=UNCOMPRESSED_
LENGTH( compressed_string)

Returns the length of a compressed string
as if it were decompressed.

Table 9-1. Additional string functions (continued)

Function Syntax Description



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 9: MySQL Built-in Functions

Numeric Functions
Numeric functions perform operations on numeric data types such as INT and FLOAT.

ABS
number1=ABS(number2)

ABS returns the absolute value of a number—that is, the magnitude of the value
ignoring any minus sign.

SET var1=ABS(2.143); ➝  2.143
SET var2=ABS(-10); ➝  10
SET var3=ABS(10); ➝  10
SET var4=ABS(-2.3); ➝  2.3

BIN
binary_number=BIN(decimal_number)

BIN returns the binary (base 2) representation of an integer value.

SET var1=BIN(1); ➝  1
SET var2=BIN(2); ➝  10
SET var3=BIN(3); ➝  11
SET var4=BIN(45); ➝  101101

CEILING
number1=CEILING(number2)

CEILING returns the next integer number that is higher than the input floating-point
number.

SET var1=CEILING(3.5); ➝  4
SET var2=CEILING(-3.5); ➝  -3

CONV
number1=CONV(number2,from_base,to_base)

UNCOMPRESS string1=UNCOMPRESS(string2) Reverses the effect of COMPRESS.

UNHEX character=UNHEX(HexNumber) Converts a hexadecimal number to its
ASCII equivalent.

UPPER string1=UPPER(string2) Converts a string to uppercase. Synonym
for UCASE.

Table 9-1. Additional string functions (continued)

Function Syntax Description



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Numeric Functions | 219

CONV converts numbers from one base system to another. Although CONV is, in
essence, a numeric function, it may return values that you may need to deal with as
strings (e.g., hexadecimal numbers).

The following CONV statements convert the number 45 (base 10) into binary (base 2),
hexadecimal (base 16), and octal (base 8):

SET var1=CONV(45,10,2); ➝  101101
SET var2=CONV(45,10,16); ➝  2D
SET var3=CONV(45,10,8) ; ➝  55

These statements convert the number 45 (base 2) into base 10, and converts 45 (base
8) into base 2:

SET var4=CONV(101101,2,10); ➝  45
SET var5=CONV(55,8,2); ➝  101101

FLOOR
number1=FLOOR(number2)

FLOOR returns the largest integer value not greater than X.

SET var1=FLOOR(3.5); ➝  3
SET var2=FLOOR(-3.5); ➝ -4

FORMAT
string=FORMAT(number,decimal_places)

FORMAT returns a string representation of a number with comma separators at each
thousand and with the specified number of decimal places.

SET var1=FORMAT(21321.3424,2); ➝  21,321.34

HEX
HexNumber=HEX(DecimalNumber)

HEX returns the hexadecimal representation of a number.

SET var1=HEX(9); ➝  9
SET var2=HEX(11); ➝  B
SET var3=HEX(32); ➝  20

LEAST
number1=LEAST(number, number2 [,..])

LEAST returns the number in the input series with the smallest numerical value.

SET var1=LEAST(32,432,-2,-1.4); ➝  -2



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 9: MySQL Built-in Functions

MOD
remainder=MOD(numerator,denominator)

MOD returns the remainder (modulus) when the first number is divided by the second
number.

MOD is particularly handy when you want something to happen at regular intervals in
a loop. For instance, Example 9-8 purges (deletes) rows from the LOG_ARCHIVE table
based on some criteria. As we discuss in Chapter 22, reducing commit frequency is
an important optimization for transactional storage engines such as InnoDB. How-
ever, we do want to commit at regular intervals; otherwise, we risk losing all the
work if the program fails midway through execution.

So Example 9-8 calculates the modulus of the delete count divided by 100. If this
modulus is 0—which happens every 100 rows—a COMMIT is issued. The end result is
that the program commits the delete operations every 100 rows.

You can also calculate a modulus using numerator%denominator or numerator MOD
denominator. Thus, these three assignments are all equivalent:

Example 9-8. Using the MOD function to perform periodic COMMITs

CREATE PROCEDURE bulk_processing_example( )
  MODIFIES SQL DATA
BEGIN
  DECLARE delete_count INT DEFAULT 0;
  DECLARE last_row     INT DEFAULT 0;
  DECLARE l_rec_id     INT;

  DECLARE c1 CURSOR FOR SELECT rec_id FROM log_archive;

  DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_row=1;

  OPEN c1;
  MainLoop:
  LOOP
      FETCH c1 INTO l_rec_id;
      IF last_row THEN
        LEAVE MainLoop;
      END IF;
      IF purge_due(l_rec_id) THEN
        DELETE FROM log_archive WHERE rec_id=l_rec_id;
        SET delete_count=delete_count+1;
        IF MOD(delete_count,100)=0 THEN
           COMMIT;
        END IF;
      END IF;
  END LOOP MainLoop;
  CLOSE c1;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Numeric Functions | 221

SET var1=MOD(5,3); ➝  2
SET var2=5%3; ➝  2
SET var3=5 MOD 3 ; ➝  2

POWER
result=POWER(number,power)

POWER returns the result of raising the first number to the power of the second num-
ber. You can use POW as a synonym for POWER.

SET var1=POWER(3,2); ➝  9 (3*3)
SET var2=POWER(2,3); ➝  8 (2*2*2)
SET var3=POWER(4,.5); ➝  2 (square root of 4)
SET var4=POWER(10,-2); ➝  0.01
SET var5=POWER(10,-3); ➝  0.001
SET var6=POW(2,2); ➝  4

RAND
number=RAND([seed])

RAND returns a random floating-point number between 0 and 1. If seed is specified, it
is used to initialize the random-number generator, which lets you avoid generating
repeatable sequences.

SET var1=RAND( ); ➝  0.86494333191304
SET var2=RAND( ); ➝  0.96148952838172
SET var3=RAND(5); ➝  0.40613597483014
SET var4=RAND( ); ➝ 0.21261767690314
SET var5=RAND(5) ; ➝  0.40613597483014
SET var6=RAND( ); ➝ 0.17861983010417

RAND can be used within stored programs to generate or select random table data. For
instance, in Example 9-9, we use the RAND function to randomly select the employee
of the week (and you thought we based it on performance!). We first find the maxi-
mum employee_id and then generate a random number between 1 and that number.
Since RAND returns a floating-point number between 0 and 1, we multiply that num-
ber by the maximum employee number, generating a number between 0 and the
maximum employee number. Next, we use FLOOR to convert the number to an inte-
ger value, and then add 1 to avoid generating an employee_id of 0.

Example 9-9. Using the RAND function to retrieve random rows

CREATE PROCEDURE select_winner( )
  READS SQL DATA
BEGIN
  DECLARE winner_id INT;
  DECLARE max_employee_id INT;
  DECLARE winner_name VARCHAR(70);

  SELECT MAX(employee_id)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 9: MySQL Built-in Functions

ROUND
integer=ROUND(number [,decimals])

ROUND converts a floating-point number to the nearest integer value or—if the second
argument is specified—to the specified number of decimal points.

SET var1=PI( ); ➝  3.141593
SET var2=ROUND(PI( )); ➝  3
SET var3=ROUND(PI( ),4); ➝  3.1416
SET var5=ROUND(4.49); ➝  4
SET var6=ROUND(4.51); ➝  5

SIGN
number1=SIGN(number2)

SIGN returns -1 if a number is less than 0, 0 if the number is 0, and 1 if the number is
greater than 0.

SET var1=SIGN(-5); ➝  -1
SET var2=SIGN(0); ➝  0
SET var3=SIGN(5); ➝  1

SQRT
number1=SQRT(number2)

SQRT returns the square root of a number. It is equivalent to POWER(number,.5).

SET var1=SQRT(4); ➝  2
SET var2=SQRT(64); ➝  8
SET var3=POWER(64,.5); ➝  8

Other Numeric Functions
Table 9-2 lists additional numeric functions. These functions are rarely used in main-
stream MySQL applications; in this category are the trigonometric and logarithmic
functions that you probably studied in high school and have never used since!

    INTO max_employee_id
    FROM employees;

  SET winner_id=FLOOR(RAND( )*max_employee_id)+1;

  SELECT CONCAT_WS(' ','Employee of the week is',firstname,surname)
    FROM employees
   WHERE employee_id=winner_id;
END;

Example 9-9. Using the RAND function to retrieve random rows (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Date and Time Functions | 223

Date and Time Functions
Date and time functions operate on MySQL date-time data types such as DATE and
DATETIME.

ADDTIME
date1=ADDTIME(date2,time_interval)

ADDTIME adds the specified time interval to the date-time provided and returns the
amended date. Time intervals are specified in the format hh:mm:ss.hh, so you can
add any time interval down to one-hundredth of a second.

SET var1=NOW( ); ➝  2005-07-21 18:56:46
SET var2=ADDTIME(NOW( ),"0:00:01.00"); ➝  2005-07-21 18:56:47
SET var3=ADDTIME(NOW( ),"0:01:00.00"); ➝  2005-07-21 18:57:46
SET var4=ADDTIME(NOW( ),"1:00:00.00") ; ➝  2005-07-21 19:56:46

CONVERT_TZ
datetime1=CONVERT_TZ(datetime2,fromTZ,toTZ)

This function converts a date-time value from one time zone to another. The valid
time zone values can be found in the table mysql.time_zone_name.

Table 9-2. Additional numeric functions

Function Syntax Description

ACOS number1=ACOS(number2) Arc cosine of a number.

ASIN number1=ASIN(number2) Arc sine of a number.

ATAN number1=ATAN(number2) Arc tangent of a number.

COT number1=COT(number2) Cotangent of a number.

CRC32 number=CRC32(string) Cyclic redundancy check value for a string.

DEGREES degrees=DEGREES(radians) Converts radians to degrees.

EXP number1=EXP(number2) Natural logarithm (base e) to the power of a number.

LN number1=LN(number2) Natural logarithm of a number.

LOG number1=LOG(number2,base) Logarithm of a number in the base specified.

LOG10 number=LOG10(number2) Base 10 logarithm of a number.

LOG2 number1=LOG2(number) Base 2 logarithm of a number.

PI number=PI( ) Returns the value of PI.

RADIANS radians=RADIANS(degrees) Converts radians to degrees.

SIN number1=SIN(number2) Sine of a number (expressed in radians).

TAN number1=TAN(number2) Tangent of a number expressed in radians.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 9: MySQL Built-in Functions

You may have to load the MySQL time zone tables; for instructions, see the MySQL
manual section “MySQL Server Time Zone Support.”

CURRENT_DATE
date=CURRENT_DATE( )

CURRENT_DATE returns the current date. It does not show the time.

SET var1=CURRENT_DATE( ); ➝  2005-07-21

CURRENT_TIME
time=CURRENT_TIME( )

CURRENT_TIME returns the current time. It does not show the date.

SET var1=CURRENT_TIME( ); ➝  22:12:21

CURRENT_TIMESTAMP
timestamp=CURRENT_TIMESTAMP( )

CURRENT_TIMESTAMP returns the current date and time in the format yyyy-mm-dd hh:
mm:ss.

SET var1=CURRENT_TIMESTAMP( ); ➝  2005-07-21 22:15:02

DATE
date=DATE(datetime)

DATE returns the date part of a date-time value.

SET var1=NOW( ); ➝  2005-07-23 12:08:52
SET var2=DATE(var1) ; ➝  2005-07-23

DATE_ADD
date1=DATE_ADD(date2, INTERVAL interval_value interval_type)

DATE_ADD returns the date-time that results from adding the specified interval to the
date-time provided. Possible intervals are listed in Table 9-3.

SET var1=NOW( ); ➝  2005-07-20 22:33:21
SET var2=DATE_ADD(NOW( ), INTERVAL 7 DAY); ➝  2005-07-27 22:33:21
SET var3=DATE_ADD(NOW( ), INTERVAL 0623 DAY_HOUR) ; ➝  2005-08-15 21:33:21
SET var4=DATE_ADD(NOW( ), INTERVAL 06235959 DAY_SECOND) ; ➝  2005-10-01 02:46:00
SET var5=DATE_ADD(NOW( ), INTERVAL 2 MONTH); ➝  2005-09-20 22:33:21
SET var6=DATE_ADD(NOW( ), INTERVAL 10 YEAR); ➝  2015-07-20 22:33:21
SET var7=DATE_ADD(NOW( ), INTERVAL 3600 SECOND); ➝  2005-07-20 23:33:21



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Date and Time Functions | 225

DATE_FORMAT
string=DATE_FORMAT(datetime,FormatCodes)

DATE_FORMAT accepts a date-time value and returns a string representation of the date
in the desired format. Format codes are shown in Table 9-4.

SET var1=NOW( ); ➝  2005-07-23 13:28:21
SET var2=DATE_FORMAT(NOW( ),"%a %d %b %y"); ➝  Sat 23 Jul 05
SET var3=DATE_FORMAT(NOW( ),"%W, %D %M %Y"); ➝  Saturday, 23rd July 2005
SET var4=DATE_FORMAT(NOW( ),"%H:%i:%s") ; ➝  13:28:21
SET var5=DATE_FORMAT(NOW( ),"%T"); ➝  13:28:21
SET var6=DATE_FORMAT(NOW( ),"%r"); ➝  01:28:22 PM

Table 9-3. Date-time formats for DATE_ADD and DATE_SUB

Interval name Interval format

DAY dd

DAY_HOUR ddhh

DAY_MINUTE dd hh:mm

DAY_SECOND dd hh:mm:ss

HOUR hh

HOUR_MINUTE hh:mm

HOUR_SECOND hh:mm:ss

MINUTE mm

MINUTE_SECOND mm:ss

MONTH mm

SECOND ss

YEAR yyyy

Table 9-4. Format codes for DATE_FORMAT

Code Explanation

%% The % sign

%a Short day of the week (Mon-Sun)

%b Short month name (Jan-Feb)

%c Month number (1-12)

%d Day of the month (1-31)

%D Day of the month with suffix (1st, 2nd, 3rd, etc.)

%e Day of the month, numeric (1-31)

%h 12-hour clock hour of the day (1-12)

%H 24-hour clock hour of the day (00-23)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 9: MySQL Built-in Functions

DATE_SUB
date1=DATE_SUB(date2, INTERVAL interval_value interval_type)

DATE_SUB returns the date-time resulting from subtracting the specified interval from
the date-time provided. Possible intervals are listed in Table 9-3.

Example 9-10 shows a stored procedure that determines if an employee’s date of
birth indicates an age of greater than 18 years. DATE_SUB is used to create a date 18
years earlier than the current date. This date is compared to the date of birth and, if
it is earlier, we can conclude that the employee is less than 18 years old.

%i Minute of the hour (00...59)

%I 12-hour clock hour of the day (1-12)

%j Day of the year (1-365)

%k 24-hour clock hour of the day (00-23)

%l 12-hour clock hour of the day (1-12)

%m Month of the year (1-12)

%M Long month name (January-December)

%p AM/PM

%r Hour, minute, and second of the day, 12-hour format (hh:mm:ss AM|PM)

%s Seconds within a minute (0-59)

%S Seconds within a minute (0-59)

%T Hour, minute, and second of the day, 24-hour format (HH:mm:ss)

%u Week of the year (0-52) (Monday is the first day of the week)

%U Week of the year (0-52) (Sunday is the first day of the week)

%v Week of the year (1-53) (Monday is the first day of the week)

%V Week of the year (1-53) (Sunday is the first day of the week)

%w Numeric day of the week (0=Sunday, 6=Saturday)

%W Long weekday name (Sunday, Saturday)

%y Year, numeric, 2 digits

%Y Year, numeric, 4 digits

Example 9-10. Using DATE_SUB

CREATE PROCEDURE validate_age
    (in_dob DATE,
     OUT status_code INT,
     OUT status_message VARCHAR(30))
BEGIN

Table 9-4. Format codes for DATE_FORMAT (continued)

Code Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Date and Time Functions | 227

DATEDIFF
days=DATEDIFF(date1,date2)

DATEDIFF returns the number of days between two dates. If date2 is greater than
date1, then the result will be negative; otherwise, it will be positive.

Example 9-11 uses DATEDIFF to calculate the number of days that have elapsed since a
bill due date, and returns appropriate status and messages if the bill is more than 30
or 90 days old.

DAY
day=DAY(date)

DAY returns the day of the month (in numeric format) for the specified date.

SET var1=NOW( ); ➝  2005-07-23 13:47:13
SET var2=DAY(NOW( )); ➝  23

  IF DATE_SUB(now( ), INTERVAL 18 YEAR) <in_dob THEN
    SET status_code=-1;
    SET status_message="Error: employee is less than 18 years old";
  ELSE
    SET status_code=0;
    SET status_message="OK";
  END IF;
END;

Example 9-11. Using DATEDIFF

CREATE PROCEDURE check_billing_status
    (in_due_date DATE,
     OUT status_code INT,
     OUT status_message VARCHAR(30))
BEGIN
  DECLARE days_past_due INT;

  SET days_past_due=FLOOR(DATEDIFF(now( ),in_due_date));
  IF days_past_due>90 THEN
    SET status_code=-2;
    SET status_message='Bill more than 90 days overdue';
  ELSEIF days_past_due >30 THEN
    SET status_code=-1;
    SET status_message='Bill more than 30 days overdue';
  ELSE
    SET status_code=0;
    SET status_message='OK';

  END IF;
END;

Example 9-10. Using DATE_SUB (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 9: MySQL Built-in Functions

DAYNAME
day=DAYNAME(date)

DAYNAME returns the day of the week—as in Sunday, Monday, etc.—for the specified
date.

SET var1=NOW( ); ➝  2005-07-23 13:50:02
SET var2=DAYNAME(NOW( )); ➝  Saturday

DAYOFWEEK
day=DAYOFWEEK(date)

DAYOFWEEK returns the day of the week as a number, where 1 returns Sunday.

SET var1=NOW( ); ➝  2005-07-23 13:53:07
SET var2=DATE_FORMAT(NOW( ),"%W, %D %M %Y"); ➝  Saturday, 23rd July 2005
SET var3=DAYOFWEEK(NOW( )); ➝  7

DAYOFYEAR
day=DAYOFYEAR(date)

DAYOFYEAR returns the day of the year as a number, where 1-JAN returns 1 and 31-DEC
returns 365 (except in leap years, where it returns 366).

SET var1=NOW( ); ➝  2005-07-23 13:55:57
SET var2=DAYOFYEAR(NOW( )); ➝  204

EXTRACT
date_part=EXTRACT(interval_name FROM date)

EXTRACT returns a specified portion of a date-time. The applicable intervals are shown
in Table 9-3.

SET var1=NOW( ); ➝  2005-07-23 14:01:03
SET var2=EXTRACT(HOUR FROM NOW( )); ➝  14
SET var3=EXTRACT(YEAR FROM NOW( )); ➝  2005
SET var4=EXTRACT(MONTH FROM NOW( )); ➝  7
SET var5=EXTRACT(HOUR_SECOND FROM NOW( )); ➝  140103
SET var6=EXTRACT(DAY_MINUTE FROM NOW( )); ➝  231401

GET_FORMAT
format=GET_FORMAT(datetime_type,locale)

GET_FORMAT returns a set of date formatting code—suitable for use with DATE_
FORMAT—for various date-time types and locales.

Format type can be one of the following:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Date and Time Functions | 229

• DATE

• TIME

• DATETIME

• TIMESTAMP

Format code can be one of the following:

• INTERNAL

• ISO

• JIS

• USA

• EUR
SET var1=GET_FORMAT(DATE,"USA"); ➝  %m.%d.%Y
SET var2=GET_FORMAT(DATE,"ISO"); ➝  %Y-%m-%d
SET var3=GET_FORMAT(DATETIME,"JIS") ; ➝  %Y-%m-%d %H:%i:%s
SET var4=NOW( ); ➝  2005-07-24 13:27:58
SET var5=DATE_FORMAT(NOW( ),GET_FORMAT(DATE,"USA")); ➝  07.24.2005

MAKEDATE
date=MAKEDATE(year,day)

MAKEDATE takes the year (YYYY) and day-of-year arguments and converts them to a
date value. The day-of-year argument is in the form that would be returned by
DAYOFYEAR.

SET var1=MAKEDATE(2006,1); ➝  2006-01-01
SET var2=MAKEDATE(2006,365); ➝  2006-12-31
SET var3=MAKEDATE(2006,200); ➝  2006-07-19

MAKETIME
time=MAKETIME(hour,minute,second)

MAKETIME takes the hour, minute, and second arguments and returns a time value.

SET var4=MAKETIME(16,30,25); ➝  16:30:25
SET var5=MAKETIME(0,0,0); ➝  00:00:00
SET var6=MAKETIME(23,59,59); ➝  23:59:59

MONTHNAME
monthname=MONTHNAME(date)

MONTHNAME returns the full name of the month corresponding to the provided date.

SET var1=NOW( ); ➝  2005-07-24 13:44:54
SET var2=MONTHNAME(NOW( )); ➝  July



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 9: MySQL Built-in Functions

NOW
datetime=NOW( )

NOW returns the current date and time. We have used this function in many previous
examples as input to date and time functions.

SEC_TO_TIME
time=SEC_TO_TIME(seconds)

SEC_TO_TIME returns a time value for a given number of seconds. The time is shown in
hours, minutes, and seconds.

SET var1=SEC_TO_TIME(1); ➝  00:00:01
SET var2=SEC_TO_TIME(3600); ➝  01:00:00
SET var3=SEC_TO_TIME(10*60*60); ➝  10:00:00

STR_TO_DATE
date=STR_TO_DATE(string,format)

STR_TO_DATE takes a string representation of a date (as might be returned by DATE_
FORMAT) and returns a standard date data type in the format specified by the format
argument. The format string is the same as that used in DATE_FORMAT; possible values
are listed in Table 9-4.

SET var1=STR_TO_DATE("Sun 24 Jul 05","%a %d %b %y"); ➝  2005-07-24
SET var2=STR_TO_DATE("Sunday, 24th July 2005","%W, %D %M %Y"); ➝  2005-07-24
SET var3=STR_TO_DATE("3:53:54","%H:%i:%s"); ➝  03:53:54
SET var4=STR_TO_DATE("13:53:54","%T"); ➝  13:53:54
SET var5=STR_TO_DATE("01:53:54 PM","%r"); ➝  13:53:54

TIME_TO_SEC
seconds=TIME_TO_SEC(time)

TIME_TO_SEC returns the number of seconds in the specified time value. If a date-time
is provided, TIME_TO_SEC provides the number of seconds in the time part of that date
only.

SET var1=NOW( ); ➝  2005-07-24 14:05:21
SET var2=TIME_TO_SEC("00:01:01"); ➝  61
SET var3=TIME_TO_SEC(NOW( )); ➝  50721

TIMEDIFF
time=TIMEDIFF(datetime1,datetime2)

TIMEDIFF returns the time difference between two arguments specified as date-time
data types.

SET var1=TIMEDIFF("2005-12-31 00:00:01","2005-12-31 23:59:59"); ➝  -23:59:58



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Date and Time Functions | 231

TIMESTAMP
datetime=TIMESTAMP(date,time)

TIMESTAMP returns a date-time value from a specified date and time.

SET var2=TIMESTAMP("2005-12-31","23:30:01"); ➝  2005-12-31 23:30:01

TIMESTAMPADD
date_time=TIMESTAMPADD(interval_type,interval_value,date_time)

TIMESTAMPADD adds the specified interval_value, which is of the interval_type data
type, to the datetime provided and returns the resulting date-time.

Possible values for interval_type are listed in Table 9-3.

SET var1=NOW( ); ➝  2005-07-31 16:08:18
SET var2=TIMESTAMPADD(YEAR,100,NOW( )); ➝  2105-07-31 16:08:18
SET var3=TIMESTAMPADD(HOUR,24,NOW( )); ➝  2005-08-01 16:08:18

TIMESTAMPDIFF
interval_value=TIMESTAMPDIFF(interval_type,date_time1,date_time2)

TIMESTAMPDIFF returns the difference between two date-times, expressed in terms of
the specified interval_type.

SET var1=NOW( ); ➝  2005-07-31 16:12:30
SET var2=TIMESTAMPDIFF(YEAR,NOW( ),"2006-07-31 18:00:00"); ➝  1
SET var3=TIMESTAMPDIFF(HOUR,NOW( ),"2005-08-01 13:00:00"); ➝  20

WEEK
number=WEEK(date_time[,start_of_week])

WEEK returns the number of weeks since the start of the current year. Weeks are con-
sidered to start on Sunday unless you specify an alternative start day (1=Monday) in
the second argument.

SET var1=NOW( ); ➝  2005-07-31 16:20:09
SET var2=WEEK(NOW( )); ➝  31

WEEKDAY
number=WEEKDAY(date)

WEEKDAY returns the number for the current day of the week, with Monday returning
a value of 0.

SET var1=NOW( ); ➝  2005-07-31 16:22:05
SET var2=DAYNAME(NOW( )); ➝  Sunday
SET var3=WEEKDAY(NOW( )); ➝  6



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 9: MySQL Built-in Functions

YEAR
number=YEAR(datetime)

YEAR returns the year portion of the datetime argument, which is specified in date-
time format.

SET var1=NOW( ); ➝  2005-07-31 16:27:12
SET var2=YEAR(NOW( )); ➝  2005

YEARWEEK
YearAndWeek=YEARWEEK(datetime[,StartOfWeek])

YEARWEEK returns the year and week of the year for the given date. Weeks are consid-
ered to start on Sunday unless you specify an alternative start day (1=Monday) in the
second argument.

SET var1=NOW( ); ➝  2005-07-31 16:30:24
SET var2=DAYNAME(NOW( )); ➝  Sunday
SET var3=YEARWEEK(NOW( )); ➝  200531
SET var4=YEARWEEK(NOW( ),1); ➝  200530

Other Date and Time Functions
Table 9-5 lists date and time functions not discussed in previous sections. Some of
these are synonyms for functions we have discussed above, while others are rarely
required in MySQL programming.

Table 9-5. Additional date-time functions

Function Syntax Description

ADDDATE datetime=ADDDATE(date,interval_value,
intervaltype)

Synonym for DATE_ADD.

CURDATE datetime=CURDATE( ) Alias for NOW.

CURTIME time=CURTIME( ) Current time.

DAYOFMONTH day=DAYOFMONTH(datetime) Day of the month.

FROM_DAYS days=FROM_DAYS(datetime) Number of days since the start of the cur-
rent calendar.

HOUR number=HOUR(datetime) Hour of the day for the given date.

LAST_DAY date=LAST_DAY(date) Returns the last day of the month for the
given date.

LOCALTIME datetime=LOCALTIME( ) Synonym for NOW.

LOCALTIMESTAMP datetime=LOCALTIMESTAMP( ) Synonym for NOW.

MICROSECOND microseconds=MICROSECOND(datetime) Microsecond portion of the provided time.

MINUTE minute=MINUTE(datetime) Minute part of the given time.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Other Functions | 233

Other Functions
The miscellaneous built-in functions described in the following sections perform
operations that do not fall into the categories described in earlier sections.

BENCHMARK
zero=BENCHMARK(no_of_repeats, expression)

BENCHMARK executes the specified expression repeatedly. It is intended to be used to
benchmark MySQL performance. This function has very little applicability in a
stored program context, although in theory you could use it to repeatedly execute a
stored program.

COALESCE
value=COALESCE(value[,...])

COALESCE returns the first non-NULL value in the provided list of values.

SET var1=1; ➝  1
SET var2=2; ➝  2
SET var3=NULL; ➝

SET var4=COALESCE(var1,var2,var3); ➝  1
SET var5=COALESCE(var3,var2,var1) ; ➝  2

MONTH month=MONTH(datetime) Month part of the given time.

PERIOD_ADD date=PERIOD_ADD(year_month, months) Adds the specified number of months to
the provided year_month value.

PERIOD_DIFF date=PERIOD_DIFF( year_month_1,year_
month_2)

Returns the number of months between
the two year_month values provided.

QUARTER quarter=QUARTER(datetime) Returns the quarter of the given date.

SECOND seconds=SECOND(datetime) Returns the seconds portion of the pro-
vided datetime.

SUBDATE date1=SUBDATE(date2, interval_value,
interval_type)

Synonym for DATE_SUB.

SUBTIME datetime1=SUBTIME(datetime2, time) Subtracts the time from the datetime.

SYSDATE datetime=SYSDATE( ) Synonym for NOW.

TO_DAYS datetime=TO_DAYS(days) Adds the days argument to the start of
the standard calendar.

WEEKOFYEAR week=WEEKOFYEAR(datetime) Synonym for WEEK.

Table 9-5. Additional date-time functions (continued)

Function Syntax Description



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 9: MySQL Built-in Functions

CURRENT_USER
username=CURRENT_USER( )

CURRENT_USER returns the username and hostname of the current MySQL user. It may
report a different value from that returned by USER, since the USER function reports
the connection requested by the user, rather than the connection that was actually
used.

SET var1=CURRENT_USER( ); ➝  root@%
SET var2=USER( ); ➝  root@mel601439.quest.com

DATABASE
database_name=DATABASE( )

DATABASE returns the name of the database currently in use.

USE prod;
SET var1=database( ); ➝  prod

GET_LOCK
return_code=GET_LOCK(lock_name,timeout)

GET_LOCK allows you to define and acquire a user-defined lock. The lock_name can be
a string of your choice. GET_LOCK will attempt to acquire the lock; then, if no other
session holds the lock, it will return 1. If the lock is held by another session, GET_LOCK
will wait until timeout seconds has elapsed; then, if the lock can still not be acquired,
it will return 0.

Only one “user” lock can be held at any time—that is, each invocation of GET_LOCK
releases any previous locks.

GET_LOCK can be used to ensure that only one copy of a stored program is executing a
particular segment of code at any one time. Note, however, that for most activities
that might be performed by a stored program, table locking is preferable.

Example 9-12 provides an example of both the GET_LOCK and RELEASE_LOCK functions.

Example 9-12. Example of GET_LOCK and RELEASE_LOCK

CREATE PROCEDURE sp_critical_section( )

 BEGIN
    DECLARE lock_result INT;
    IF get_lock('sp_critical_section_lock',60) THEN
       /* This block can only be run by one user at a time*/
       SELECT 'got lock';
       /* Critical code here */
    SET lock_result=release_lock('sp_critical_section_lock');
    ELSE
       SELECT 'failed to acquire lock';



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Other Functions | 235

IFNULL
value1=IFNULL(value2,nullvalue)

IFNULL returns the value provided as value2. If that value is NULL, it returns the
value provided in the second argument.

INTERVAL
position=INTERVAL(search,number, ...)

INTERVAL returns the position (starting at 0) that the search value would take within
the specified list of numbers. The list must be in ascending order.

SET var2=INTERVAL(20,5,10,30,50); ➝  2

IS_FREE_LOCK
integer=IS_FREE_LOCK(string)

IF_FREE_LOCK returns 1 if the specified user-defined lock is available (e.g., not locked)
and 0 if the lock is taken. See GET_LOCK.

ISNULL
integer=ISNULL(value)

ISNULL returns 1 if the parameter value is NULL and returns 0 otherwise.

NULLIF
value1=NULLIF(value2,value3)

NULLIF returns NULL if the two values provided are equal. Otherwise, it returns the
first value.

RELEASE_LOCK
integer=RELEASE_LOCK(string)

RELEASE_LOCK releases a lock acquired by the GET_LOCK function. See GET_LOCK for
more details and an example of usage.

       /* Error handling here */
    END IF;
 END;

Example 9-12. Example of GET_LOCK and RELEASE_LOCK (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 9: MySQL Built-in Functions

SESSION_USER
Synonym for USER.

 SYSTEM_USER
Synonym for USER.

USER
username=USER( )

USER returns the username and hostname for the current MySQL connection. This
function reports the username and hostname that were used to establish the connec-
tion, while the CURRENT_USER function reports the username from the mysql.user table
that is actually in use.

SET var1=CURRENT_USER( ); ➝  root@%
SET var2=USER( ); ➝  root@mel601439.quest.com

UUID
string=UUID( )

UUID returns a 128-bit Universal Unique Identifier (UUID). Each invocation of UUID
returns a unique value. Part of the UUID is generated from your computer name and
part from the current date and time. Therefore, you can be quite confident that
UUIDs are unique across the world (subject to the very small chance that a com-
puter with your exact configuration generated a UUID at the exact same time).

SET var1=UUID( ); ➝  7a89e3d9-52ea-1028-abea-122ba2ad7d69
SET var2=UUID( ); ➝  7a9ca65d-52ea-1028-abea-122ba2ad7d69
SET var3=UUID( ); ➝  7aa78e82-52ea-1028-abea-122ba2ad7d69

VERSION
string=VERSION( )

VERSION reports the current version of the MySQL server software.

SET var1=VERSION( ); ➝  5.0.18-nightly-20051211-log

In Example 9-13 we extract the major version of the version string and print an
(impossible) error message if the version does not support stored programs.

Example 9-13. Using the VERSION function

CREATE PROCEDURE sp_mysql_version( )

BEGIN
  DECLARE major_version INT;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 237

This function returns the MySQL server version. There are no arguments for the
function.

Conclusion
In this chapter we took a quick look at the built-in functions that you can use in your
stored programs. In general, these are the same functions that you can use in stan-
dard MySQL. The only exception is that you cannot use aggregate functions that
might be used in SQL statements that include a GROUP_BY clause.

We did not want to bulk up this book with verbose descriptions of every single func-
tion supported by MySQL. For functions not listed—or for those that received only
cursory treatment in this chapter—refer to the MySQL Reference Manual available
online (http://dev.mysql.com/doc/ ).

  SET major_version=SUBSTR(version(),1,INSTR(version( ),'.')-1);
  IF major_version>=5 THEN
     SELECT 'Good thing you are using version 5 or later';
  ELSE
     SELECT 'This version of MySQL does not support stored procedures',
            'you must be dreaming';
  END IF;

END;

Example 9-13. Using the VERSION function (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

238

Chapter 10CHAPTER 10

Stored Functions 10

A stored function is a stored program that returns a value. While stored procedures
may return values via OUT or INOUT variables, a function can—and must—return data
only via a single RETURN value. Unlike stored procedures, stored functions can be used
in expressions wherever you can use a built-in function of the same return data type
and can be used inside of SQL statements such as SELECT, UPDATE, DELETE, and INSERT.

In this chapter we will look at how and when to use stored functions.

The use of stored functions can improve the readability and maintainability of stored
program code by encapsulating commonly used business rules or formulas. You can
also use stored function return values to control the overall program flow.

Using stored functions in standard SQL statements can simplify the syntax of the
SQL by hiding complex calculations and avoiding the repetitive coding of these cal-
culations throughout your code. Stored functions can also be used in SQL to imple-
ment operations that would otherwise require subqueries or joins, although you
need to be careful to avoid possible performance problems that can occur if a func-
tion called from a SQL statement itself calls other SQL statements.

Stored functions may not return result sets and may not include dynamic SQL.

Creating Stored Functions
We provided an overview of the CREATE FUNCTION statement in Chapter 7, but we will
recap here. You create a stored function using the following syntax:

CREATE FUNCTION function_name (parameter[,...])
    RETURNS datatype
    [LANGUAGE SQL]
    [ [NOT] DETERMINISTIC ]
    [ {CONTAINS SQL | NO SQL | MODIFIES SQL DATA | READS SQL DATA} ]
    [ SQL SECURITY {DEFINER|INVOKER} ]
    [ COMMENT comment_string ]

function_statements



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating Stored Functions | 239

Most of the options for the CREATE FUNCTION statement also apply to CREATE PROCEDURE
and are documented in Chapter 7. However, the following are unique to stored
functions:

• The RETURNS clause is mandatory and defines the data type that the function will
return.

• You cannot specify the IN, OUT, or INOUT modifiers to parameters. All parameters
are implicitly IN parameters.

• The function body must contain one or more RETURN statements, which termi-
nate function execution and return the specified result to the calling program, as
described in the following section.

The RETURN Statement
The RETURN statement terminates stored function execution and returns the specified
value to the calling program. You can have as many RETURN statements in your stored
function as makes sense. Example 10-1 shows an example of a stored function that
has multiple RETURN statements.

However, it is usually regarded as good practice to include only a single RETURN state-
ment (“one way in and one way out”), and to use variable assignments within condi-
tional statements to change the return value. Aside from arguably resulting in more
comprehensible program flow, using a single RETURN statement can avoid the situa-
tion in which none of the RETURN statements get executed. “Falling out” of a func-
tion, rather than exiting cleanly via a RETURN statement, will cause a runtime error, as
shown in Example 10-2.

Example 10-3 shows our previous example recoded to include only a single RETURN
statement.

Example 10-1. Simple stored function with multiple RETURN statements

CREATE FUNCTION cust_status(in_status CHAR(1))
    RETURNS VARCHAR(20)
BEGIN
    IF in_status = 'O' THEN
        RETURN('Overdue');
    ELSEIF in_status = 'U' THEN
        RETURN('Up to date');
    ELSEIF in_status = 'N' THEN
        RETURN('New');
    END IF;
END;

Example 10-2. “Falling out” of a function without executing a RETURN statement

mysql> SELECT cust_status('X');
ERROR 1321 (2F005): FUNCTION cust_status ended without RETURN



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 10: Stored Functions

It is good practice to include only a single RETURN statement—as the
last line of executable code—in your stored functions. Avoid any flow
control that could allow the stored function to terminate without call-
ing a RETURN statement.

Parameters to Stored Functions
Stored functions can include multiple parameters, but these may only be IN parame-
ters. That is, you can specify neither the OUT nor INOUT clause (nor even the IN clause)
when defining your parameters (see Chapter 7 for a more detailed description of OUT
and INOUT parameters). So, for instance, the function defined in Example 10-4 will
not compile.

Stored functions cannot include OUT or INOUT parameters; if you need
to return multiple variables from your stored program, then a proce-
dure is possibly more appropriate than a function.

The DETERMINISTIC and SQL Clauses
When binary logging is enabled, MySQL needs to know if a stored function that
modifies SQL is deterministic—that is, if it always performs the same actions and
returns the same results when provided with the same inputs. Since the default for
stored programs is NOT DETERMINISTIC CONTAINS SQL, you need to explicitly set the

Example 10-3. Simple stored function with single RETURN statement

CREATE FUNCTION cust_status(in_status CHAR(1))
    RETURNS VARCHAR(20)
BEGIN
    DECLARE long_status VARCHAR(20);

    IF in_status = 'O' THEN
        SET long_status='Overdue';
    ELSEIF in_status = 'U' THEN
        SET long_status='Up to date';
    ELSEIF in_status = 'N' THEN
        SET long_status='New';
    END IF;

    RETURN(long_status);
END;

Example 10-4. Function will not compile due to the INOUT clause

CREATE FUNCTION f_inout(INOUT x INT) RETURNS INT
BEGIN
    SET x=1;
    RETURN(1);
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating Stored Functions | 241

appropriate keywords in order for the function to compile when binary logging is
enabled. This requirement relates to the need to ensure that changes made in the
stored function can be correctly replicated to another server. If the actions per-
formed by the function are nondeterministic, then correct replication cannot be
assured.

A nondeterministic routine is one that can produce different outputs when provided
with the same inputs. In this context, “outputs” include not just the return values of
the stored program, but also any modifications that may be made to data within the
MySQL databases. Currently, MySQL only cares about the determinism of a func-
tion or a procedure in the context of replication. In the future, however, the
DETERMINISTIC keyword may also be used to perform certain optimizations (such as
caching function return values) or to allow a function to be used in an index or parti-
tion definition.

If you declare a stored function without one of the SQL mode clauses NO SQL or READS
SQL, and if you have not specified the DETERMINISTIC clause, and if the binary log is
enabled, you may receive the following error:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL, or READS SQL
DATA in its declaration and binary logging is enabled (you *might* want to use the
less safe log_bin_trust_function_creators variable)

To avoid this error, you must do one of the following:

• Specify one or more of the DETERMINISTIC, NO SQL, and/or READS SQL DATA key-
words in your stored function definition.

• Set the value of log_bin_trust_routine_creators to 1 (SET GLOBAL log_bin_trust_
routine_creators = 1)

Of course, you should not specify that a stored function is DETERMINISTIC if it is not,
and you should avoid setting log_bin_trust_routine_creators to 1 unless you are
unconcerned about the correctness of data recovery or replication. Therefore, as a
general rule, you should avoid creating nondeterministic stored functions that mod-
ify data.

The use of the NOW function or any similar time-based functions does not necessarily
cause a stored function to become nondeterministic (at least from a replication per-
spective), since MySQL logs the timestamp in the binary log, resulting in NOW( ) being
calculated correctly during replication or recovery. Likewise, a single random num-
ber will also not cause the routine to become nondeterministic, since the seed to the
random number generator will be identical on the slave and during data recovery.
However, multiple calls to RAND( ) will cause a routine to become nondeterministic.

This restriction on nondeterministic routines applied to both stored functions and
stored procedures in the initial production release of MySQL 5.0, but from 5.0.16 on
it applies only to stored functions.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 10: Stored Functions

If your function is nondeterministic, and it reads but does not modify the database,
then you may use the clauses NOT DETERMINISTIC READS SQL DATA to allow the function
to be created. If the function is nondeterministic and performs no database access at
all, then we recommend using NOT DETERMINISTIC NO SQL.

The relevant ANSI standard intended that the NO SQL clause should pertain only to
“external” stored programs written in nondatabase languages such as (for instance)
Java or PHP. Therefore, the use of NO SQL may not be strictly correct from a stan-
dards perspective. However, we think that the alternatives—to specify READS SQL DATA
for a function that performs no database access at all or to declare a nondeterminis-
tic function as DETERMINISTIC—are clearly unacceptable. Therefore, we recommend
that you use NO SQL when required to denote that a stored function performs no data-
base operations.

Issues relating to replication and nondeterministic functions are expected to be
resolved in MySQL 5.1 with the introduction of row-level binary logging.

SQL Statements in Stored Functions
You can include SQL statements within stored functions, although you should be
very careful about including SQL statements in a stored function that might itself be
used inside a SQL statement (more on that later).

However, you cannot return a result set from a stored function: trying to create a
stored function that contains a SELECT statement without an INTO clause will result in
a 1415 error, as shown in Example 10-5.

Calling Stored Functions
A function can be called by specifying its name and parameter list wherever an
expression of the appropriate data type may be used. To show how stored functions
can be called, we’ll use the simple stored function shown in Example 10-6.

Example 10-5. Stored functions cannot return result sets

mysql> CREATE FUNCTION test_func( )
    -> RETURNS INT
    -> BEGIN
    -> SELECT 'Hello World';
    -> RETURN 1;
    -> END;$$
ERROR 1415 (0A000): Not allowed to return a result set from a function

Example 10-6. Simple stored function

CREATE FUNCTION isodd(input_number int)
       RETURNS int
BEGIN
        DECLARE v_isodd INT;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Calling Stored Functions | 243

From the MySQL command line, we can invoke our simple stored function in a
number of ways. Example 10-7 shows how to call the stored function from a SET
statement and from a SELECT statement.

From within a stored procedure, we can invoke the function both within a SET clause
and within a variety of flow control statements. Example 10-8 shows how to call a
stored function from within a SET statement, as well as from an IF statement.

Programming languages support a variety of methods for calling a stored function.
Java and .NET languages (VB.NET and C#) provide methods to call stored

        IF MOD(input_number,2)=0 THEN
                SET v_isodd=FALSE;
        ELSE
                SET v_isodd=TRUE;
        END IF;

        RETURN(v_isodd);

END ;

Example 10-7. Calling a stored function from the MySQL command line

mysql> SET @x=isodd(42);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x   |
+------+
| 0    |
+------+
1 row in set (0.02 sec)

mysql> SELECT isodd(42)
    -> ;
+-----------+
| isodd(42) |
+-----------+
|         0 |
+-----------+

Example 10-8.  Calling a stored function from within a stored procedure

SET l_isodd=isodd(aNumber);

IF (isodd(aNumber)) THEN
    SELECT CONCAT(aNumber," is odd") as isodd;
ELSE
    SELECT CONCAT(aNumber," is even") AS isodd;
END IF;

Example 10-6. Simple stored function (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 10: Stored Functions

functions directly. However, in many of the dynamic languages (PHP, Perl, Python)
there is no API for directly accessing a stored function. (We give guidelines for com-
mon programming languages in Chapters 12 through 17.)

If a language does not support a method for directly calling a stored function, you
should embed the call in a SELECT statement without a FROM clause and retrieve the
function result from the subsequent result set. For instance, in PHP, with the mysqli
interface, we can retrieve a stored function result as shown in Example 10-9.

Some languages specifically support calling stored functions. For instance, Java
JDBC allows a stored function to be called directly, as shown in Example 10-10.

Using Stored Functions in SQL
So far, we have looked at stored functions as though they were simply a variant on
the stored procedure syntax—a special type of stored procedure that can return a
value. While this is certainly a valid use for a stored function, stored functions have
an additional and significant role to play: as user-defined functions (UDFs) within
SQL statements.

Example 10-9. Calling a stored function from PHP

$stmt=$my_db->prepare("SELECT isodd(?)") or die($my_db->error);

$stmt->bind_param('i',$aNumber) or die($stmt->error);

$stmt->execute( ) or die($stmt->error);

$stmt->bind_result($isodd);

$stmt->fetch( );

if ($isodd == 1 )
   printf("%d is an odd number\n",$aNumber);
else
   printf("%d is an even number\n",$aNumber);

Example 10-10.  JDBC support for stored functions

CallableStatement PreparedFunc =
    MyConnect.prepareCall("{ ? = call isodd( ? ) }");
PreparedFunc.registerOutParameter(1, Types.INTEGER);

PreparedFunc.setInt(1, aNumber);
PreparedFunc.execute( );

if (PreparedFunc.getInt(1) == 1)
    System.out.println(aNumber + " is odd");
else
    System.out.println(aNumber + " is even");



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Functions in SQL | 245

Consider the SELECT statement shown in Example 10-11: it returns a count of cus-
tomers by status, with the one-byte status code decoded into a meaningful descrip-
tion. It also sorts by the decoded customer status. Notice that we must repeat the
rather awkward CASE statement in both the SELECT list and the ORDER BY clause.

Now imagine an application with many similar CASE statements, as well as complex
calculations involving business accounting logic, scattered throughout our applica-
tion. Such statements—often with embedded expressions far more complex than the
one shown in Example 10-11—result in code that is difficult to understand and
maintain. Whenever the CASE constructs or business calculations need to be modi-
fied, it will be necessary to find and then modify a large number of SQL statements,
affecting many different modules.

Stored functions can help us minimize this problem, by centralizing the complex
code in one program unit, and then deploying that program wherever needed. Exam-
ple 10-12 shows the result of transferring the logic in the previous query’s CASE
expression into a stored function.

Example 10-11. SQL statement with multiple CASE statements

SELECT CASE customer_status
            WHEN 'U' THEN 'Up to Date'
            WHEN 'N' THEN 'New'
            WHEN 'O' THEN 'Overdue'
       END  as Status, count(*) as Count
  FROM customers
 GROUP BY customer_status
 ORDER BY CASE customer_status
            WHEN 'U' THEN 'Up to Date'
            WHEN 'N' THEN 'New'
            WHEN 'O' THEN 'Overdue'
       END

Example 10-12. Stored function for use in our SQL statement

CREATE FUNCTION cust_status(IN in_status CHAR(1))
    RETURNS VARCHAR(20)
BEGIN
    DECLARE long_status VARCHAR(20);

    IF in_status = 'O' THEN
         SET long_status='Overdue';
    ELSEIF in_status = 'U' THEN
         SET long_status='Up to date';
    ELSEIF in_status = 'N' THEN
         SET long_status='New';
    END IF;

     RETURN(long_status);
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 10: Stored Functions

We can now use this function in our SQL statement, as shown in Example 10-13.

Notice that the repetition has been removed and the query is also much more read-
able, since it is hiding the details of the customer status formula. If and when a pro-
grammer needs to understand the logic used to determine customer status, she can
open up the stored function and take a look.

Using SQL in Stored Functions
You can include SQL statements inside of stored functions that are themselves used
within SQL statements as user-defined functions. However, be careful when doing
so, since functions calling SQL inside of SQL statements can lead to unpredictable
and often poor performance.

For instance, consider the stored function shown in Example 10-14.

This function returns the number of customers assigned to a given sales representa-
tive. We might use this function in a stored program when calculating a commis-
sion, as shown in Example 10-15.

Example 10-13. Stored function in a SQL statement

SELECT cust_status(customer_status) as Status, count(*) as Count
  FROM customers
 GROUP BY customer_status
 ORDER BY cust_status(customer_status);

Example 10-14. Stored function to return customer count for a sales rep

CREATE FUNCTION customers_for_rep(in_rep_id INT)
    RETURNS INT
    READS SQL DATA
BEGIN
    DECLARE customer_count INT;

    SELECT COUNT(*)
      INTO customer_count
      FROM customers
      WHERE sales_rep_id=in_rep_id;

    RETURN(customer_count);

END;

Example 10-15. Using the sales rep function in a stored program

IF customers_for_rep(in_employee_id) > 0 THEN
     CALL calc_sales_rep_bonus(in_employee_id);
ELSE
     CALL calc_nonrep_bonus(in_employee_id);
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Functions in SQL | 247

If this stored function is called for a single employee, then the use of the stored func-
tion is probably appropriate—it improves the clarity of the business logic, and per-
formance would be no worse than it would be with an embedded SQL statement.

However, consider the case where we want to issue a query listing all the sales repre-
sentatives with more than 10 customers together with their customer counts. In stan-
dard SQL, the query might look like that shown in Example 10-16.

Alternately, we can use our stored function, which will—apparently—avoid the join
between employees and customers and also avoid a GROUP BY. The stored function
version of the query is shown in Example 10-17.

Although the stored function solution looks a lot simpler, it actually takes much
longer to run than the standard SQL. For every row retrieved from the employees
table, the stored function must be called three times (once for the SELECT, once for
the WHERE, and once for the ORDER BY). Furthermore, each invocation of the stored
function performs a full table scan of the customers table—resulting in three such full
scans for each employee row. In contrast, the standard SQL performs just one scan
of the customers table and then joins that to the employees table using the primary
key (employee_id).

For our sample data, the standard SQL returned the required results almost instanta-
neously, while the stored function solution took almost half a minute. Figure 10-1
compares the execution times for the two solutions.

Using a stored function inside of a SQL statement that, in turn, contains SQL will
not always cause such extreme response time degradation. In general, though, you
should think twice about using a function that contains SQL inside of another SQL
statement unless the embedded SQL is very efficient—such as a SQL statement that
retrieves data via a quick index lookup.

Example 10-16. Standard SQL to retrieve sales reps with more than 10 customers

SELECT employee_id,COUNT(*)
  FROM employees JOIN customers
    ON (employee_id=sales_rep_id)
 GROUP BY employee_id
 HAVING COUNT(*) > 10
 ORDER BY COUNT(*) desc;

Example 10-17. Function-based query to retrieve sales reps with more than 10 customers

SELECT employee_id,customers_for_rep(employee_id)
  FROM employees
 WHERE customers_for_rep(employee_id)>10
 ORDER BY customers_for_rep(employee_id) desc



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 10: Stored Functions

Be careful using SQL inside of stored functions that are called by other
SQL statements. The resulting performance can be very poor unless
the stored function is extremely efficient.

Conclusion
A stored function is a special type of stored program that returns a single result.
Stored functions can be used in SQL statements or within other stored programs
wherever an expression that returns a corresponding data type can be used.

Stored functions have the following limitations when compared to stored
procedures:

• They may not include OUT or INOUT parameters.

• They may not return result sets.

A stored function terminates when a RETURN statement is encountered. In general, it is
good practice to include a single RETURN statement at the end of the function rather
than including multiple RETURN statements inside flow control statements. If a stored
function terminates without issuing a RETURN statement, an error will be raised.

You can use stored functions within standard SQL. Doing so can improve the read-
ability and maintainability of the SQL by centralizing the definition of complex cal-
culations, decodes, or other application logic.

Be careful, however, when using stored functions inside SQL statements if those
functions embed SQL statements. Stored functions that include SQL can often per-
form badly when included within standard SQL statements.

Figure 10-1. Comparison of performance between standard SQL and SQL using a stored function
containing embedded SQL

Standard SQL

0

Elapsed time (seconds)

35

30.93

0.091

Stored function

5 10 15 20 25 30



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

249

Chapter 11 CHAPTER 11

Triggers11

Database triggers are stored programs that are executed in response to some kind of
event that occurs within the database. In the current MySQL implementation of trig-
gers, triggers fire in response to a DML statement (INSERT, UPDATE, DELETE) on a speci-
fied table.

Triggers are a powerful mechanism for ensuring the integrity of your data, as well as
a useful means of automating certain operations in the database, such as denormal-
ization and audit logging.

Creating Triggers
Triggers are created with the—you guessed it—CREATE TRIGGER statement, which has
the following syntax:

CREATE [DEFINER={user|CURRENT_USER}] TRIGGER trigger_name
  {BEFORE|AFTER}
  {UPDATE|INSERT|DELETE}
ON table_name
FOR EACH ROW
trigger_statements

Let’s look at each part of the CREATE TRIGGER statement in turn:

DEFINER={user | CURRENT_USER}
Controls the account that will be used to check privileges when the trigger is
invoked. The default of CURRENT_USER indicates that the trigger statements will
run with the authority of the account that issued the CREATE TRIGGER statement,
rather than the account that issued the DML that caused the trigger to fire.

trigger_name
The trigger name follows the normal conventions for MySQL’s naming of data-
base objects. While you can call your trigger virtually anything, we recommend
that you adopt a predictable naming convention. There can be only one trigger
for any combination of BEFORE or AFTER and UPDATE, INSERT, or DELETE (for exam-
ple, there can be only one BEFORE UPDATE trigger on a table), so a sensible



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 11: Triggers

convention might result in triggers being given names such as table_name_bu (for
a BEFORE UPDATE trigger) or table_name_ai (for an AFTER INSERT trigger).

BEFORE|AFTER
Specifies whether the trigger fires before or after the DML statement itself has
been executed. We’ll discuss the implications of this shortly.

UPDATE|INSERT|DELETE
Defines the DML statement to which the trigger is associated.

ON table_name
Associates the trigger with a specific table.

FOR EACH ROW
This clause is mandatory in the initial MySQL implementation. It indicates that
the trigger will be executed once for every row affected by the DML statement.
The ANSI standard also provides for a FOR EACH STATEMENT mode, which might be
supported in an upcoming version of MySQL.

trigger_statements
Define the statements that will be executed when the trigger is invoked. If there
is more than one statement, then the statements need to be enclosed in a BEGIN-
END block.

Prior to MySQL 5.1.6, you needed the SUPER privilege to create a trigger. In 5.1.6
and above, the TRIGGER privilege is required.

Referring to Column Values Within the Trigger
Trigger statements can include references to the values of the columns being affected
by the trigger. You can access and sometimes modify the values of these columns.

To distinguish between the values of the columns “before” and “after” the relevant
DML has fired, you use the NEW and OLD modifiers. For instance, in a BEFORE UPDATE
trigger, the value of the column mycolumn before the update is applied is OLD.
mycolumn, and the value after modification is NEW.mycolumn.

If the trigger is an INSERT trigger, only the NEW value is available (there is no OLD
value). Within a DELETE trigger, only the OLD value is available (there is no NEW value).

Within BEFORE triggers you can modify a NEW value with a SET statement—thus chang-
ing the effect of the DML.

Triggering Actions
Triggers will normally execute in response to the DML statements matching their
specification—for instance, BEFORE INSERT will always be invoked in response to an
INSERT statement.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Triggers | 251

However, triggers also fire in response to implicit—as well as explicit—DML. Some
statements are capable of generating DML as a side effect of their primary activity.
For instance, an INSERT statement that contains an ON DUPLICATE KEY UPDATE clause can
issue an implicit UPDATE statement causing BEFORE UPDATE or AFTER UPDATE triggers to
fire. Likewise, the REPLACE statement can cause both INSERT and DELETE triggers to fire
(since, for an existing row, REPLACE issues a DELETE followed by an INSERT).

BEFORE and AFTER Triggers
The BEFORE and AFTER clauses determine when your trigger code executes: either
before or after the DML statement that causes the trigger to be invoked.

The most significant difference between BEFORE and AFTER triggers is that in an AFTER
trigger you are not able to modify the values about to be inserted into or updated
with the table in question—the DML has executed, and it is too late to try to change
what the DML is going to do.

IF you try to modify a NEW value in an AFTER trigger, you will encounter an error, as
shown in Example 11-1.

Although you can do pretty much anything you need to do in a BEFORE trigger, you
still may wish to use AFTER triggers for activities that logically should occur in a trans-
action after a DML has successfully executed. Auditing activities, for example, are
best executed in an AFTER trigger, since you will first want to make sure that the DML
succeeded.

Using Triggers
Triggers can be used to implement a variety of useful requirements, such as automat-
ing the maintenance of denormalized or derived data, implementing logging, and val-
idating data.

Example 11-1. AFTER triggers cannot modify NEW values

mysql> CREATE TRIGGER account_balance_au
 AFTER UPDATE ON account_balance FOR EACH ROW
BEGIN
  DECLARE dummy INT;

  IF NEW.balance<0 THEN
     SET NEW.balance=NULL;
  END IF;

END
$$

ERROR 1362 (HY000): Updating of NEW row is not allowed in after trigger



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 11: Triggers

Maintaining Derived Data
We often need to maintain redundant “denormalized” information in our tables to
optimize critical SQL queries. The code to perform this denormalization could be
placed within the application code, but then you would have to make sure that any
and every application module that modifies the table also performs the denormaliza-
tion. If you want to guarantee that this code is run whenever a change is made to the
table, you can attach that functionality to the table itself, via a trigger.

Let’s take a look at an example of the value of denormalized data in our tables. Sup-
pose that we have a table within our database that contains the total sales for all
orders from each customer. This allows us to quickly identify our most significant
customers without having to do a costly query on the very large sales table.

Unfortunately, we have a variety of order processing systems, not all of which can be
modified to maintain this table. So we need a way of making sure that the table is
modified every time an INSERT occurs into the sales table. A trigger is an ideal way of
maintaining the values in this summary table.

Example 11-2 shows example triggers that maintain the values in the customer_
sales_totals table whenever there is an UPDATE, INSERT, or DELETE operation on the
sales table.

Example 11-2. Using triggers to maintain denormalized data

DELIMITER $$

CREATE TRIGGER sales_bi_trg
BEFORE INSERT ON sales

  FOR EACH ROW
BEGIN
  DECLARE row_count INTEGER;

  SELECT COUNT(*)
    INTO row_count
    FROM customer_sales_totals
   WHERE customer_id=NEW.customer_id;

  IF row_count > 0 THEN
    UPDATE customer_sales_totals
       SET sale_value=sale_value+NEW.sale_value
     WHERE customer_id=NEW.customer_id;
  ELSE
    INSERT INTO customer_sales_totals
       (customer_id,sale_value)
      VALUES(NEW.customer_id,NEW.sale_value);
  END IF;

END$$

CREATE TRIGGER sales_bu_trg



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Triggers | 253

Implementing Logging
The ability to identify the source and nature of updates to application data is increas-
ingly critical in our security-conscious societies. Indeed, the tracking of database
changes is often mandated by government and industry regulations such as Sarbanes-
Oxley and HIPAA. Although an application can be designed and implemented such
that it performs its own auditing, many organizations require that any database
updates—including those performed directly against the database using command-
line clients or database utilities—also be logged. Triggers are an ideal way of imple-
menting this kind of logging.

Suppose that we are building a financial application, for which we must track all
modifications to a user’s account balance. In Chapter 8, we implemented such a
scheme using a stored procedure that controlled all account balance transactions.
However, triggers provide a superior solution since they will also log any transac-
tions performed outside of the stored procedure.

Example 11-3 shows a trigger that will perform this type of logging for UPDATE state-
ments. In order to ensure universal logging, we would need to create a similar trigger
for INSERT and DELETE statements.

BEFORE UPDATE ON sales
  FOR EACH ROW
BEGIN

  UPDATE customer_sales_totals
     SET sale_value=sale_value+(NEW.sale_value-OLD.sale_value)
   WHERE customer_id=NEW.customer_id;

END$$

CREATE  TRIGGER sales_bd_trg
BEFORE DELETE ON sales

  FOR EACH ROW
BEGIN

  UPDATE customer_sales_totals
     SET sale_value=sale_value-OLD.sale_value
   WHERE customer_id=OLD.customer_id;

END$$

Example 11-3. Using triggers to implement audit logging

CREATE TRIGGER account_balance_au
 AFTER UPDATE ON account_balance FOR EACH ROW
 BEGIN
        INSERT into transaction_log
               (user_id, description)

Example 11-2. Using triggers to maintain denormalized data (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 11: Triggers

Validating Data with Triggers
A typical and traditional use of triggers in relational databases is to validate data or
implement business rules to ensure that the data in the database is logically consis-
tent and does not violate the rules of the business or the application. These triggers
are sometimes referred to as check constraint triggers.

Data validation triggers may perform tasks such as:

Implementing checks on allowable values for columns
For instance, a percentage value must fall between 0 and 100, a date of birth can-
not be greater than today’s date, and so on.

Performing cross-column or cross-table validations
For example, an employee cannot be his own manager, a sales person must have
an associated quota, and seafood pizzas cannot include anchovies (here the
authors must agree to disagree: Guy hates anchovies, while Steven finds them
almost a requirement for an enjoyable pizza!).

Performing advanced referential integrity
Referential constraints are usually best implemented using foreign key con-
straints; sometimes, however, you may have some advanced referential integrity
that can only be implemented using triggers. For instance, a foreign key column
may be required to match a primary key in one of a number of tables (an arc
relationship).

A data validation trigger typically prevents a DML operation from completing if it
would result in some kind of validation check failing.

If MySQL 5.0 or 5.1 implemented all ANSI-standard functionality, we would imple-
ment such checks in a database trigger by issuing a SIGNAL statement, as shown in
Example 11-4.

        VALUES (user( ),
                CONCAT('Adjusted account ',
                   NEW.account_id,' from ',OLD.balance,
                   ' to ', NEW.balance));
END;

Example 11-4. ANSI-standard trigger to enforce a business rule

CREATE TRIGGER account_balance_bu
   BEFORE UPDATE
    ON account_balance
   FOR EACH ROW
BEGIN
    -- The account balance cannot be set to a negative value.
    IF (NEW.balance < 0) THEN
        -- Warning! Not implemented in MySQL 5.0...

Example 11-3. Using triggers to implement audit logging (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Triggers | 255

Unfortunately, MySQL 5.0 and 5.1 do not support the SIGNAL statement; we expect it
to appear in version 5.2. Consequently, we do not currently have a standard way of
aborting a DML statement that violates a business rule.

Luckily, we can use a variation on the workaround we introduced in Chapter 6 to
force a trigger to fail in such a way that it prevents the DML statement from complet-
ing and provides a marginally acceptable error message.

In Example 6-19, we introduced a stored procedure—my_signal—that used dynamic
SQL to create an "Invalid table name" error condition and embedded an error mes-
sage of our choosing into that error. Unfortunately, we cannot call the my_signal pro-
cedure directly, because triggers are forbidden from executing dynamic SQL.
However, we can include very similar logic into the trigger that will have the same
effect. Example 11-5 shows a trigger that ensures that there will be no negative
account balance. If a negative account balance is detected, the trigger attempts to
execute a SELECT statement that references a nonexistent column. The name of the
column includes the error message that we will report to the calling program.

Example 11-6 shows how the trigger prevents any updates from proceeding if the
end result would be to create an account_balance row with a negative value in the
balance column. While the error code is not ideal, and the error message is embed-
ded in another error message, we at least have prevented the UPDATE from creating a
negative balance, and we have provided an error message that does include the rea-
son why the UPDATE was rejected.

        SIGNAL SQLSTATE '80000'
            SET MESSAGE_TEXT='Account balance cannot be less than 0';
    END IF;
END;

Example 11-5. MySQL trigger to perform data validation

CREATE TRIGGER account_balance_bu
  BEFORE UPDATE
      ON account_balance
     FOR EACH ROW
BEGIN
   DECLARE dummy INT;
   IF NEW.balance<0 THEN
      SELECT `Account balance cannot be less than 0` INTO dummy
        FROM account_balance
       WHERE account_id=NEW.account_id;
  END IF;
END;

Example 11-4. ANSI-standard trigger to enforce a business rule (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 11: Triggers

This trigger can be easily modified to use the SIGNAL statement when it becomes
available.

Trigger Overhead
It is important to remember that, by necessity, triggers add overhead to the DML
statements to which they apply. The actual amount of overhead will depend upon
the nature of the trigger, but—as all MySQL triggers execute FOR EACH ROW—the over-
head can rapidly accumulate for statements that process large numbers of rows. You
should therefore avoid placing any expensive SQL statements or procedural code in
triggers.

We will look at an example of trigger overhead in Chapter 22.

Example 11-6. Behavior of our data validation trigger

SELECT * FROM account_balance WHERE account_id=1;

+------------+---------+---------------------+
| account_id | balance | account_timestamp   |
+------------+---------+---------------------+
|          1 |  800.00 | 2005-12-13 22:12:28 |
+------------+---------+---------------------+
1 row in set (0.00 sec)

UPDATE account_balance SET balance=balance-1000 WHERE account_id=1;

ERROR 1054 (42S22): Unknown column 'Account balance cannot be less than 0' in 'field list'

SELECT * FROM account_balance WHERE account_id=1;

+------------+---------+---------------------+
| account_id | balance | account_timestamp   |
+------------+---------+---------------------+
|          1 |  800.00 | 2005-12-13 22:12:28 |
+------------+---------+---------------------+
1 row in set (0.00 sec)

UPDATE account_balance SET balance=500 WHERE account_id=1;

Query OK, 1 row affected (0.15 sec)
Rows matched: 1  Changed: 1  Warnings: 0

SELECT * FROM account_balance WHERE account_id=1;

+------------+---------+---------------------+
| account_id | balance | account_timestamp   |
+------------+---------+---------------------+
|          1 |  500.00 | 2005-12-13 22:12:34 |
+------------+---------+---------------------+
1 row in set (0.00 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 257

Conclusion
MySQL triggers allow you to execute stored program code whenever a DML state-
ment is issued against a database table. In MySQL 5.0, triggers can be used to auto-
mate denormalization or logging.

Implementation of data validation in MySQL triggers is more of a challenge, as in
MySQL there is no easy or straightforward way to raise an error condition or abort
the transaction when validation fails. This will be remedied when the SIGNAL state-
ment is implemented in MySQL 5.2. In this chapter we presented a workaround that
does allow data validation triggers to be created in the interim, although the error
text generated is far from ideal.





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART III

III.Using MySQL Stored Programs in
Applications

Stored programs can be used for a variety of purposes, including the implementation
of utility routines for MySQL DBAs and developers. However, the most important
use of stored programs is within applications, as we describe in this part of the book.
Stored programs allow us to move some of our application code into the database
server itself; if we do this wisely, we may benefit from applications that are more
secure, efficient, and maintainable. In Chapter 12 we consider the merits of, and best
practices for, using stored programs inside modern—typically web-based—applica-
tions. In the subsequent chapters, Chapters 13 through 17, we show how to use
stored procedures and functions from within the development languages most com-
monly used in conjunction with MySQL: PHP, Java, Perl, Python, and .NET lan-
guages such as C# and VB.NET.

Chapter 12, Using MySQL Stored Programs in Applications

Chapter 13, Using MySQL Stored Programs with PHP

Chapter 14, Using MySQL Stored Programs with Java

Chapter 15, Using MySQL Stored Programs with Perl

Chapter 16, Using MySQL Stored Programs with Python

Chapter 17, Using MySQL Stored Programs with .NET





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

261

Chapter 12 CHAPTER 12

Using MySQL Stored Programs
in Applications12

In the next few chapters we are going to show you how to use stored programs in a
variety of external programming environments—PHP, Java, Perl, Python, and .NET.
In those chapters we’ll describe how to use the MySQL drivers provided with these
languages to execute stored programs, retrieve the output of stored programs, and
handle any error conditions that may arise during execution. Before we delve into
those specific environments, we’ll start with a general discussion of using MySQL
stored programs in applications.

The purpose of this preliminary chapter is twofold:

• To present the overall benefits of using stored programs in your applications.

• To outline the general principles and program flow considerations that apply
when using stored programs from any programming environment. Chapters 13
through 17 will describe the details for specific programming environments.

The Pros and Cons of Stored Programs in Modern
Applications
There is a persistent—and often lively—debate in the programming community
about the benefits and appropriateness of using stored programs in applications.

Database stored programs first came to prominence in the late 1980s and early 1990s
during what might be called the client/server revolution. In the client/server environ-
ment of that time, stored programs had some obvious advantages (aspects of which
persist in N-tier and Internet-based architectures):

• Client/server applications typically had to carefully balance processing load
between the client PC and the (relatively) more powerful server machine. Using
stored programs was one way to reduce the load on the client, which might oth-
erwise be overloaded.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 12: Using MySQL Stored Programs in Applications

• Network bandwidth was often a serious constraint on client/server applications;
execution of multiple server-side operations in a single stored program could
reduce network traffic.

• Maintaining correct versions of client software in a client/server environment
was often problematic. Centralizing at least some of the processing on the server
allowed a greater measure of control over core logic.

• Stored programs offered clear security advantages, because in the client/server
paradigm, end users typically connected directly to the database to run the appli-
cation. By restricting access to stored programs only, users would not be able to
perform ad hoc operations against tables and other database structures.

The use of stored programs in client/server applications was, and is, most prevalent
in applications that use Microsoft SQL Server (and its technological predecessor,
Sybase) and Oracle. The Microsoft SQL Server and Oracle stored program languages
(Transact-SQL and PL/SQL, respectively) have substantially different characteris-
tics—especially regarding the ability of a stored program to return a result set. The
differences between the two languages have resulted in somewhat different usage
patterns:

SQL Server–based applications
For these applications, the dominant pattern is to encapsulate all database inter-
action between client and server—including queries—into stored programs.
This is cited as providing better security and reduced network traffic.

Oracle-based applications
For these applications, it was initially impossible to return a result set from a
stored program and, although this became possible in later releases, it was never
particularly convenient or easy to do so. As a result, Oracle-based applications
tended to use stored programs to implement transaction processing, but would
use native SQL to retrieve result sets.

With the emergence of three-tier architectures and web applications, many of the
incentives to use stored programs from within applications disappeared. Application
clients are now often browser-based; security is predominantly handled by a middle
tier; and the middle tier possesses the ability to encapsulate business logic. Most of
the functions for which stored programs were used in client/server applications can
now be implemented in middle-tier code (e.g., in PHP, Java, C#, etc.). Transferring
processing to the middle tier can also enhance load balancing and scalability.

Even so, many of the original advantages of stored programs (such as enhanced secu-
rity and reduction in network traffic) still apply, if to a reduced degree. The use of
stored programs is still regarded as a “best practice” by many application developers
and architects.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Pros and Cons of Stored Programs in Modern Applications | 263

Today, there are three schools of thought regarding the use of stored programs in
applications:

All stored programs, all the time
This segment of the development community continues to believe that stored
programs should be used for all interaction between the client (now the middle
tier) and the database. They argue that this pattern provides more security to the
database, and also provides a level of abstraction between the underlying data
model and the business logic in the middle tier.

Stored programs only when absolutely necessary
This segment believes that stored programs should play only a minor role in a
modern application development. They argue that stored programs add addi-
tional and unnecessary complexity to the application design; that they fragment
the logic between the middle tier and the database; and that they get in the way
of object-relational mapping schemes such as Java J2EE’s CMP and Hibernate.

Use what works
This segment (probably the quiet majority) is fairly pragmatic—they use stored
programs selectively when the use of a stored program seems warranted, but
they tend to use native SQL when it is easier and more convenient to do so.

It’s up to you to decide which model works best for you and your application. In the
next few sections we will try to provide you with as much information as we can to
help you make an informed decision. To sum up our personal feelings on the mat-
ter, we do think that an application that encapsulates all database interaction within
stored programs is employing a valid and effective pattern. In particular, this kind of
application can be made virtually immune to SQL injection attacks, and will be
much less vulnerable to exploits based on compromised passwords. We also believe
in separating data access logic from business logic, and the use of stored programs is
a good way to do this. However, stored programs are not a natural choice for all
applications; for instance, using stored programs exclusively tends to interfere with
object-relational mapping schemes such as J2EE CMP and Hibernate.

In the next few sections, we’ll look in some detail at the advantages stored programs
offer an application and compare those to possible disadvantages. To summarize
here, stored programs offer these advantages:

• Stored programs can improve the security of your database server.

• Stored programs offer a mechanism to abstract data access routines, hiding your
implementation behind a procedural interface and making it easier to evolve
your data structures over time.

• Stored programs can reduce network traffic.

• Stored programs can be used to implement functionality that is needed—and
can be called—from multiple applications, and from multiple places within a
single application. This can be handy when applications written in frameworks



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 12: Using MySQL Stored Programs in Applications

that don’t interoperate very well (.NET and Java for instance) access the same
database.

• Stored programs allow for a convenient division of duties between those whose
skills are database-centric and those whose skills are programming-centric.

• You can often improve the portability of your application code by moving logic
into stored programs.

Against these possible advantages, consider the following disadvantages:

• Stored programs might be slower—especially for computationally expensive
operations—than equivalent middle-tier code.

• The use of stored programs can lead to fragmentation of your application
logic—logic may be split between the database and the application server tier,
making it difficult to track down design flaws or implementation bugs.

• Stored programs are usually written in a different language from your applica-
tion server tier, requiring a wider range of skills in your development team.

• Stored programs can be more difficult to debug (depending on the implementa-
tion: MySQL does not yet offer an integrated stored program debugger).

• Most object-relational mapping systems (e.g., J2EE CMP and Hibernate) cannot
seamlessly exploit stored programs.

• While stored program calls may sometimes be more portable than native SQL, in
practice this is not true for all implementations. Of the “big four,” only DB2 and
MySQL implement the ANSI standard for stored programs. As a result, MySQL
stored program calls often look and act substantially different from calls made in
Oracle or SQL Server.

Advantages of Stored Programs
Let’s look at each of the advantages of stored programs in turn.

They Enhance Database Security
We’ll see in Chapter 18 how the default security mode of stored programs (SQL
SECURITY DEFINER) permits a stored program to execute SQL statements even if the
calling database account lacks the security privileges to execute these statements as
native SQL. By granting a database account access to stored programs only—with-
out granting direct permissions on underlying tables—we can ensure that access to
the database occurs only in the manner defined by our stored programs. We can also
ensure that these SQL statements are surrounded by whatever business rule valida-
tion or logging is required. This concept is explained in more detail in Chapter 18.

In the event that an application account is compromised (for instance, the password
is “cracked”), the attacker will still only be able to execute our stored programs, as



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Advantages of Stored Programs | 265

opposed to being able to run any ad hoc SQL. While such a situation constitutes a
severe security breach, at least we are assured that the hacker will be subject to the
same checks and logging as a normal application user. The hacker will also be denied
the opportunity to retrieve information about the underlying database schema,
which will hinder attempts to perform further malicious activities.

The security advantages of stored programs are a powerful motivation to include
stored programs in our applications, especially with today’s increasing focus on
securing the underlying database. However, the security advantages of stored pro-
grams can only be realized if stored programs are used exclusively within an applica-
tion. This is because, to be fully effective, this strategy requires that the database
connection account have no direct access to the underlying database tables; hence,
this account must perform operations only through stored programs. One alterna-
tive to this approach is to grant read-only access to the underlying tables, and then
use stored programs exclusively for update operations. At least then, a malicious user
will not be able to make arbitrary changes to the data.

Another security advantage inherent in stored programs is their resistance to SQL
injection attacks. As we will see in Chapter 18, a SQL injection attack can occur
when a malicious user manages to “inject” SQL code into the SQL code being con-
structed by the application. Stored programs do not offer the only protection against
SQL injection attacks, but applications that rely exclusively on stored programs to
interact with the database are virtually immune to this type of attack (provided that
those stored programs do not themselves build dynamic SQL strings without fully
validating their inputs).

They Provide a Mechanism for Data Abstraction
It is generally a good practice to separate your data access code from your business
logic and presentation logic. Data access routines are often used by multiple pro-
gram modules, and are likely to be maintained by a separate group of developers. A
very common scenario requires changes to the underlying data structures, while min-
imizing the impact on higher-level logic. Data abstraction makes this much easier to
accomplish.

The use of stored programs provides a convenient way of implementing a data access
layer. By creating a set of stored programs that implement, all of the data access rou-
tines required by the application, we are effectively building an API for the applica-
tion to use for all database interactions.

They Reduce Network Traffic
Stored programs can radically improve application performance by reducing net-
work traffic in certain situations. Several such situations are described in this section.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 12: Using MySQL Stored Programs in Applications

One scenario involves an application that may need to accept input from the end
user, read some data in the database, decide what statement to execute next, retrieve
a result, make a decision, execute some SQL, and so on. If the application code is
written entirely outside of the database, each of these steps would require a network
round trip between the database and the application. The time taken to perform
these network trips can easily dominate overall user response time.

Consider a typical interaction between a bank customer and an ATM machine. The
user requests a transfer of funds between two accounts. The application must
retrieve the balance of each account from the database, check withdrawal limits and
possibly other policy information, issue the relevant UPDATE statements, and finally
issue a COMMIT—all before advising the customer that the transaction has succeeded.
Even for this relatively simple interaction, at least six separate database queries must
be issued, each with its own network round trip between the application server and
the database. Figure 12-1 shows the sequence of interactions that would be required
without a stored program.

On the other hand, if a stored program is used to implement the funds transfer logic,
only a single database interaction is required. The stored program takes responsibil-
ity for checking balances, withdrawal limits, and so on. Figure 12-2 illustrates the
reduction in network round trips that occurs as a result.

Figure 12-1. Network round trips without a stored program

Request funds transfer

Customer Application Database

Query “from” account

Account balance

Query “to” account

Account balance

Check withdrawal limit

Withdrawal limit

Update “from” account

Return status

Update “to” account

Return status

Commit

Return status

Write audit log

Return status
Print receipt



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Advantages of Stored Programs | 267

Network round trips can also become significant when an application is required to
perform some kind of aggregate processing on very large record sets in the database.
If the application needs to (for instance) retrieve millions of rows in order to calcu-
late some sort of business metric that cannot easily be computed using native SQL
(average time to complete an order, for instance), then a very large number of round
trips can result. In such a case, the network delay may again become the dominant
factor in application response time. Performing the calculations in a stored program
will reduce network overhead, which might reduce overall response time—but make
sure you take into account the considerations outlined in the section “They Can Be
Computationally Inferior” later in this chapter. We provide an example of a stored
program reducing network traffic in Chapter 22.

They Allow for Common Routines Across Multiple
Application Types
While it is commonplace for a MySQL database to be at the service of a single appli-
cation, it is not at all uncommon for multiple applications to share a single database.
These applications may run on different machines and be written in different lan-
guages; it may be hard—or impossible—for these applications to share code. Imple-
menting common code in stored programs may allow these applications to share
critical common routines.

For instance, in Chapter 8 we created a procedure called txfer_funds that performed
a transactional-safe, logged transfer of funds between two accounts. Some versions of
the stored procedure contained code for handling deadlocks and an optimistic lock-
ing strategy. Now, in a banking application, a transfer of funds transactions might
originate from multiple sources, including a bank teller’s console, an Internet
browser, an ATM, or a phone banking application. Each of these applications could
conceivably have its own database access code written in largely incompatible lan-
guages, and, without stored programs, we might have to replicate the transaction
logic—including logging, deadlock handling, and optimistic locking strategies—in
multiple places in multiple languages.

Figure 12-2. Network round trips involving a stored program

Request funds transfer

Customer Application Database

Call stored program

Return status
Print receipt



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 12: Using MySQL Stored Programs in Applications

They Facilitate Division of Duties
It is reasonably commonplace for the responsibility for coding application logic to be
held by one set of developers and the responsibility for database design and access
routines to be held by a different set of developers. These two groups may have dif-
ferent skill sets, and application development efficiency may be enhanced if the data-
base developers are able to implement the data access routines directly in MySQL
using the stored program language.

They May Provide Portability
While all relational databases implement a common set of SQL syntax—typically
SQL99 entry-level or similar—each RDBMS offers proprietary extensions to this
standard SQL. If you are attempting to write an application that is designed to be
independent of the underlying RDBMS vendor, or if you want to avoid RDBMS ven-
dor lock-in, you will probably want to avoid these extensions in your application.
However, using these extensions is highly desirable if you want to optimize your use
of the underlying database. For instance, in MySQL, you will often want to employ
MySQL hints, execute non-ANSI statements such as LOCK TABLES, or use the REPLACE
statement.

Using stored programs can help you avoid RDBMS-dependent code in your applica-
tion layer while allowing you to continue to take advantage of RDBMS-specific opti-
mizations. In theory—but only sometimes in practice—stored program calls against
different databases can be made to look and behave identically from the applica-
tion’s perspective. Of course, the underlying stored program code will need to be
rewritten for each RDBMS, but at least your application code will be relatively
portable.

Unfortunately, not all RDBMSs implement stored programs in a consistent manner.
This limits the portability that stored programs can offer. We discuss this in more
detail in the section “They Do Not Provide Portability” later in this chapter.

Disadvantages of Stored Programs
So far, we’ve seen that stored programs can offer some significant advantages. Now
let’s look at the downside of using stored programs.

They Can Be Computationally Inferior
In Chapter 22 we compare the performance of MySQL stored programs and other
languages when performing computationally intensive routines. Our conclusion is
that stored programs, in general, and MySQL stored programs, in particular, are



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Disadvantages of Stored Programs | 269

slower than languages such as PHP, Java, and Perl when executing “number crunch-
ing” algorithms, complex string manipulation, and the like.

Most of the time, stored programs are dominated by database access time—where
stored programs have a natural performance advantage over other programming lan-
guages because of their lower network overhead. However, if you are writing a num-
ber-crunching routine—and you have a choice between implementing it in the stored
program language or in another language such as Java—you may wisely decide
against using the stored program solution.

They Can Lead to Logic Fragmentation
While it is generally useful to encapsulate data access logic inside stored programs, it
is usually inadvisable to “fragment” business and application logic by implementing
some of it in stored programs and the rest of it in the middle tier or the application
client.

Debugging application errors that involve interactions between stored program code
and other application code may be many times more difficult than debugging code
that is completely encapsulated in the application layer. For instance, there is cur-
rently no debugger that can trace program flow from the application code into the
MySQL stored program code.

They Do Not Provide Portability
We said earlier that stored programs could be used to build RDBMS-independent
applications by encapsulating RDBMS-dependent SQL in stored program calls.
Unfortunately, this is only possible for RDBMS types that support similar semantics
for processing parameters and returning result sets.

The stored programs implemented by MySQL, DB2, and Microsoft SQL Server all
behave in a very similar way—all can return multiple result sets, and for most lan-
guages, the calls for accessing these result sets are compatible.

Unfortunately, Oracle is an exception in this regard; Oracle stored programs can
return result sets, but they are returned as references in output parameters, rather
than as result sets in their own right. In order to retrieve these result sets, you have to
write application code that is highly Oracle specific.

So while applications that use only stored programs are reasonably portable between
MySQL and either DB2 or SQL Server, if portability between MySQL and Oracle is
your objective, you are probably better advised to use ANSI-standard SQL calls,
rather than stored program calls, at least when implementing calls that will return
result sets.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 12: Using MySQL Stored Programs in Applications

Calling Stored Programs from Application Code
Most languages used to build applications that interact with MySQL are able to fully
exploit stored programs, although in some languages, support for advanced features
such as multiple result sets is a recent addition. In the following chapters we will
explain in detail how to use stored programs from within PHP, Java, Perl, Python,
and the .NET languages VB.NET and C#. In this section we want to give you an
introduction to the general process of calling a stored program from an external pro-
gramming language.

In general, the techniques for using stored programs differ from those for standard
SQL statements in two significant respects:

• While SQL statement calls may take parameters, stored programs can also have
OUT or INOUT parameters. This means that you need to understand how to access
the value of an OUT or INOUT parameter once the stored program execution com-
pletes.

• A SELECT statement can return only one result set, while a stored program can
return any number of result sets, and you might not be able to anticipate the
number or structure of these result sets.

So, calling a stored program requires a slightly different program flow from standard
SQL processing. The overall sequence of events is shown in the UML “retro” dia-
gram (e.g., flowchart) in Figure 12-3.

Here’s a brief description of each of these steps. Remember that in the next five
chapters, we will be showing you how to follow these steps in various languages.

Preparing a Stored Program Call for Execution
We’ll normally want to call a stored program more than once in our application.
Typically, we first create a statement handle for the stored program. We then itera-
tively execute the program, perhaps providing different values for the program’s
parameters with each execution.

It’s usually possible to bypass the preparation stage and execute a stored program
directly—at least if the stored program returns no result sets. However, if the stored
program takes parameters and you execute the stored program more than once in
your program, we recommend that you go to the extra effort of preparing the state-
ment that includes your stored program call.

Registering Parameters
We can pass parameters into stored programs that require them as literals (e.g., con-
catenate the text of the parameter values into the stored program CALL statement).



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Calling Stored Programs from Application Code | 271

However, in all of the languages we discuss in subsequent chapters, there are spe-
cific parameter-handling methods that allow us to re-execute a stored program with
new parameters without having to re-prepare the stored program call. As we said
previously, it’s best to use these explicit methods if you are going to execute the
stored program more than once—both because it is slightly more efficient and
because, in some cases, only the prepared statement methods offer full support for
bidirectional parameters and multiple result sets.

The methods for passing parameters to stored programs are usually the same as the
methods used to pass parameters (or “bind variables”) to normal SQL statements.

Figure 12-3. General processing flow when calling a stored program from an external language

Prepare the stored
program for execution

Prepare output
parameters

Set input
parameters

Execute the stored
program

More result sets?

Get and process
result set

Retrieve output
parameter values

Re-execute
program?

Close the stored
program

No

Yes

No

Yes



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 12: Using MySQL Stored Programs in Applications

Setting Output Parameters
Some languages allow us to specifically define and process output parameters. In other
languages, we can only access the values of OUT or INOUT parameters by employing
“user variables” (variables prefixed with @) to set and retrieve the parameter values.

Both techniques—the direct API calls provided by .NET and JDBC and the session
variable solution required by other languages—are documented in the relevant lan-
guage-specific chapters that follow.

Executing the Stored Program
Once the input parameters are set and—in the case of .NET and Java—once the out-
put parameters are registered, we can execute the stored program. The method for
executing a stored program is usually the same as the method for executing a stan-
dard SQL statement.

If the stored program returns no result sets, output parameters can immediately be
accessed. If the stored program returns one or more result sets, all of those result sets
must be processed before the output parameter values can be retrieved.

Retrieving Result Sets
The process of retrieving a single result set from a stored program is identical to the
process of retrieving a result set from other SQL statements—such as SELECT or
SHOW—that return result sets.

However, unlike SELECT and SHOW statements, a stored program may return multiple
result sets, and this requires a different flow of control in our application. To cor-
rectly process all of the result sets that may be returned from a stored program, the
programming language API must include a method to switch to the “next” result set
and possibly a separate method for determining if there are any more result sets to
return.

JDBC and ADO.NET languages have included these methods since their earliest
incarnations (for use with SQL Server and other RDBMSs that support multiple
result sets), and these interfaces have been fully implemented for use with MySQL
stored programs. Methods exist to retrieve multiple result sets in PHP, Perl, and
Python, but these methods are relatively immature—in some cases, they were imple-
mented only in response to the need to support stored programs in MySQL 5.0.

Retrieving Output Parameters
Once all result sets have been retrieved, we are able to retrieve any stored program
output parameters. Not all languages provide methods for directly retrieving the val-
ues of output parameters—see the “Setting Output Parameters” section earlier for a



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 273

description of a language-independent method of retrieving output parameters indi-
rectly through user variables.

JDBC and ADO.NET provide specific calls that allow you to directly retrieve the
value of an output parameter.

Closing or Re-Executing the Stored Program
Now that we have retrieved the output parameters, the current stored program exe-
cution is complete. If we are sure that we are not going to re-execute the stored pro-
gram, we should close it using language-specific methods to release all resources
associated with the stored program execution. This usually means closing the pre-
pared statement object associated with the stored program call. If we want to re-exe-
cute the stored program, we can modify the input parameters and use the language-
specific execute method to run the stored program as many times as needed. Then
you should close the prepared statement and release resources.

Calling Stored Functions
In some languages—JDBC and .NET, in particular—stored functions can be invoked
directly, and you have language-specific techniques for obtaining the stored function
return value. However, in other languages, you would normally need to embed the
stored function in a statement that supports an appropriate expression such as a sin-
gle-line SELECT statement.

Conclusion
There is no “one-size-fits-all” answer to the question “Should I use stored programs
in my application?” There are those who believe that virtually all of an application’s
database interactions should be made through stored program calls, and those who
believe that stored programs should be used only in very special circumstances. You
will need to make your own determination as to the value of using MySQL stored
programs in your application.

As we’ve discussed in this chapter, the use of stored programs can provide signifi-
cant advantages:

• Stored programs can substantially improve the security of your application.

• Stored programs can be used to provide an abstract data access layer that can
improve the separation between business logic and data access logic (of course,
stored programs are not required to do this—they are just one means to do so).

• Stored programs can reduce network traffic.

• Stored programs can be used to implement common routines accessible from
multiple applications.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 12: Using MySQL Stored Programs in Applications

• Stored programs allow for a convenient division of duties between those whose
skills are database-centric and those whose skills are programming-centric.

• The use of stored programs can (sometimes) improve application portability.

But you also need to consider the potential disadvantages of using stored programs:

• Stored programs are often slower—especially for computationally expensive
operations—than equivalent middle-tier code.

• The use of stored programs can lead to fragmentation of your application
logic—logic may be split between the database and application server tier, mak-
ing it difficult to track down design flaws or implementation bugs.

• The use of stored programs usually results in your application’s leveraging more
than one programming language, requiring additional skills in your develop-
ment team.

• Most object-relational mapping systems (e.g., J2EE CMP and Hibernate) do not
know how to work with stored programs.

• Although stored program calls may sometimes be more portable than native
SQL, in practice this is not true for all implementations. In particular, Oracle
stored program calls often look and act substantially different from calls made in
MySQL, DB2, or Microsoft SQL Server.

In this chapter we briefly reviewed the general programming logic involved in calling
stored programs from external programming languages. In subsequent chapters we
will explain the detailed techniques for handling stored program calls in PHP, Java,
Perl, Python, C#, and VB.NET.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

275

Chapter 13 CHAPTER 13

Using MySQL Stored Programs
with PHP13

The combination of PHP and MySQL is one of the most popular and powerful part-
nerships in open source web development and is a key component of the LAMP
(Linux-Apache-MySQL-PHP/Perl/Python) stack. There are reportedly more than 18
million web sites based on PHP technology (according to http://www.netcraft.com),
and the majority of these are using MySQL as the underlying database.

PHP started off as a simple CGI-based processor for amateur web development in
the mid-1990s. It borrowed heavily from the Perl language (at the time, the most
popular approach for CGI-based dynamic web development), but was more tightly
integrated with HTML and—unlike Perl—was designed specifically for web
development.

PHP takes a similar approach to dynamic web content as Microsoft’s ASP (Active
Server Pages) and J2EE’s JSP (Java 2 Enterprise Edition Java Server Pages). All of
these technologies involve embedding tags into HTML pages (renamed appropri-
ately as PHP, ASP, or JSP pages, of course) that control the dynamic content of the
page. In the case of PHP, the tags contain PHP code. The PHP code is executed by
the PHP engine, which is usually deployed within the web server (Apache, IIS, etc.)
and typically interacts with a database to provide dynamic, data-driven content.

As a language, PHP delivers much of the flexibility and power of the popular Perl
open source scripting language and has a wide variety of interfaces to back-end data-
bases. It is probably fair to characterize PHP as having a shallower learning curve
than the ASP.NET or J2EE alternatives. Also, since PHP is open source, software
licensing costs are, of course, minimal (although many larger enterprises seek sup-
port from Zend Corporation or another commercial entity).

In this chapter we will review the use of PHP with MySQL and show how stored pro-
grams can be used within PHP-based applications.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 13: Using MySQL Stored Programs with PHP

Options for Using MySQL with PHP
PHP currently offers multiple ways of working with MySQL. Some of the more pop-
ular methods include:

PEAR (PHP Extension and Application Repository) DB package
This package offers a database-independent API for communicating with rela-
tional databases from PHP. PEAR::DB includes support for MySQL, but pro-
vides only rudimentary support for MySQL stored programs.

PHP MySQL extension (ext/mysql)
This PHP extension provides MySQL-specific support for working with MySQL.
However, the mysql extension does not include methods for working with
advanced MySQL features introduced in MySQL 4.1 and 5.0 and will probably
never provide direct support for stored programs.

mysqli interface (ext/mysqli)
This PHP extension was introduced to support new features in MySQL 4.1 and
5.0.

PDO (PHP Data Objects)
PDO is a database-independent interface that will probably become the succes-
sor to the PEAR::DB interface. PDO became an officially supported interface
only in PHP 5.1, so it is the newest of the PHP database interfaces.

Only the mysqli and PDO extensions provide full support for MySQL stored pro-
grams. In this chapter we will show how each can be used to interface with MySQL
and how to use MySQL stored programs.

Using PHP with the mysqli Extension
Before we look at how to invoke stored programs using PHP and the mysqli exten-
sion, let’s look at how we perform operations in PHP involving simple SQL state-
ments. These operations will form the foundation for using stored programs in PHP.
If you already feel very familiar with mysqli, you might want to skip forward to
“Calling Stored Programs with mysqli,” later in this chapter.

Enabling the mysqli Extension
The mysqli extension ships as standard with PHP 5.0 and above, but you may need
to enable it. You do this by ensuring that ext_mysqi is listed in the extensions section
of your php.ini file. The ext_mysqli extension should be included in your default php.
ini file, but may be commented out. In Windows, it can be found in the Windows
extension section. The relevant line will look something like this:

extension=php_mysqli.dll



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using PHP with the mysqli Extension | 277

On Unix or Linux, the line should look like:

extension=mysqli.so

Connecting to MySQL
To connect to MySQL we first create an object representing a connection using the
mysqli call. The mysqli call takes arguments containing the hostname, username,
password, database, and port number. The mysqli_connect_errno( ) call will contain
any error code associated with the connection, and mysqi_connect_error( ) will con-
tain the error text.

In Example 13-1 we create an object—$mysqli—representing a MySQL connection,
and check for any error condition.

Checking for Errors
The mysqli connection object includes properties that reflect any error condition
associated with the most recent operation. These properties include:

errno
Contains the MySQL-specific error code

sqlstate
Contains the ANSI SQLSTATE error code

error
Contains the text of the most recent error

When we are using prepared statements (see the section “Using Prepared State-
ments” later in this chapter), similar properties can be accessed as part of the state-
ment object.

Although PHP 5 supports Java- or C#-style exception handling, the mysqli classes do
not currently throw exceptions, so it is usually necessary to check these error codes
after every operation.

Example 13-1. Creating a mysqli connection

# Create a connection
<?php
    $mysqli = new mysqli("localhost", "root", "secret", "test");
    if (mysqli_connect_errno( )) {
        printf("Connect failed: %s\n", mysqli_connect_error( ));
        exit ( );
    } else {
        printf("Connect succeeded\n");
    }
?>



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 13: Using MySQL Stored Programs with PHP

There are a couple of different common styles for error checking. First, we could
check to see if the mysqli call returned TRUE (1) or FALSE (0):

  if ($mysqli->query($sql) <> TRUE) {
      printf("Statement failed %d: (%s) %s\n"
        ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
   }

If we wanted to make our code very compact, we could do this using an “or” state-
ment, as in this example:

   $mysqli->query($sql) or printf("Statement failed %d: (%s) %s\n"
        ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);

Unfortunately, this technique is not very reliable, as there are some mysqli methods
that return the number of rows affected, rather than TRUE or FALSE. For these calls,
you need to explicitly check the value of $mysqli->errno after the calls, as follows:

    $mysqli->query($sql);
    if ($mysqli->errno <> 0 ) {
        printf("Statement failed %d: (%s) %s\n"
        ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
    }

It is probably wiser to explicitly check the value of errno after key method calls so
that you can use a consistent style of coding and can avoid introducing bugs that
may occur if you misinterpret a method that returns no rows as having encountered
an error.

Executing a Simple Non-SELECT Statement
To issue a “one-off” statement that returns no result set, we can use the query
method of the mysqli connection object. Example 13-2 provides an example of issu-
ing a simple, one-off statement.

Retrieving a Result Set
If the statement issued from the query object returns a result set, we can retrieve the
rows using the fetch_object( ) method. This method returns a row object, from
which we can retrieve the values of the columns returned. Example 13-3 shows us
cycling through the results of a query.

Example 13-2. Issuing a simple statement in mysqli

$mysqli->query("CREATE TABLE guy_1 (guys_integers INT)");
if ($mysqli->errno <> 0 ) {
    printf("Statement failed %d: (%s) %s\n"
    ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using PHP with the mysqli Extension | 279

An alternative to the fetch_object( ) method is the fetch_row( ) method, in which
columns can be referenced by number rather than name. Example 13-4 illustrates
this technique.

The use of fetch_row( ) results in code that is harder to read and maintain and is not
generally recommended. However, as we shall soon see, the use of fetch_row( ) is
convenient when you don’t know what the result set will look like when you are
writing your code (for instance, when processing a dynamic SQL statement).

Managing Transactions
As with most of the programmatic interfaces to MySQL, you are always free to man-
age transactions by executing the usual MySQL statements—for example, SET
AUTOCOMMIT, START TRANSACTION, COMMIT, and ROLLBACK. However, instead of using
these statements, you may want to take advantage of the native methods available in
the mysqli interface. These methods can assist with managing transactions and can
be more convenient and result in simpler code. Of course, these statements are only
meaningful if you are using a transactional storage engine such as InnoDB.

Example 13-3. Retrieving a result set from a simple query

$sql="SELECT employee_id, surname, salary
       FROM employees
      WHERE salary>95000
        AND department_id=1
         AND status='G'";

$results=$mysqli->query($sql);
if ($mysqli->errno) { die ($mysqli->errno." ".$mysqli->error); }
while($row=$results->fetch_object( ))      {
     printf("%d\t%s\t%d\n",$row->employee_id,$row->surname,$row->salary);
}

Example 13-4. Retrieving a result set using fetch_row

$sql="SELECT employee_id, surname, salary
       FROM employees
      WHERE salary>95000
        AND department_id=1
        AND status='G'";

$results=$mysqli->query($sql);
if ($mysqli->errno) { die ($mysqli->errno." ".$mysqli->error); }
while($row=$results->fetch_row( )) {
     printf("%d\t%s\t%d\n",$row[0],$row[1],$row[2]);
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 13: Using MySQL Stored Programs with PHP

The following methods of the mysqli object (illustrated in Example 13-5) are transac-
tion-oriented:

autocommit( )
Enables or disables the autocommit setting for the current connection

commit( )
Issues a COMMIT of the transaction

rollback( )
Issues a (you guessed it) rollback of the transaction

Using Prepared Statements
For SQL statements that may be re-executed, you can use the mysqli prepared state-
ment interfaces. By preparing a statement before execution, you reduce the overhead
of re-executing the statement. Furthermore, if a statement contains variable parame-
ters, using the prepare and execute calls is safer than appending these parameters to
the SQL and executing, since SQL code cannot be “injected” into prepared state-
ment parameters (see Chapter 18 for a discussion of the security implications of SQL
injection).

To create a prepared statement, we use the prepare( ) method of the mysqli inter-
face, which returns a mysqli_stmt object. Any parameters within the prepared state-
ment should be represented by ? characters, which can then be associated with PHP
variables through the bind_param( ) method.

Example 13-5. Using mysqli transaction-handling methods

$mysqli->autocommit(FALSE);

$mysqli->query("UPDATE account_balance
                   SET balance=balance-$tfer_amount
                 WHERE account_id=$from_account");
if ($mysqli->errno)   {
   printf("transaction aborted: %s\n",$mysqli->error);
   $mysqli->rollback( );
   }
   else   {
   $mysqli->query("UPDATE account_balance
                      SET balance=balance+$tfer_amount
                    WHERE account_id=$to_account");
   if ($mysqli->errno)      {
      printf("transaction aborted: %s\n",$mysqli->error);
      $mysqli->rollback( );
   }
   else      {
      printf("transaction succeeded\n");
      $mysqli->commit( );
   }
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using PHP with the mysqli Extension | 281

Example 13-6 illustrates the process of preparing a statement, binding parameters,
and repeatedly executing a SQL statement.

The relevant sections of this code are shown here:

Retrieving Result Sets from Prepared Statements
To retrieve a result set from a prepared statement, we must first associate the col-
umns in the result set with the PHP variables that will hold their values. This is done
using the bind_result( ) method of the prepared statement object. We then use the
fetch( ) method of the prepared statement to retrieve each row. Example 13-7 illus-
trates this technique.

Example 13-6. Preparing and multi-executing a simple SQL statement

1  #Preparing the statment
2  $insert_stmt=$mysqli->prepare("INSERT INTO x VALUES(?,?)")
3      or die($mysqli->error);
4  #associate variables with the input parameters
5  $insert_stmt->bind_param("is", $my_number,$my_string); #i=integer
6  #Execute the statement multiple times....
7  for ($my_number = 1; $my_number <= 10; $my_number++) {
8      $my_string="row ".$my_number;
9      $insert_stmt->execute( ) or die ($insert_stmt->error);
10  }
11  $insert_stmt->close( );

Line Explanation

2 Prepare an INSERT statement. The statement has two input parameters, corresponding to the values to
be inserted into the table.

5 Use bind_param( ) to associate PHP variables with the SQL parameters. bind_param( ) takes two
input values: first a string indicating the data types of the parameters to follow (i=integer, d=double,
s=string, b=blob). So the "is" string indicates that the first parameter is to be treated as an integer,
and the second as a string. The following arguments to bind_param( ) signify the PHP variables to be
associated with the ? placeholders.

7 Create a loop that repeats for each of the numbers 1 to 10.

9 Execute the prepared statement. Each execution will insert the values of the PHP variables $my_number
and $my_string into the table.

11 Close the prepared statement, releasing any resources associated with the statement.

Example 13-7. Retrieving a result set from a prepared statement

   $sql="SELECT employee_id,surname,firstname
           FROM employees
          WHERE department_id=?
            AND status=?
          LIMIT 5";
   $stmt = $mysqli->prepare($sql);
   if ($mysqli->errno<>0) {die($mysqli->errno.": ".$mysqli->error);}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 13: Using MySQL Stored Programs with PHP

Getting Result Set Metadata
If we don’t know in advance the structure of the result set being returned by our
query, we can use the result_metadata( ) method of the prepared statement to
retrieve the column definitions. This method returns a result object that can be que-
ried to return the names, lengths, and types of the columns to be returned.

Example 13-8 shows us retrieving the structure of a result set from a prepared
statement.

Processing a Dynamic Result Set
Sometimes we need to process a SQL statement without knowing exactly what the
columns in the result set will be. In these cases, we can use the result_metadata( )
interface to determine the composition of the result set and dynamically bind the
resulting columns. However, the process is not exactly intuitive. Example 13-9 pro-
vides some PHP code that will produce an HTML table based on an arbitrary SELECT
statement.

   $stmt->bind_param("is",$input_department_id,$input_status) or die($stmt-error);
   $stmt->bind_result( $employee_id,$surname,$firstname )  or die($stmt->error);

   $input_department_id=1;
   $input_status='G';
   $stmt->execute( );
   if ($mysqli->errno<>0) {die($stmt.errno.": ".$stmt->error) ;}
   while ($stmt->fetch( )) {
         printf("%s %s %s\n", $employee_id,$surname,$firstname);
   }

Example 13-8. Retrieving metadata from a prepared statement

   $metadata = $stmt->result_metadata( );
   $field_cnt = $metadata->field_count;
   while ($colinfo = $metadata->fetch_field( )) {
      printf("Column:   %s\n",   $colinfo->name);
      printf("max. Len: %d\n",   $colinfo->max_length);
      printf("Type:     %d\n\n", $colinfo->type);
   }

Example 13-9. Processing a dynamic result set

1   require_once "HTML/Table.php";
2   $table =new HTML_Table('border=1');
3
4   $stmt=$mysqli->prepare($sql);
5   if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
6
7   # Retrieve meta-data and print table headings

Example 13-7. Retrieving a result set from a prepared statement (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using PHP with the mysqli Extension | 283

Let us step through this rather complicated example:

8   $metadata = $stmt->result_metadata( );
9   $field_cnt = $metadata->field_count;
10 $colnames=array( );
11 while ($colinfo = $metadata->fetch_field( )) {
12      array_push($colnames,$colinfo->name);
13   }
14   $table->addRow($colnames);
15   $table->setRowAttributes(0,array("bgcolor" => "silver"));
16
17
18   # Declare an array to receive column data
19   $stmt_results=array_fill(0,$field_cnt,'');
20   # Set first element of the bind_result parameter as the statement handle
21   $bind_result_parms[0]=$stmt;
22   # Add the references to the column arrays to the parameter list
23   for ($i=0;$i<$field_cnt;$i++)   {
24      array_push($bind_result_parms,  &$stmt_results[$i]);
25   }
26   #Pass the array to the bind_result function
27   call_user_func_array("mysqli_stmt_bind_result", $bind_result_parms);
28   $stmt->execute( );
29   $row=0;
30   while($stmt->fetch( ))   {
31      $row++;
32      for ($i=0;$i<$field_cnt;$i++)   {
33         $table->setCellContents($row,$i,$stmt_results[$i]);
34      }
35   }
36   $stmt->close( );
37   print $table->toHtml( );

Line(s) Explanation

1 and 2 Set up the HTML table that will hold our result set. We’re using the PEAR Table class to create our
HTML table—available at http://pear.php.net.

4 Prepare the SQL statement. The text of the SQL statement is contained in the variable $sql: we don’t
have to know the text of the SQL, since this code will process the output from any SELECT statement.

8 Retrieve the result set metadata.

9 Note the number of columns that will be returned by the query.

10-13 Retrieve the name of each column to be returned into an array.

14 and 15 Create and format a nHTML table row containing our column names.

19 Initialize an array that will contain the column values for each row returned by the SQL statemnet.

21 Create an array variable that we are going to use to pass to the bind_result( ) call. To perform a
dynamic bind ,we have to use the procedural version of bind_result( )—mysqli_stmt_
bind_result( )—which takes as its first argument the prepared statement object. So the first ele-
ment of our array is the statement object.

Example 13-9. Processing a dynamic result set (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 13: Using MySQL Stored Programs with PHP

The procedure for rendering the results of dynamic SQL in mysqli is more compli-
cated than we would like. However, the technique outlined above can be used when
we do not know in advance what the SQL is or what result set it will output—and
this can be particularly important when dealing with stored procedures, since they
may return an unpredictable result set sequence.

Figure 13-1 shows the output produced by Example 13-9 when provided with a sim-
ple query against the departments table.

Calling Stored Programs with mysqli
All of the mysqli methods for calling standard SQL statements can also be used to
call stored programs. For instance, in Example 13-10, we call a stored procedure that
does not return a result set using the query method.

If the stored procedure returns a single result set, we can retrieve the result set as for
a SELECT statement by using the fetch_object( ) method. Example 13-11 shows such
a simple stored procedure.

23 and 24 Add an element to $bind_result_parms for each column to be returned. Because mysqli_
stmt_bind_result( ) expects to have these passed “by reference” rather than “by value,” we pre-
fix these array elements with the & symbol.

27 Bind the result variables to the dynamic SQL. The process is complicated—becausebind_result( )
cannot accept an array of result variables, we need to call the PHP function call_user_func_
array( ), which allows an array to be passed as an argument to a function that normally requires a
static set of variables. We also have to use the procedural version of bind_result( ), mysqli_
stmt_bind_result( ). Nevertheless—despite the complexity—we have now successfully
bound the elements of stmt_results to receive the output of the fetch command.

28-34 Execute the SQL and fetch the results of the SQL. The results for each column will be placed in the
stmt_results array.

36 and 37 Close the prepared statement and print out the contents of the HTML table that we have built.

Example 13-10. Calling a stored procedure without a result set in mysqli

    $sql = 'call simple_stored_proc( )';
    $mysqli->query($sql);
    if ($mysqli->errno) {
        die("Execution failed: ".$mysqli->errno.": ".$mysqli->error);
    }
    else {
        printf("Stored procedure execution succeeded\n");
    }

Line(s) Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using PHP with the mysqli Extension | 285

Example 13-12 shows how we would retrieve the result set from this stored proce-
dure call using query( ) and fetch_object( ).

Figure 13-1. Sample output from the dynamic SQL PHP routine

Example 13-11. Stored procedure with a single result set

CREATE PROCEDURE department_list( )
    READS SQL DATA
    SELECT  department_name,location from departments;

Example 13-12. Retrieving a result set from a stored procedure

    $sql = "call department_list( )";
    $results = $mysqli->query($sql);
    if ($mysqli->errno) {
         die("Execution failed: ".$mysqli->errno.": ".$mysqli->error);
    }
    while ($row = $results->fetch_object( )) {
         printf("%s\t%s\n", $row->department_name, $row->location);
    }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 13: Using MySQL Stored Programs with PHP

You will often want to execute the same stored procedure multiple times—possibly
with varying input parameters—so it is a best practice to use mysqli prepared state-
ments. We can use prepared statements with stored procedure in pretty much the
same way as we would for any other SQL statement. For instance, in Example 13-13,
we see a stored procedure that accepts an input parameter and generates a result set
based on the value of that input parameter.

We can create a prepared statement for this stored procedure and use the bind_
param( ) method to associate the stored procedure input parameter with a PHP vari-
able. Example 13-14 illustrates this technique.

Let’s look at this example line by line:

Example 13-13. Stored procedure with result set and input parameter

CREATE PROCEDURE customers_for_rep(in_sales_rep_id INT)
    READS SQL DATA
     SELECT customer_id,customer_name
       FROM customers
        WHERE sales_rep_id=in_sales_rep_id;

Example 13-14. Using a prepared statement to execute a stored procedure with input parameter and
result set

1    $sql = "CALL customers_for_rep(?)";
2    $stmt = $mysqli->prepare($sql);
3    if ($mysqli->errno) {die($mysqli->errno.":: ".$mysqli->error);}
4
5    $stmt->bind_param("i", $in_sales_rep_id);
6    $in_sales_rep_id = 1;
7    $stmt->execute( );
8    if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
9
10    $stmt->bind_result($customer_id,$customer_name);
11    while ($stmt->fetch( )) {
12        printf("%d %s \n", $customer_id,$customer_name);
13    }

Line(s) Explanation

1-3 Create a prepared statement for the stored procedure call; the ? symbol in the SQL text indicates the pres-
ence of an input parameter.

5 Associate a PHP variable ($in_sales_rep_id) with the stored procedure’s input parameter.

7-10 Execute the stored procedure and associate PHP variables ($customer_id and $customer_name)
with the columns in the output result set.

11-13 Retrieve the result set from the stored procedure call.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using PHP with the mysqli Extension | 287

Handling Output Parameters
The mysqli extension does not currently include a method for directly retrieving out-
put parameters from a stored program. However, it is relatively easy to work around
this limitation by using a user variable to hold the output parameter and then using a
simple SQL statement to retrieve that value. Example 13-15 shows a stored proce-
dure that returns the number of customers for a specific sales representative as a
stored procedure output variable.

To retrieve the output parameter from this stored procedure, we specify a user vari-
able (see Chapter 3 for a description of user variables) to hold the value of the out-
put parameter, and then we issue a simple SELECT statement to retrieve the value.
Example 13-16 illustrates the technique.

Retrieving Multiple Result Sets
If a stored procedure returns more than one result set, then you can use mysqli’s
multi_query( ) method to process all the results. The specific coding technique in
PHP depends somewhat on whether you know the exact number and structure of the
result sets. For instance, in the case of the very simple stored procedure in
Example 13-17, we know that two, and only two, result sets will be returned, and we
know the exact structure of each.

Example 13-15. Stored procedure with an output parameter

CREATE PROCEDURE sp_rep_customer_count(
       in_emp_id DECIMAL(8,0),
       OUT out_cust_count INT)
    NOT DETERMINISTIC READS SQL DATA
BEGIN

    SELECT count(*)
      INTO out_cust_count
      FROM customers
     WHERE sales_rep_id=in_emp_id;

END;

Example 13-16. Retrieving the value of an output parameter in mysqli

    $sql="CALL sp_rep_customer_count(1,@customer_count)";
    $stmt = $mysqli->prepare($sql);
    if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
    $stmt->execute( );
    if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
    $stmt->close( );

    $results = $mysqli->query("SELECT @customer_count AS customer_count");
    $row = $results->fetch_object( );
    printf("Customer count=%d\n",$row->customer_count);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 13: Using MySQL Stored Programs with PHP

To process this stored procedure, we first call multi_query( ) to set up the multiple
results, and then we call store_result( ) to initialize each result set. We can use
fetch_object( ) or fetch_row( ) to access each row in the result set. Example 13-18
illustrates this technique.

Of course, we don’t always know exactly how many result sets a stored procedure
might return, and each result set can have an unpredictable structure. The next_
result( ) method will return TRUE if there is an additional result set, and we can use
the field_count property and fetch_field( ) method to retrieve the number of col-
umns as well as their names and other properties, as shown in Example 13-19.

Example 13-17. Stored procedure that returns two result sets

 CREATE PROCEDURE stored_proc_with_2_results(in_sales_rep_id INT)
    DETERMINISTIC READS SQL DATA
BEGIN

     SELECT employee_id,surname,firstname
       FROM employees
      WHERE employee_id=in_sales_rep_id;

     SELECT customer_id,customer_name
       FROM customers
      WHERE sales_rep_id=in_sales_rep_id;

END;

Example 13-18. Fetching two result sets from a stored procedure in mysqli

   $query  = "call stored_proc_with_2_results( $employee_id )";
   if ($mysqli->multi_query($query)) {

      $result = $mysqli->store_result( );
      while ($row = $result->fetch_object( )) {
         printf("%d %s %s\n",$row->employee_id,$row->surname,$row->firstname);
      }
      $mysqli->next_result( );
      $result = $mysqli->store_result( );
      while ($row = $result->fetch_object( )) {
         printf("%d %s \n",$row->customer_id,$row->customer_name);
      }
   }

Example 13-19. mysqli code to process a variable number of result sets

1   $query  = "call stored_proc_with_2_results( $employee_id )";
2   if ($mysqli->multi_query($query)) {
3   do {
4        if ($result = $mysqli->store_result( )) {
5            while ($finfo = $result->fetch_field( )) {
6              printf("%s\t", $finfo->name);
7            }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 289

Let’s look at this example line by line:

Using MySQL with PHP Data Objects
As we outlined earlier in this chapter, PDO is a database-independent object-ori-
ented, interface to relational databases for use in PHP 5.x. PDO was officially
released with PHP 5.1, although “experimental” versions were available with the 5.0
release. PDO provides a very powerful and easy-to-use syntax, as well as providing
good support for MySQL stored programs.

We’ll start with a brief review of PDO basics; if you are already familiar with PDO,
you might want to skip forward to the section “Calling Stored Programs with PDO”
later in this chapter.

8            printf("\n");
9
10            while ($row = $result->fetch_row( )) {
11               for ($i=0;$i<$result->field_count;$i++) {
12                  printf("%s\t", $row[$i]);
13               }
14               printf("\n");
15           }
16           $result->close( );
17       }
18    } while ($mysqli->next_result( ));

Line(s) Explanation

2 Use the multi_query( ) call to invoke the stored procedure.

3-18 Define a loop that will continue so long as mysqli->next_result( ) returns TRUE: the loop will execute
at least once, and then will continue as long as there are result sets to process.

4 Use store_result( ) to retrieve the result set into the $result object. We can use either store_
result( ) or use_result( ): store_result( ) uses more memory, but allows some additional func-
tionality (such as seek_result( )).

5-7 Loop through the column in the result set. Each call to fetch_field( ) stores the details of a new column
into the $finfo object. On line 6 we print the name of the column.

10-15 This loop repeats for each row in the result set. We use fetch_row( ) rather than fetch_object( ),
since it is easier to refer to a column by number when we do not know its name.

11-13 Loop through each column in a particular row. We use the field_count property of the result set to control
that loop. On line 12 we print the value of a particular column, referring to the column by number.

16 Close the result set.

18 The while condition on this line will cause the loop to repeat if there is an additional result set and to termi-
nate otherwise.

Example 13-19. mysqli code to process a variable number of result sets (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 13: Using MySQL Stored Programs with PHP

Connecting to MySQL
To create a connection to MySQL, we create a database handle using the PDO con-
structor method. The constructor takes three arguments:

dsn
The "dsn" string represents the database to be connected; it has the form 'mysql:
dbname=dbname;host=hostname;port=port_no'.

user
The username to be used for the connection.

password
The password for the user account specified.

This method will throw an exception if the connection cannot be made, so you will
normally enclose it in a try/catch block. The getMessage( ) method of the
PDOException exception will contain details of any problems encountered when
establishing the connection.

Example 13-20 shows a connection to MySQL being established.

Executing a Simple Non-SELECT Statement
You can execute a simple one-off statement that does not return a result set (e.g., is
not a SELECT, SHOW STATUS, etc.) with the exec( ) method of the database object, as
shown in Example 13-21.

Example 13-20. Connecting to MySQL using PDO

<?php

$dsn = 'mysql:dbname=prod;host=localhost;port=3305';
$user = 'root';
$password = 'secret';

try {
  $dbh = new PDO($dsn, $user, $password);
}
catch (PDOException $e) {
  die('Connection failed: '.$e->getMessage( ));
}

print "Connected\n";

?>

Example 13-21. Executing a non-select with PDO

$sql="CREATE TABLE my_numbers (a_number INT)";
$dbh->exec($sql);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 291

The exec( ) method returns the number of rows returned, as opposed to a success or
failure status. Example 13-22 shows a code fragment that uses the return value to
determine the number of rows inserted.

Catching Errors
Some PDO methods return a success or failure status, while others—like $dbh->
exec( )— return the number of rows processed. Therefore, it’s usually best to check
for an error after each statement has executed. The errorCode( ) method returns the
SQLSTATE from the most recent execution, while errorInfo( ) returns a three-element
array that contains the SQLSTATE, MySQL error code, and MySQL error message.

Example 13-23 checks the errorCode( ) status from the preceding exec( ) call, and—
if the SQLSTATE does not indicate success (00000)—prints the error information from
errorInfo( ).

The output from Example 13-23 is shown in Example 13-24.

If you want to produce a more succinct error output, you can use the PHP implode( )
function to join the elements of the errorInfo( ) call into a single string, as shown in
Example 13-25.

Example 13-22. Using the return value from the exec( ) method

$rows=$dbh->exec("INSERT INTO my_numbers VALUES (1), (2), (3)");
printf("%d rows inserted\n",$rows);

Example 13-23. Using PDO error status methods

$sql="CREATE TABLE my_numbers (a_number INT)";
$dbh->exec($sql);
if ($dbh->errorCode( )<>'00000') {
  $error_array=$dbh->errorInfo( );
  printf("SQLSTATE          : %s\n",$error_array[0]);
  printf("MySQL error code  : %s\n",$error_array[1]);
  printf("Message           : %s\n",$error_array[2]);
}

Example 13-24. Output from the errorInfo( ) method

SQLSTATE          : 42S01
MySQL error code  : 1050
Message           : Table 'my_numbers' already exists

Example 13-25. Generating a succinct error message

$sql="CREATE TABLE my_numbers (a_number INT)";
$dbh->exec($sql);
if ($dbh->errorCode( )<>'00000') {
  die("Error: ".implode(': ',$dbh->errorInfo( ))."\n");
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 13: Using MySQL Stored Programs with PHP

Managing Transactions
If you are using a transactional storage engine such as InnoDB, then you can control
transactions using the standard MySQL statements such as SET AUTOCOMMIT, START
TRANSACTION, COMMIT, and ROLLBACK. However, instead of using these statements, you
may want to take advantage of the native methods available in the PDO interface,
which allow you to directly control transactions. These methods are applied to the
database connection object and include beginTransaction( ), commit( ), and
rollback( ).

Example 13-26 illustrates the use of these transaction control methods to implement
transaction logic in PDO.

Issuing a One-Off Query
The query( ) method can be used to generate a one-off query. It returns an object
containing the result set returned by the query. Individual columns may be accessed
either by column name or column number (using column name is recommended to
improve readability and maintainability). Example 13-27 shows a query being exe-
cuted and the results accessed by column name.

Example 13-26. Using PDO transaction control methods

  $dbh->beginTransaction( );

  $dbh->exec("UPDATE account_balance
                 SET balance=balance-$tfer_amount
               WHERE account_id=$from_account");

  if ($dbh->errorCode( )<>'00000') {
    printf("transaction aborted: %s\n",implode(': ',$dbh->errorInfo( )));
    $dbh->rollback( );
  }

  else
    {
      $dbh->exec("UPDATE account_balance
                     SET balance=balance+$tfer_amount
                   WHERE account_id=$to_account");
      if ($dbh->errorCode( )<>'00000')
      {
          printf("transaction aborted: %s\n",implode(': ',$dbh->errorInfo( )));
          $dbh->rollback( );
      }
      else
      {
          printf("transaction succeeded\n");
          $dbh->commit( );
      }
    }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 293

In Example 13-28 we retrieve the column results by column number.

Using the query( ) method is a convenient way to quickly execute a query, but it is
not a good way to execute a query that will be re-executed, and it has less functional-
ity than the prepare( ) and execute( ) methods that we are going to discuss next.

Using Prepared Statements
PDO prepared statements should be used whenever you are going to repetitively exe-
cute a statement. The prepare( ) and execute( ) methods also allow you to exercise
greater control over statement execution, and they offer some additional capabilities
that are particularly important when executing stored procedures.

The prepare( ) method accepts a SQL statement and returns a PDOStatement object.
The execute( ) method of the statement can then be used to execute the statement.
Example 13-29 shows the use of prepare( ) and execute( ) to execute a simple INSERT
statement.

If the SQL statement passed to the statement is a query, then we can use the fetch( )
method of the statement to access the result set. Each call to fetch( ) returns an array
containing the values for that row. As with the query call, we can access the column
values by name or by column number. Example 13-30 shows us accessing the col-
umn values by name.

Example 13-27. Issuing a simple query in PDO

$sql = 'SELECT department_id,department_name FROM departments';
foreach ($dbh->query($sql) as $row) {
  printf("%d \t %s\n",$row['department_id'],$row['department_name']);
}

Example 13-28. Accessing query results by column number

$sql = 'SELECT department_id,department_name FROM departments';
foreach ($dbh->query($sql) as $row) {
  printf("%d \t %s\n",$row[0],$row[1]);
}

Example 13-29. Prepared statement without result set

$sql = 'INSERT INTO my_numbers VALUES(1),(2),(3)';

$sth = $dbh->prepare($sql);
$sth->execute() or die (implode(':',$sth->errorInfo( )));

Example 13-30. Retrieving a result set from a prepared statement

$sql='SELECT department_id,department_name FROM departments LIMIT 5';

$sth=$dbh->prepare($sql) or die (implode(':',$sth->errorInfo( )));



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 13: Using MySQL Stored Programs with PHP

Binding Parameters to a Prepared Statement
We usually create prepared statements with the intention of re-executing the state-
ment—often in association with new parameter values.

If you want to re-execute a SQL statement while changing the WHERE clause criteria,
DML values, or some other part of the SQL, you will need to include placeholders
for substitution variables (sometimes called SQL parameters or bind variables). These
are represented in the SQL text by including variable names prefixed by :, or as ?
symbols.

We then use the bindParam( ) method to associate PHP variables with the placehold-
ers in the SQL text. This must occur after the prepare( ) method has been called but
before the execute( ) method. bindParam( ) requires that you specify the data type of
the parameter as a PDO constant (such as PDO::PARAM_INT) and—for certain data
types such as strings—a length.

Once we have associated PHP variables with a SQL parameter using bindParam( ), we
are ready to execute our SQL. If we wish to re-execute the SQL, we can simply
change the values of the PHP variables and re-issue the execute( ) call: we do not
have to call bindParam( ) whenever the parameter values change.

Example 13-31 shows how we can bind parameters to a prepared statement.

$sth->execute() or die (implode(':',$sth->errorInfo( )));

while($row=$sth->fetch( )) {
  printf("%d \t %s \n",$row['department_id'],$row['department_name']);
}

Example 13-31. Binding parameters to a prepared statement

1  $sql='SELECT customer_id,customer_name
2          FROM customers
3         WHERE sales_rep_id=:sales_rep_id
4           AND contact_surname=:surname';
5  $sth = $dbh->prepare($sql);
6  if ($dbh->errorCode( )<>'00000') {
7    die("Error: ".implode(': ',$dbh->errorInfo( ))."\n");
8  }
9
10  $sth->bindParam(':sales_rep_id', $sales_rep_id, PDO::PARAM_INT);
11  $sth->bindParam(':surname',      $surname,      PDO::PARAM_STR, 30);
12
13  $sales_rep_id=41;
14  $surname = 'SMITH';
15  $sth->execute( );
16  if ($dbh->errorCode( )<>'00000') {
17    die("Error: ".implode(': ',$dbh->errorInfo( ))."\n");
18  }

Example 13-30. Retrieving a result set from a prepared statement  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 295

Let’s look at this example line by line:

Getting Result Set Metadata
Sometimes we will need to execute a SQL statement without being sure about the
structure of the result set that it might return. This is particularly true of stored pro-
grams, which can return multiple result sets in possibly unpredictable ways. We can
determine the result set to be returned by a prepared statement by using PDO meta-
data methods.

The prepared statement object supports a columnCount( ) method, which returns the
number of columns to be returned by the prepared statement. getColumnMeta( ) can
be called to obtain an array containing details about a specific column such as its
name, data type, and length.

Table 13-1 lists the elements contained in the array returned by getColumnMeta( ).

19  while($row=$sth->fetch( )) {
20    printf("%d %s \n",$row['customer_id'],$row['customer_name']);
21  }

Line(s) Explanation

1-5 Prepare a PDO statement for a SELECT statement that will retrieve customer details for a particular customer
contact_surname and sales_rep_id. Placeholders are defined in the SQL text to represent the values for
those two columns.

10 Call the bindParam( ) method to associate the PHP variable $sales_rep_id with the placeholder :
sales_rep_id. The third parameter indicates the data type of the placeholder. A complete list of PDO data
types can be found in the PDO documentation (see http://www.php.net/manual/en/ref.pdo.php).

11 Call bindParam( ) again to associate a PHP variable with the :surname placeholder. In this case, we also
specify a maximum length for the parameter as specified in the fourth parameter.

13-14 Assign values to the PHP variables that have been associated with the prepared statement placeholders. Typically,
we would assign new values to these variables before we execute the prepared statement.

15-22 Execute the prepared statement and retrieve rows in the usual fashion.

Table 13-1. Elements of the getColumnMeta( ) array

Array element name Description

native_type MySQL data type of the column

flags Any special flags, for the column, such as “not null”

name Display name for the column

len Length of the column

precision Precision for decimal or floating-point numbers

pdo_type Internal PDO data type used to store the value

Example 13-31. Binding parameters to a prepared statement (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 13: Using MySQL Stored Programs with PHP

In Example 13-32 we use the getColumnMeta( ) function to retrieve and print names,
data types, and lengths of columns returned by a query.

Processing a Dynamic Result Set
Using the columnCount( ) method and (optionally) the getColumnMeta( ) method, we
can fairly easily process a result set even if we have no idea what the structure of the
result set will be when we code.

Example 13-33 shows a PHP function that will accept any SELECT statement and out-
put an HTML table showing the result set.

Example 13-32. Obtaining column metadata using the getColumnMeta( ) method

$sth = $dbh->prepare("SELECT employee_id,surname,date_of_birth
                        FROM employees where employee_id=1");
$sth->execute() or die (implode(':',$sth->errorInfo( )));
$cols=$sth->columnCount( );

for ($i=0; $i<$cols ;$i++) {
  $metadata=$sth->getColumnMeta($i);
  printf("\nDetails for column %d\n",$i+1);
  printf("     Name:  %s\n",$metadata["name"]);
  printf(" Datatype:  %s\n",$metadata["native_type"]);
  printf("   Length:  %d\n",$metadata["len"]);
  printf(" Precision: %d\n",$metadata["precision"]);
}

Example 13-33. PDO function to generate an HTML table from a SQL statement

1  function sql_to_html($dbh,$sql_text) {
2      require_once "HTML/Table.php";
3      $table = new HTML_Table('border=1');
4
5      $sth = $dbh->prepare($sql_text) or die(implode(':', $sth->errorInfo( )));
6      $sth->execute() or die(implode(':', $sth->errorInfo( )));
7      $cols = $sth->columnCount( );
8
9      for ($i = 0; $i < $cols; $i ++) {
10          $metadata = $sth->getColumnMeta($i);
11          $table->setCellContents(0, $i, $metadata["name"]);
12      }
13      $table->setRowAttributes(0, array ("bgcolor" => "silver"));
14
15      $r = 0;
16      while ($row = $sth->fetch( )) {
17          $r ++;
18          for ($i = 0; $i < $cols; $i ++) {
19               $table->setCellContents($r, $i, $row[$i]);
20          }
21     }
22
23     print $table->toHtml( );
24  }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 297

Let’s step through the code:

Figure 13-2 shows the output generated by the PDO routine for a simple SQL state-
ment that prints some columns from the employees table.

Calling Stored Programs with PDO
All of the PDO methods we’ve examined so far can be used with stored programs.
For instance, you can use the exec( ) method to call a simple stored program that
doesn’t return a result set, as shown in Example 13-34.

If the stored procedure returns a single result set, then you have the same choices as for
a SELECT statement or another SQL statement that returns a result set. That is, you can
use prepare() and execute() for the statement, or you can use the query() method.
Generally we advise that you use prepare() and execute(), since these can be more
efficient and have greater flexibility. Example 13-35 shows the use of query() to
retrieve a single result set from a stored procedure.

Line(s) Explanation

2 and 3 Initialize the HTML table. We’re using the PEAR Table class to create our HTML table (available at http://
pear.php.net).

5 and 6 Prepare and execute the SQL in the usual fashion.

7 Retrieve the number of columns in the result set. We’ll need to refer to the column count several times, so
it’s handy to store the results in a local variable.

9-12 Loop through the columns. For each column, we retrieve the column name and add that column name to
the header row in our HTML table.

16-21 Loop through the rows from the result set using the fetch( ) method in the usual fashion.

18-20 Loop through the columns returned for a particular row. On line 19 we apply the column value to the appro-
priate cell of the HTML table.

23 Print the HTML to generate the table.

Example 13-34. Calling a simple stored procedure in PDO with the exec( ) method

$sql='call simple_stored_proc( )';
$dbh->exec($sql);
if ($dbh->errorCode( )<>'00000') {
  die("Error: ".implode(': ',$dbh->errorInfo( ))."\n");
}

Example 13-35. Retrieving a single stored procedure result set using the PDO query( ) method

$sql = 'call stored_proc_with_1_result( )';
foreach ($dbh->query($sql) as $row) {
  printf("%d \t %s\n",$row[0],$row[1]);
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 13: Using MySQL Stored Programs with PHP

The prepare( ), execute( ), and fetch( ) sequence for retrieving a single result set
from a stored procedure is exactly the same as for a SELECT statement. Example 13-36
shows the use of this sequence to retrieve a result set from a stored procedure.

Figure 13-2. Output from PDO dynamic query example

Example 13-36. Retrieving a single stored procedure result set using prepare( ), execute( ),
and fetch( )

$sql='call stored_proc_with_1_result( )';

$sth=$dbh->prepare($sql) or die (implode(':',$sth->errorInfo( )));



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 299

Binding Input Parameters to Stored Programs
If we use prepare( ) to ready our stored procedure for execution, we can bind param-
eters to the stored procedure using the bindParam( ) call, just as we have done with
standard SQL statements, as shown in Example 13-37.

Handling Multiple Result Sets
If a stored procedure returns more than one result set, then you can use the
nextRowset( ) method to move through each result set in sequence. The specific cod-
ing technique in PHP depends somewhat on whether you know the exact number
and structure of the result sets. For instance, in the case of the very simple stored
procedure in Example 13-38, we know that two, and only two, result sets will be
returned, and we know the exact structure of each.

$sth->execute() or die (implode(':',$sth->errorInfo( )));

while($row=$sth->fetch( )) {
  printf("%s \t %s \n",$row['department_name'],$row['location']);
}

Example 13-37. Binding parameters to stored procedures

$sql='CALL customers_for_rep(:sales_rep_id,:surname)';
$sth = $dbh->prepare($sql);
if ($dbh->errorCode( )<>'00000') {
  die("Error: ".implode(': ',$dbh->errorInfo( ))."\n");
}

$sth->bindParam(':sales_rep_id', $sales_rep_id, PDO::PARAM_INT);
$sth->bindParam(':surname',      $surname,      PDO::PARAM_STR, 30);

$sales_rep_id=41;
$surname = 'SMITH';
$sth->execute( );

Example 13-38. Stored procedure that returns two result sets

CREATE PROCEDURE stored_proc_with_2_results(in_sales_rep_id INT)
    DETERMINISTIC READS SQL DATA
BEGIN

     SELECT employee_id,surname,firstname
       FROM employees
      WHERE employee_id=in_sales_rep_id;

     SELECT customer_id,customer_name
       FROM customers

Example 13-36. Retrieving a single stored procedure result set using prepare( ), execute( ),
and fetch( ) (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 13: Using MySQL Stored Programs with PHP

To process this stored procedure, we merely need to code fetch( ) loops to retrieve
each result set and add a nextRowset( ) call between the first set of fetches and the
second. Example 13-39 illustrates this technique.

Of course, we don’t always know exactly how many result sets a stored procedure
might return, and each result set can have an unpredictable structure. Therefore, we
often want to combine the nextRowset( ) method with the getColumnMeta( ) method
we saw earlier to dynamically process the result sets that the stored procedure pro-
duces. For instance, the stored procedure in Example 13-40 will return different
result sets depending on whether the employee is a sales representative or not.

      WHERE sales_rep_id=in_sales_rep_id;

END;

Example 13-39. Fetching two result sets from a stored procedure in PDO

$sth = $dbh->prepare("call stored_proc_with_2_results( $employee_id )");
$sth->execute() or die (implode(':',$sth->errorInfo( )));

while ($row1=$sth->fetch( )) {
  printf("%d %s %s\n",$row1['employee_id'],$row1['surname'],$row1['firstname']);
}

$sth->nextRowset( );

while ($row2=$sth->fetch( )) {
  printf("%d %s \n",$row2['customer_id'],$row2['customer_name']);
}

Example 13-40. Stored procedure that returns a variable number of result sets

CREATE PROCEDURE sp_employee_report(in_emp_id decimal(8,0))
    READS SQL DATA
BEGIN
    DECLARE customer_count INT;

    SELECT surname,firstname,date_of_birth
      FROM employees
     WHERE employee_id=in_emp_id;

    SELECT department_id,department_name
      FROM departments
     WHERE department_id=
           (select department_id
              FROM employees
             WHERE employee_id=in_emp_id);

    SELECT count(*)
      INTO customer_count
      FROM customers
     WHERE sales_rep_id=in_emp_id;

Example 13-38. Stored procedure that returns two result sets (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 301

It’s relatively simple to handle variable result set types with varying results. First, we
construct a loop that will continue as long as nextRowset( ) returns TRUE. Within
that loop we use the getColumnMeta( ) call to retrieve the names and types of col-
umns and then fetch the rows using the methods we discussed previously in the sec-
tion “Getting Result Set Metadata,” earlier in this chapter.

Example 13-41 shows some PDO code that will process the multiple, variable result
sets output by the stored procedure shown in Example 13-40. In fact, this code is
capable of processing the result sets from any stored procedure specified in the $sql
variable.

    IF customer_count=0 THEN
        SELECT 'Employee is not a current sales rep';
    ELSE
        SELECT customer_name,customer_status
          FROM customers
         WHERE sales_rep_id=in_emp_id;

        SELECT customer_name,sum(sale_value)
          FROM sales JOIN customers USING (customer_id)
         WHERE customers.sales_rep_id=in_emp_id
         GROUP BY customer_name;
    END IF;

END;

Example 13-41. PDO code to process multiple result sets from a stored procedure

1  function many_results($dbh, $sql_text) {
2      $sth = $dbh->prepare($sql_text);
3      $sth->execute() or die(implode(':', $sth->errorInfo( )));
4
5      do {
6          if ($sth->columnCount( ) > 0) { /* Yes, there is a result set */
7
8               #Print off the column names
9               for ($i = 0; $i < $sth->columnCount( ); $i ++) {
10                   $meta = $sth->getColumnMeta($i);
11                   printf("%s\t", $meta["name"]);
12              }
13              printf("\n");
14
15              #Loop through the rows
16              while ($row = $sth->fetch( )) {
17                   #Loop through the columns
18                   for ($i = 0; $i < $sth->columnCount( ); $i ++) {
19                        printf("%s\t", $row[$i]);
20                   }
21                   printf("\n");
22
23              }

Example 13-40. Stored procedure that returns a variable number of result sets  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 13: Using MySQL Stored Programs with PHP

Let’s walk through this example:

Handling Output Parameters
As we discussed in Chapter 3, MySQL stored procedures can include input (IN), out-
put (OUT), and input-output (INOUT) parameters. For instance, the stored procedure
shown in Example 13-42 contains an output parameter that will contain the number
of customers for a specific sales representative.

The PDO specification for the bindParam( ) method allows you to identify a parame-
ter that might return an output value by associating the PDO::PARAM_INPUT_OUTPUT
constant with the parameter. Example 13-43 shows how we would use this method
to retrieve the value of an output parameter from this stored procedure.

24              printf("-------------------\n");
25          }
26      }
27      while ($sth->nextRowset( ));
28  }

Line(s) Explanation

2-3 Prepare and execute a stored procedure call in the usual manner.

5-27 This is our main loop. It executes once for each result set returned by the stored procedure— it will continue until
nextRowset( ) returns FALSE. Note that this loop will always execute at least once (though it may do nothing if
there are no rows returned).

6 Check to make sure that there is a result set. Remember that the loop will execute at least once, so we should
check that there is at least one result set.

9-12 Loop through the column names and print them off (as a header row).

16-23 This loop repeats once for each row returned by a result set.

18-20 Loop through each column in the current row and print out its value.

27 Having processed all columns in all the rows for a particular result set, we call nextRowset( ) to move onto the
next result. If nextRowset( ) returns FALSE, then we will terminate the loop having processed all of the output.

Example 13-42. Stored procedure with an OUT parameter

CREATE PROCEDURE `sp_rep_customer_count`(
        in_emp_id DECIMAL(8,0),
        OUT out_cust_count INT)
     READS SQL DATA
BEGIN

  SELECT count(*) AS cust_count
    INTO out_cust_count
    FROM customers
   WHERE sales_rep_id=in_emp_id;

END ;

Example 13-41. PDO code to process multiple result sets from a stored procedure (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 303

Unfortunately, as we write this chapter, the ability to use bindParam( ) to retrieve
output parameters is not implemented in the PDO MySQL driver (Bug# 11638 cur-
rent as of MySQL 5.0.19). There is every chance, however, that the method will have
been implemented by the time you read this book, so please visit the book’s web site
where we will report on the status of the PDO driver.

Even without the bindParam( ) method, we can extract the value of an output param-
eter. We can do this by using a user variable to retrieve the value of the output
parameter, and then retrieve this value using a simple SELECT statement.
Example 13-44 shows how to do this. We use the @customer_count variable to hold
the value of the output parameter and then, in a subsequent step, fetch the value of
@customer_count using a one-line SELECT.

If the parameter were of type INOUT, we would simply issue a SET statement to set the
value before execution and then issue a SELECT statemnet to retrieve the altered value
after execution. We showed how to do this with the mysqli driver earlier in this
chapter.

A Complete Example
Let’s put PDO to use to create a web page that executes a stored procedure and for-
mats the results in HTML. The stored procedure is shown in Example 13-45. This
stored procedure generates some useful data about the MySQL server, including the
details of currently connected sessions, status variables, and configuration settings for
the database. The number and types of result sets varies depending upon the input
parameters: if a valid database is provided in the first parameter, a list of objects for
that table is returned. The server version is returned in an output parameter.

Example 13-43. Binding an output parameter in PDO (not implemented at time of writing)

sql = "call sp_rep_customer_count(?,?)";
$sth = $dbh->prepare($sql)  or die(implode(':', $sth->errorInfo( )));
$sth->bindParam(1,$sales_rep_id,PDO::PARAM_STR,4000);
$sth->bindParam(2,$customer_count, PDO::PARAM_INT|PDO::PARAM_INPUT_OUTPUT);
$sth->execute()  or die(implode(':', $sth->errorInfo( )));

Example 13-44. Getting the value of an output parameter without bindParam

$sql="call sp_rep_customer_count(1,@customer_count)";
$sth = $dbh->prepare($sql);
$sth->execute() or die (implode(':',$sth->errorInfo( )));

# Now get the output variable

$sql="SELECT @customer_count";
foreach ($dbh->query($sql) as $row) {
  printf("Customer count=%d\n",$row[0]);
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 13: Using MySQL Stored Programs with PHP

To help us generate a well-formatted report, the stored procedure outputs a header
row for each of the result sets it returns. This header row is issued as a single-row,
single-column result set in which the column name is table_header.

Our PDO example prompts the user to provide login details for a MySQL server,
connects to that server, and attempts to execute the stored procedure. Each result set
is formatted as an HTML table and the “special” heading rows are formatted as
HTML headers. The output parameter that contains the MySQL server version is
retrieved and displayed at the commencement of the output. Example 13-46 dis-
plays the complete PDO example.

Example 13-45. MySQL server status stored procedure

CREATE PROCEDURE sp_mysql_info(in_database VARCHAR(60),
       OUT server_version VARCHAR(100))
    READS SQL DATA
BEGIN

  DECLARE db_count INT;

  SELECT @@version
    INTO server_version;

  SELECT 'Current processes active in server' AS table_header;
  SHOW FULL PROCESSLIST;

  SELECT 'Databases in server' AS table_header;

  SHOW DATABASES;

  SELECT 'Configuration variables set in server' AS table_header;
  SHOW GLOBAL VARIABLES;
  SELECT 'Status variables in server' AS table_header;
  SHOW GLOBAL STATUS;

  SELECT COUNT(*)
    INTO db_count
    FROM information_schema.schemata s
   WHERE schema_name=in_database;
  IF (db_count=1) THEN
    SELECT CONCAT('Tables in database ',in_database) AS table_header;
    SELECT table_name
      FROM information_schema.tables
     WHERE table_schema=in_database;
  END IF;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using MySQL with PHP Data Objects | 305

Example 13-46. A complete PDO example

1  <HTML>
2  <TITLE>MySQL Server Statistics</TITLE>
3  <H1>Enter MySQL Server Details</H1>
4  Enter your database connection details below:
5  <p>
6  <FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>" METHOD=POST>
7    <TABLE>
8        <TR><TD>Host:</TD><TD> <input type="text" name="mhost"></TD></TR>
9        <TR><TD>Port:</TD><TD>  <input type="text" name="mport"></TD></TR>
10       <TR><TD>Username:</TD><TD>  <input type="text" name="muser"></TD></TR>
11       <TR><TD>Password:</TD><TD>  <input type="password"  name="mpass"></TD></TR>
12       <TR><TD>Database:</TD><TD>  <input type="test" name="mdb"></TD></TR>
13    </TABLE>
14        <TR><TD><input type="submit" name="Submit" value="Submit">
15  </FORM>
16
17  <?php
18  require_once "HTML/Table.php";
19
20  $html_text = array ( );
21
22  if (IsSet ($_POST['Submit'])) {
23      $dsn = 'mysql:dbname='.$_POST['mdb'].';host='.$_POST['mhost'].
24             ';port='.$_POST['mport'];
25      $user = $_POST['muser'];
26      $password = $_POST['mpass'];
27
28      try {
29          $dbh = new PDO($dsn, $user, $password);
30      } catch (PDOException $e) {
31           echo 'Connection failed: '.$e->getMessage( );
32    }
33    $sql = 'call sp_mysql_info(:dbname,@server_version)';
34    $sth = $dbh->prepare($sql);
35    $sth->bindParam(':dbname', $_POST['mdb'], PDO::PARAM_STR, 30);
36    $sth->execute() or die(implode(':', $sth->errorInfo( )));
37
38    do {
39        if ($sth->columnCount( ) > 0) { /* Yes, there is a result set */
40             $col0 = $sth->getColumnMeta(0);
41             if ($col0["name"] == "table_header") { /*format this as a heading */
42                  $row = $sth->fetch( );
43                  array_push($html_text, "<h2>$row[0]</h2>");
44             }
45             else { /* Format this as a table */
46                  $table = new HTML_Table('border=1');
47                  for ($i = 0; $i < $sth->columnCount( ); $i ++) {
48                       $meta = $sth->getColumnMeta($i);
49                       $table->setCellContents(0, $i, $meta["name"]);
50                }
51                $table->setRowAttributes(0, array ("bgcolor" => "silver"));
52



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 13: Using MySQL Stored Programs with PHP

This code uses most of the techniques we have seen in previous examples, as
explained next:

53                #Loop through the rows
54                $r = 0;
55                while ($row = $sth->fetch( )) {
56                     #Loop through the columns in the row
57                     $r ++;
58                     for ($i = 0; $i < $sth->columnCount( ); $i ++) {
59                          $table->setCellContents($r, $i, $row[$i]);
60                     }
61                 }
62                 array_push($html_text, $table->toHtml( ));
63             }
64         }
65     }
66     while ($sth->nextRowset( ));
67
68     foreach ($dbh->query("SELECT @server_version") as $row) {
69          $mysql_version = $row[0];
70     }
71
72    print "<h1>MySQL Server status and statistics</h1>";
73    printf("<b>Host:</b> %s<br>", $_POST['mhost']);
74    printf("<b>Port:</b> %s<br>", $_POST['mport']);
75    printf("<b>Version:</b> %s<br>", $mysql_version);
76    foreach($html_text as $html) {
77         print $html;
78    }
79 }
80  ?>
81  </html>

Line(s) Explanation

1-15 Create the HTML form in which the user enters the server details. This is standard PHP HTML. You can see the
resulting input form in Figure 13-3.

18 We are using the PEAR HTML Table module to create our HTML tables. You can obtain this from http://pear.
php.net.

20 Create an array to store our HTML. We do this because we want to display the MySQL version string before the
HTML tables, although as a stored procedure output variable we can only retrieve it after all result sets have
been closed. So we need to store our HTML in a variable rather than print it as we go.

22 This if statement starts the section of code that is executed once the user clicks the Submit button defined on
line 14.

23-32 Build up the PDO dsn string from the user input and connect to the MySQL server.

Example 13-46. A complete PDO example (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 307

Figure 13-3 shows the output from this PHP example.

Conclusion
In this chapter we saw how we can use MySQL stored programs within PHP by
using either the mysqli or PDO extension. Both interfaces provide all the tools you
need to take advantage of MySQL stored procedures and functions from within your
PHP application.

33-36 Prepare and execute the stored procedure, binding as an input parameter the database name provided in the
HTML form. A user variable—@server_version —is provided to receive the value of the second, output
parameter.

38-66 This is the loop that will repeat for each result set returned by the stored procedure. The loop will continue as
long as the $sth->nextRowset( ) call on line 66 returns true.

42-46 If the first column in the result set is named table_header, then this result set is a “title” for the subsequent
result set, so we format the column value as an HTML header (line 45).

47-48 Otherwise (the result set is not a “title”), create a new table object to contain the result set output.

47-51 Retrieve the column names for the result set and add them to the first row of the HTML table.

54-61 Loop through each row of the output and push the column values into the appropriate cells of the HTML table.

62 Add the HTML for the table to our array variable—we’ll print the contents of this array later (after we get the
value of the output parameter).

68-70 Now that all result sets have been retrieved, we can get the value of the output parameter, which is now con-
tained in the user variable @server_version.

72-75 Print the major header line, and some server details, including host, port, and MySQL server version.

76-78 Print all of the HTML that we saved in the $html_text variable. This includes the HTML tables and headings.

Line(s) Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 13: Using MySQL Stored Programs with PHP

Figure 13-3. Output from our complete PDO example



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

309

Chapter 14 CHAPTER 14

Using MySQL Stored Programs
with Java14

PHP is undoubtedly the most popular language used in combination with MySQL to
build commercial applications and—in particular—web applications. However, for
applications that aspire to possibly greater scalability and standards compliance, Java
offers an attractive alternative. The Java JDBC database-independent API provides
robust and mature methods for performing all types of database interaction from
within the Java environment and includes very strong support for handling stored
programs. The J2EE standard provides a way for Java to be used within commercial
and open source web or application servers to construct scalable and efficient web
applications that can take advantage of MySQL as a database server, and MySQL
stored programs as the interface to the database. There are also alternative Java
frameworks such as Hibernate and Spring, which can expedite database access with-
out adding all the overhead and complexity of a J2EE solution, and these can lever-
age stored programs as well.

In this chapter we will commence with a quick review of how you can use Java JDBC
to perform interactions with the database not involving stored programs, including
the basic prerequisite functions of installing and registering the JDBC driver and
obtaining a connection to a MySQL server. We will also explain how to execute
basic SQL from the driver and how to handle database errors.

Next, we’ll proceed to examine the JDBC syntax for invoking stored programs,
including handling input and output parameters and processing multiple result sets.

Finally, we’ll look at how stored programs can be utilized within some of the popu-
lar Java frameworks, including servlets or Enterprise JavaBeans (EJB) within an appli-
cation server, from Hibernate, or within the Spring framework.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 14: Using MySQL Stored Programs with Java

Review of JDBC Basics
Before examining how we can use stored programs in JDBC, let’s look at how JDBC
supports database operations that don’t include stored programs. These basic opera-
tions will serve as the foundation for JDBC that does use stored programs. If you are
already familiar with JDBC, you might want to skip forward to “Using Stored Pro-
grams in JDBC,” later in this chapter.

Installing the Driver and Configuring Your IDE
While the JDBC interface itself is part of native Java, to use JDBC with MySQL we
will need to install a MySQL-aware JDBC driver. MySQL provides such a driver,
Connector/J, which we can download from http://dev.mysql.com/downloads/
connector/j.html. Installation is a simple matter of unpacking the contents of a .zip
file or a tar archive to a convenient location on our hard drive.

To allow our Java programs to access the Connector/J archive, we need to add the
Connector/J JAR (Java Archive) file to our system’s CLASSPATH. For instance, if we
unpacked the Connector/J files into a directory called C:\MySQL\ConnectorJ, then
our CLASSPATH might look like this:

Set CLASSPATH=C:\MySQL\ConnectorJ\mysql-connector-java-3.1.10-bin.jar;.

Most Java IDEs require that we specify any required libraries in either a general or a
project-specific dialog box. For example, in Eclipse, we can open the Properties dia-
log box for the project, select Java Build Path, click Add External JARs, then add the
location of the Connector/J JAR file. Figure 14-1 shows the Eclipse dialog box for
adding a required library.

Registering the Driver and Connecting to MySQL
Within our Java program we will normally import the java.sql package so that we
don’t have to fully qualify our references to JDBC classes, as shown in Example 14-1.

Before we can connect to MySQL, we need to initialize the Connector/J driver. This
is done with the static Class.forName( ) method, shown in Example 14-2. We can
then create a Connection object that represents a specific MySQL connection by using
DriverManager.getConnection( ) with an appropriately formatted URL. This also is
shown in Example 14-2 .

Example 14-1. Importing the java.sql package

package jdbc_example;

import java.sql.*;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of JDBC Basics | 311

The URL for the getConnection( ) method has the following (simplified) format:

jdbc:mysql://host[:port]/[database][?Name1=Value1][&Name2=Value2]...

The name/value pairs following the ? character typically include user and password
together with other optional connection parameters (relating to the use of SSL, time-
outs, etc.). You can find a full list of optional connection parameters in the

Figure 14-1. Configuring Eclipse for Connector/J

Example 14-2. Connecting to a MySQL instance

Class.forName("com.mysql.jdbc.Driver").newInstance( );

Connection myConnection = DriverManager.getConnection(
                    "jdbc:mysql://localhost:3306/test?user=root&password=secret");



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 14: Using MySQL Stored Programs with Java

Connector/J documentation at http://dev.mysql.com/doc/connector/. The following
are examples of possible URLs:

jdbc:MySQL://localhost/?user=root
Connect to the MySQL server on the local host at the default port (3306) and
connect to root (no password).

jdbc:MySQL://fred:3305/test?user=joe&password=joe1
Connect to the MySQL server on host fred at port number 3305. Connect as joe/
joe1 to database test.

Issuing a Non-SELECT Statement
Now that we have created our connection object, we are ready to issue a SQL state-
ment. The simplest way to execute a SQL statement that does not return a result set
(such as INSERT, UPDATE, DELETE, or a DDL statement) is to use the createStatement( )
and executeUpdate( ) methods of the JDBC Connection interface.

The createStatement() method creates a reuseable Statement object. The
executeUpdate() instance method of this Statement object can be used to execute the
statement. Example 14-3 shows the use of the createStatement() and executeUpdate()
methods to execute the SET AUTOCOMMIT=0 command.

In general, it’s not a good idea to create statements in this way except for one-off
SQL statements. For any statement that may be re-executed (perhaps with different
parameters), we should use the PreparedStatement interface (see the “Using Prepared
Statements” section later in this chapter).

Issuing a SELECT and Retrieving a Result Set
If our statement is a SELECT statement or another MySQL command that returns a
result set, we can call the executeQuery( ) method of a Statement object. This creates
a ResultSet object through which we can iterate in much the same way as we would
iterate through the rows returned by a stored program cursor. This is, however, quite
different programmatically from the way in which the java.util.Iterator interface is
normally used to iterate through Java collections.

The next( ) method of the ResultSet object allows us to move to the next row in the
result set—the very first call to next( ) will move to the first row—while getInt( ),
getString( ), and other similar methods allow us to retrieve specific columns from
the current row. Columns can be specified by name or by number. Example 14-4
shows us processing a simple query in JDBC.

Example 14-3. Issuing a SQL statement that returns no result set

Statement stmt1 = myConnection.createStatement( );
stmt1.executeUpdate("set autocommit=0");



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of JDBC Basics | 313

As with non-SELECT statements, we should use the PreparedStatement interface rather
than Statement if there is a chance that we will re-execute the SQL (potentially with
different parameters).

Getting Result Set Metadata
If we don’t know the exact structure of the result when we write our code (perhaps
the SQL is entered by the end user or dynamically generated by some other module),
then we can create a ResultSetMetaData object that contains information about the
structure of the ResultSet object. Example 14-5 shows the use of this interface to
print a list of column names and data types being returned from a query. Take spe-
cial note that the first metadata result column has an index of 1 where most Java pro-
grammers would assume it to be 0.

Using Prepared Statements
Most Java applications—particularly those running in a middle tier such as in a
J2EE- compliant application server—re-execute SQL statements many times during
the life of a database session. While the “parameters” to the statement, such as WHERE
clause arguments, might change, the SQL itself is usually executed many times. Pre-
pared statements are statement objects that are permanently associated with a partic-
ular SQL statement. They can be re-executed with new parameters when required.

Example 14-4. Processing a SELECT in JDBC

Statement stmt2 = myConnection.createStatement( );
ResultSet results = stmt2.executeQuery("SELECT department_id, department_name " +
            "                           FROM departments");
while(results.next( ))
{
    int departmentID = results.getInt("department_id");  // Get column by name
    String departmentName = results.getString(2);        // Got column by number
    System.out.println(departmentID + ":" + departmentName);
}
results.close( );

Example 14-5. Using the ResultSetMetaData object to get result set structure

Statement stmt3 = myConnection.createStatement( );
ResultSet results2 = stmt2.executeQuery("SELECT *" +
             "                           FROM departments");
ResultSetMetaData meta1 = results2.getMetaData( );

for (int i = 1; i <= meta1.getColumnCount( ); i++)
{
    System.out.println("Column " + i + " "
                    + meta1.getColumnName(i) + " ("
                    + meta1.getColumnTypeName(i) + ")");
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 14: Using MySQL Stored Programs with Java

Using a prepared statement results in reduced overhead for the MySQL server, since
re-executing an existing statement takes less processing time than executing a new
SQL statement.

Note that although the MySQL server supports a feature (since 4.1) called server-side
prepared statements, and although the JDBC implementation of prepared statements
may leverage the MySQL implementation, the prepared statements we are discuss-
ing here are a JDBC feature, and are not specific to any particular RDBMS or version
of MySQL.

The PreparedStatement interface extends the Statement interface and therefore inher-
its methods from that interface. The primary extensions in the PreparedStatement
interface relate to specifying parameters prior to execution so that the
PreparedStatement instance can be re-executed in a new context.

To create a prepared statement, we use the prepareStatement( ) method of the
Connection interface, providing a SQL string as the argument. Any variable portions
of the SQL string are represented by the ? character. In Example 14-6 we create a
prepared statement that includes a single parameter value representing a specific
product identifier.

Before each execution of the prepared statement, we need to provide values for all
the parameters of the statement. The PreparedStatement interface provides setInt( ),
setString( ), and other similar methods for doing this. Each method takes the
parameter number as the first argument and a value of the appropriate data type as
the second argument. For instance, in Example 14-7, we set the value of the product
identifier that will be provided to the prepared statement defined in Example 14-6 to
a value of 12. Take note again that the index of the first parameter is 1 and not—as
we might expect—0.

Now we can execute the prepared statement using its instance method
executeQuery( ) if it is expected to return a result set, or executeUpdate( ) otherwise
(see Example 14-8).

Example 14-6. Creating a prepared statement

PreparedStatement prepared1 = myConnection.prepareStatement(
                    "select product_id,product_description,normal_value" +
                    "  from products " +
                    " where product_id=?");

Example 14-7. Setting a parameter value in a prepared statement

prepared1.setInt(1, 12);

Example 14-8. Executing a prepared statement

ResultSet pstmtResults1 = prepared1.executeQuery( );



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of JDBC Basics | 315

Example 14-9 shows the prepared statement being declared, the parameter set, and a
result set retrieved.

Of course, if we were only going to execute the prepared statement once, this would
all be wasted effort. The point is that having created the prepared statement, we can
execute it any number of times, feeding different parameters to the prepared state-
ment each time. Example 14-10 illustrates this principle by executing the prepared
statement in a loop to print descriptions of the first 10 product IDs.

Handling Transactions
Although we can issue commands such as COMMIT, ROLLBACK, START TRANSACTION, and
SET AUTOCOMMIT using the setUpdate( ) method of Statement or PreparedStatement
objects, it is probably easier to perform transaction control using the methods pro-
vided by the Connection interface.

The Connection interface supports a setAutocommit( ) method, together with commit()
and rollback( ) methods, which allow us to disable MySQL autocommit and to per-
form explicit commit and rollback operations within a connection. So a transaction
in JDBC would look like this:

myConnection.setAutoCommit(false);
/* transactional statements go in here */
myConnection.commit( );

Example 14-9. PreparedStatement example

PreparedStatement prepared1 = myConnection.prepareStatement(
                    "select product_id,product_description,normal_value" +
                    "  from products " +
                    " where product_id=?");
prepared1.setInt(1, 12);
ResultSet pstmtResults1 = prepared1.executeQuery( );
while (pstmtResults1.next( ))
{
    System.out.println("Product Description: " + pstmtResults1.getString(2));
}
pstmtResults1.close( );

Example 14-10. Executing a prepared statement repetitively

for (int i = 1; i <= 10; i++)
{
    prepared1.setInt(1, i);
    pstmtResults1 = prepared1.executeQuery( );
    pstmtResults1.next( );
    System.out.println("Product ID: " + i +
        "  Product Description: " + pstmtResults1.getString(2));
}
pstmtResults1.close( );



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 14: Using MySQL Stored Programs with Java

Handling Errors
JDBC methods generally throw a SQLException if the SQL that is being issued results
in a database error being generated. Classes that contain JDBC statements should
therefore either use a throws clause to indicate that such an exception might be
raised, or include the JDBC statements within a try/catch block.

Example 14-11 illustrates the first technique; the createDemoTables( ) method will
throw a SQLException if a MySQL error occurs. It is up to the caller to catch that
exception; otherwise, the unhandled exception might crash the Java program. This
technique is recommended for generic or low-level database code that cannot inter-
pret the exception within the context of the application. Pointless catching and re-
throwing of exceptions is one of the cardinal sins of Java programming, because it
leads to massive stack traces that just obscure what is actually causing the problem.

Example 14-12 shows the alternative approach. Here, the JDBC calls are enclosed in
a try/catch block that catches the SQLException and reports the error message. Since
the exception is caught, the createDemoTables( ) method no longer needs to declare
the throws clause. This technique should be used when the catch block is able to
adequately deal with the error by logging it or handling it programmatically. The
catch block may also re-throw the exception as an application exception that includes
valuable context information with regard to what the application was trying to do
when the SQL failed.

Example 14-11. Throwing a SQLException

static public void createDemoTables(Connection myConnection)
throws SQLException

{
    Statement s1 = connection.createStatement( );
    s1.executeUpdate("CREATE TABLE DEMO " +
            "            (MyInt INT, " +
            "             MyString VARCHAR(30))");
}

Example 14-12. Catching a SQLException

static public void createDemoTables(Connection connection)
{

try
    {
        Statement s1 = connection.createStatement( );
        s1.executeUpdate("CREATE TABLE DEMO" +
             "            (MyInt INT," +
            "             MyString VARCHAR(30))");
    }

catch(SQLException exception)
{

          System.out.println("Error while creating demo tables: " +
            exception.getErrorCode( ) +



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in JDBC | 317

The getErrorCode( ) and getMessage( ) methods are typically used to report on the
specifics of the database error concerned. However, the SQLException class inherits a
lot of useful diagnostic methods from its super classes Exception and Throwable. In
particular, printStackTrace( ) will print a stack trace for the exception to standard
output, while getStackTrace( ) allows programmatic access to the trace.

Using Stored Programs in JDBC
So far we have mainly reviewed the JDBC calls that can be used with any database and
that don’t relate in any way to stored program calls. If you have used JDBC with other
RDBMS types or with previous versions of MySQL, you probably haven’t learned
much. Let’s move on to processing stored program calls in JDBC (Figure 14-2).

Stored program calls are very similar to standard JDBC calls. A stored program
strongly resembles a prepared statement that executes a query, with the following
exceptions:

• A stored program can return more than one result set.

• A stored procedure can be associated with output—as well as input—parame-
ters. This means that we need a way to retrieve the altered values from any
stored procedure parameters that are defined as OUT or INOUT.

In addition to the general sequence of processing involved in creating and executing
a prepared statement, when executing a stored program, we may need to retrieve
multiple result sets and also—when the stored program execution has completed—
retrieve the results of any output variables.

Using the CallableStatement Interface
The CallableStatement interface extends the PreparedStatement interface. It includes
all of the methods of the PreparedStatement interface, as well as additional methods
specific to stored program calls. You create a CallableStatement with the
prepareCall( ) method of a Connection object:

CallableStatement statementName = ConnectionName.prepareCall(sql_text);

The single argument to the prepareCall( ) method contains the MySQL statements
required to invoke the stored program. Any parameters are indicated by ? charac-
ters. The entire call must be enclosed in braces, "{" and "}", which are the standard
JDBC escape sequences for indicating database-independent syntax. So to call the

            " SQLSTATE:" + exception.getSQLState( ));
          exception.printStackTrace( );
    }
}

Example 14-12. Catching a SQLException (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 14: Using MySQL Stored Programs with Java

stored procedure sp_test_inout_rs2, which has two parameters, we would use the
following syntax:

CallableStatement callableStmt =
    myConnection.prepareCall("{CALL sp_test_inout_rs2(?,?)}");

sp_test_inout_rs2 is a stored procedure that has both an IN and an OUT parameter
and that returns two result sets. The stored procedure takes the name of a MySQL
schema as an IN argument and returns a list of tables and a list of stored routines
owned by that schema. It returns the number of tables in the specified database as an
OUT parameter. The text for this stored procedure is shown in Example 14-13.

Figure 14-2. JDBC program flow when executing a stored program

Prepare the stored program
(callable statement)

Register output
parameters

Set input
parameters

Execute

More result sets?

Get and process
result set

Retrieve output
parameter values

Re-execute
program?

Close the stored
program

No

Yes

No

Yes



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in JDBC | 319

Registering OUT Variables
If the stored procedure includes any OUT variables, you need to identify these to
JDBC. The registerOutParameter( ) instance method of CallableStatement allows
you to identify these parameters. This method has the following syntax:

callableStatementInstance.registerOutParameter(parameter_number,data_type);

Parameters are identified by number, starting with 1 for the first parameter. The data
types are those contained in java.sql.Types and include INTEGER, CHAR, NUMERIC,
DATE, etc.

In sp_test_inout_rs2, our second parameter is an OUT integer parameter, so we issue
the statement to identify the parameter in Example 14-14.

Supplying Input Parameters
No matter how many times we execute our stored procedure, we only have to create
the CallableStatement and register output parameters once. However, most execu-
tions of a stored procedure will have different input parameters, so the first step in a
new execution is to identify the values of those parameters. The syntax for setting
input parameter values is the same as that for a PreparedStatement; we use the
setInt( ), setFloat( ), setString( ), setDate( ), or other appropriate methods of the
PreparedStatement interface to set each value. In our example stored procedure, we
have only a single VARCHAR input parameter, so we set its value as shown in
Example 14-15.

Example 14-13. Example stored procedure used in Java examples

CREATE PROCEDURE sp_test_inout_rs2(IN in_user VARCHAR(30),OUT table_count INT)
BEGIN

  SELECT table_name,table_type
    FROM information_schema.tables
   WHERE upper(table_schema)=upper(in_user);

  SELECT routine_name,routine_type
    FROM information_schema.routines
   WHERE upper(routine_schema)=upper(in_user);

  SELECT COUNT(*)
    INTO table_count
    FROM information_schema.tables
   where upper(table_schema)=upper(in_user);

END ;

Example 14-14. Registering a stored procedure OUT or INOUT parameter

callableStmt.registerOutParameter(2, Types.INTEGER);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 14: Using MySQL Stored Programs with Java

schemaName is a Java String containing the name of the schema for which we want to
retrieve information.

Executing the Procedure
Now we are ready to execute the stored procedure, which we do with the execute( )
instance method shown in Example 14-16.

The execute( ) method returns a Boolean value, which resolves to true if the stored
procedure returns at least one result set. So we could call execute( ) as shown in
Example 14-17.

If you know that your stored procedure does not return a result set, you can use the
executeUpdate( ) method instead, as shown in Example 14-18.

Retrieving a Result Set
As we noted earlier, the initial execute( ) call will return true only if the stored proce-
dure returns at least one result set. If this is so, or if you know in advance that the
stored procedure has a result set, you can retrieve it in the usual fashion.
Example 14-19 shows how to retrieve a single result set from a stored procedure call.

In this case, we knew the names and types of the columns in our result set. If we did
not, we could call the getMetaData( ) method to retrieve the result set structure.
ResultSetMetaData is described in the section “Getting Result Set Metadata” earlier in
this chapter.

Example 14-15. Setting the value of an input parameter

callableStmt.setString(1, schemaName);

Example 14-16. Executing a stored procedure

callableStmt.execute( );

Example 14-17. Executing a stored procedure that might return a result set

boolean hasResults = callableStmt.execute( );

Example 14-18. Executing a stored procedure that does not return a result set

CallableStatement noResultStmt = connection.prepareCall("{call sp_noresult( )}");
noResultStmt.executeUpdate( );

Example 14-19. Retrieving a single result set from a stored procedure call

ResultSet rs1 = callableStmt.getResultSet( );
while (rs1.next( ))
     System.out.println(rs1.getString("table_name") + " " +
                        rs1.getString("table_type"));



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in JDBC | 321

Retrieving Multiple Result Sets
If the stored procedure has more than one result set, you can use the
getMoreResults( ) method to move to the next set. If there are no more result sets,
getMoreResults( ) will return false. So to get a second result set, we can call
getMoreResults( ) and then retrieve the result set. Example 14-20 illustrates this
technique.

In this example, we used the column numbers rather than column names to retrieve
the results. Using column names (rs2.getString("department_id") for instance)
leads to more readable code, but when you are processing dynamic result sets, it may
be more convenient to refer to the columns by number.

Dynamically Processing Result Sets
It is possible—but very unusual—that we might call a stored program without
knowing the number and types of input and output parameters. However, because
we often use unbounded SELECT statements within stored programs to generate
debugging or other messages, and because it is relatively easy to conditionally create
result sets in our stored program code, we may find that we need to execute a stored
program without knowing exactly how many result sets will be returned or what the
structure of each result set will look like.

We therefore need to be familiar with the process of dynamically processing result
sets. Example 14-21 implements a method that will execute a stored program passed
as a parameter and print out all the result sets generated by that stored program.

Example 14-20. Obtaining a second result set from the stored procedure call

if (callableStmt.getMoreResults( ))
{
    ResultSet rs2 = callableStmt.getResultSet( );
    while (rs2.next( ))
         System.out.println(rs2.getString(1) + " " + rs2.getString(2));
    rs2.close( );
}

Example 14-21. JDBC code to dynamically process multiple result sets

1    private void executeProcedure(Connection connection, String sqlText)
2              throws SQLException {
3
4         CallableStatement cs = connection.prepareCall("{CALL " + sqlText + "}");
5         boolean moreResultSets = cs.execute( );
6         while (moreResultSets) {
7
8              ResultSet rs = cs.getResultSet( );
9              ResultSetMetaData rsmd = rs.getMetaData( );
10



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 14: Using MySQL Stored Programs with Java

Let’s step through Example 14-21:

Retrieving Output Parameter Values
Once all of the result sets have been retrieved, it is time to retrieve the values of any
OUT or INOUT parameters that the procedure may have declared. Remember that in
order to do this, we must have used the registerOutParameter( ) method to set the
types of these parameters before we executed the stored procedure.

11             StringBuffer buffer = new StringBuffer( );
12             for (int i = 1; i <= rsmd.getColumnCount( ); i++)
13                  buffer.append(rsmd.getColumnName(i)).append("\t");
14             System.out.println(buffer.toString( ));
15
16             while (rs.next( )) {
17                  buffer.setLength(0);
18                  for (int i = 1; i <= rsmd.getColumnCount( ); i++)
19                       buffer.append(rs.getString(i)).append("\t");
20                  System.out.println(buffer.toString( ));
21             }
22
23             moreResultSets = cs.getMoreResults( );
24         }
25     }

Line(s) Explanation

4 Create a CallableStatement object that invokes the stored procedure text provided as an argument to
the Java procedure.

5 Execute the stored procedure. The moreResultSets Boolean value will be true if the stored procedure
returns any result sets.

6-24 This loop will continue to execute provided that moreResultSets is true. This means that the code
within the loop will execute once for each result set returned by the stored procedure.

8-9 On line 8 we get a ResultSet object for the current result set, and on line 9 we retrieve the
ResultSetMetaData object for that ResultSet.

11-14 Print out the column names for the current result set, as retrieved from the ResultSetMetaData object.

16-22 Loop through the rows of the current result set. The loop will continue for each row returned by the current
result set.

18-21 Loop through each column in the current row. The getColumnCount( ) method of the
ResultSetMetaData object tells us how many columns we will need to process, and we use
getString( ) to retrieve the value. getString( ) will get a string representation of non-string SQL
data types such as dates or numeric data.

23 Use the getMoreResults( ) method of the CallableStatement object to determine if there are
more result sets. If this call returns true, then the CallableStatement will move to the next result set
and the while loop defined on line 6 will continue, allowing us to repeat the above process for the next
result set.

Example 14-21. JDBC code to dynamically process multiple result sets  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and J2EE Applications | 323

To get the values of output parameters, we use “get” methods (getInt( ), getFloat(),
getString( ), etc.) that are similar to those used to retrieve column values, but
instead of applying the methods to the ResultSet object, we apply them to the
CallableStatement object. In the case of our sp_test_inout_rs2 stored procedure,
which has a single integer OUT parameter (the second parameter), we can simply
retrieve the value of the OUT parameter with the code shown in Example 14-22.

Stored Programs and J2EE Applications
While it is certainly possible to use JDBC inside Java to construct client/server appli-
cations or even Java applets, the most significant interaction between Java programs
and a relational database often occurs with a J2EE application server environment,
usually within the context of a J2EE-based web application. This application server
could be a commercial J2EE implementation such as WebLogic or WebSphere or—
perhaps more typically in combination with MySQL—an open source J2EE server
such as Tomcat or JBoss.

Modern J2EE applications follow one of two major patterns with respect to database
interaction:

Servlet pattern
In the servlet pattern, JDBC code is included within Java programs running
within the application server. These programs are known as servlets. These serv-
lets are free to communicate directly with the database through embedded JDBC
code, although many applications will choose to interact with the database
through an object-relational mapping interface such as Hibernate.

EJB pattern
In an Enterprise JavaBeans (EJB) based application, access to database objects is
abstracted via entity EJB beans. Each entity bean represents either a table or a
common multitable entity, and each instance of the entity bean typically repre-
sents a row in that table or result set. The EJB pattern contains methods to
retrieve, update, delete, and insert rows within this logical table.

A full tutorial on J2EE database programming is beyond the scope of this book (and
probably beyond the expertise of its authors). However, in this section we will take a
quick look at how you might use stored programs within a J2EE application.

Example 14-22. Retrieving the value of an output parameter

System.out.println("Out parameter = " + callableStmt.getInt(2));



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 14: Using MySQL Stored Programs with Java

Using Stored Programs Within Java Servlets
In a servlet-based Java web application, Java code in the application or web server con-
trols the generation of dynamic HTML content based on business logic contained
within the Java code and through interaction with back-end databases via JDBC. Serv-
let technology actually predates J2EE (servlets were introduced in Java 1.1), and there
is a wide variety of possible servlet implementation patterns.

In this section, we will use a simple servlet to render the output from a stored proce-
dure that contains multiple and unpredictable result sets and that also contains both
input and output parameters. The stored procedure generates a selection of MySQL
server status information, takes as an input parameter a specific database within the
server, and returns as an output parameter the MySQL version identifier. The stored
procedure is shown in Example 14-23.

Example 14-23. Stored procedure to return MySQL server status information

CREATE PROCEDURE sp_mysql_info
      (in_database VARCHAR(60),
       OUT server_version VARCHAR(100))
  READS SQL DATA
BEGIN

  DECLARE db_count INT;

  SELECT @@version
    INTO server_version;

  SELECT 'Current processes active in server' as table_header;
  SHOW full processlist;

  SELECT 'Databases in server' as table_header;

  show databases;

  SELECT 'Configuration variables set in server' as table_header;
  SHOW global variables;
  SELECT 'Status variables in server' as table_header;
  SHOW global status;

   /* See if there is a matching database */
  SELECT COUNT(*)
    INTO db_count
    FROM information_schema.schemata s
   WHERE schema_name=in_database;
  IF (db_count=1) THEN
    SELECT CONCAT('Tables in database ',in_database) as table_header;
    SELECT table_name



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and J2EE Applications | 325

Note that the stored procedure uses a special technique to output “heading” rows for
the result sets. When a single row is returned with a column named table_header,
that row represents a title or heading for the subsequent result set.

Our example is going to use an HTML page to request the user to enter specific
server information, and then use a servlet within the application server to display the
output of the stored procedure. The HTML for the input form is very simple and is
shown in Example 14-24.

The HTML renders the data entry screen shown in Figure 14-3.

Example 14-25 shows the code for the Java servlet that is invoked when the user
clicks the Submit button.

      FROM information_schema.tables
     WHERE table_schema=in_database;
  END IF;

END;

Example 14-24. HTML input form for our servlet example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
    <head>
         <TITLE>MySQL Server status</TITLE>
    </head>

<body>
    <H2>Enter MySQL Server details</H2>
    <FORM name="statusForm" method="post" action="mystatus">
          <TABLE>
              <TR><TD>Host:</TD><TD> <input type="text" name="mhost"></TD></TR>
              <TR><TD>Port:</TD><TD>  <input type="text" name="mport"></TD></TR>
              <TR><TD>Username:</TD><TD>
                   <input type="text" name="muser"></TD></TR>
              <TR><TD>Password:</TD><TD>
                   <input type="password"  name="mpass"></TD></TR>
               <TR><TD>Database:</TD><TD>  <input type="text" name="mdb"></TD></TR>
             </TABLE>
             <INPUT type="submit" value="Submit" />
    </FORM>
</body>
</html>

Example 14-23. Stored procedure to return MySQL server status information  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 14: Using MySQL Stored Programs with Java

Figure 14-3. Data entry form for our servlet example

Example 14-25. Servlet code that invokes our stored procedure

1   public class StatusServlet extends HttpServlet
2   {
3       public void doPost(HttpServletRequest request, HttpServletResponse response)
4            throws ServletException, IOException
5       {
6            String hostname = request.getParameter("mhost");
7            String port = request.getParameter("mport");
8            String username = request.getParameter("muser");
9            String password = request.getParameter("mpass");
10           String database = request.getParameter("mdb");
11           StringBuffer html = new StringBuffer( );
12
13           response.setContentType("text/html");
14           PrintWriter out = response.getWriter( );
15
16           try {
17               Class.forName("com.mysql.jdbc.Driver").newInstance( );
18               String connString = "jdbc:mysql://" + hostname + ":" + port + "/" +
19                    database + "?user=" + username + "&password=" + password;
20               Connection connection = DriverManager.getConnection(connString);
21
22               CallableStatement myproc =
23                    connection.prepareCall("{CALL sp_mysql_info(?,?)}");
24               myproc.registerOutParameter(2, Types.VARCHAR);
25               myproc.setString(1, database);
26
27            boolean moreResultSets = myproc.execute( );
28            while (moreResultSets) {
29                 ResultSet rs = myproc.getResultSet( );
30                 ResultSetMetaData rsmd = rs.getMetaData( );



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and J2EE Applications | 327

31                 if (rsmd.getColumnName(1).equals("table_header")) {
32                      rs.next( );
33                      html.append("<h2>").append(rs.getString(1))
34                          .append("</h2>");
35                  } else {
36                       makeTable(rs, rsmd, html);
37                  }
38                  moreResultSets = myproc.getMoreResults( );
39              }
40              String version = myproc.getString(2);
41
42              out.println("<HTML><HEAD><TITLE>MySQL Server status</TITLE></HEAD>");
43              out.println("<H1>MySQL Server status and statistics</H1>");
44              out.println("<b>Server:</b>\t" + hostname + "<br>");
45              out.println("<b>Port:</b>\t" + port + "<br>");
46              out.println("<b>Version:</b>:\t" + version + "<br>");
47              out.println(html.toString( ));
48              out.println("</HTML>");
49         } catch (SQLException e) {
50              out.println(e.getErrorCode() + " " + e.getMessage( ));
51              e.printStackTrace(out);
52         } catch (InstantiationException e) {
53              e.printStackTrace(out);
54         } catch (IllegalAccessException e) {
55              e.printStackTrace(out);
56         } catch (ClassNotFoundException e) {
57              e.printStackTrace(out);
58         } finally {
59              out.flush( );
60              out.close( );
61         }
62     }
63
64     private void makeTable(ResultSet rs, ResultSetMetaData rsmd, StringBuffer html)
65          throws SQLException
66     {
67          html.append("<table border=\"1\"><tr>");
68
69          for (int i = 1; i <= rsmd.getColumnCount( ); i++)
70               html.append("<td bgcolor=\"silver\">").append(rsmd.getColumnName(i))
71                   .append("</td>");
72          html.append("</tr>");
73
74          while (rs.next( )) {
75               html.append("<tr>");
76               for (int i = 1; i <= rsmd.getColumnCount( ); i++)
77                    html.append("<td>").append(rs.getString(i)).append("</td>");
78               html.append("</tr>\n");
79          }
80
81          html.append("</table>\n");
82     }
83 }

Example 14-25. Servlet code that invokes our stored procedure (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 14: Using MySQL Stored Programs with Java

Let’s examine this servlet code:

Figure 14-4 shows the output generated by the servlet and stored procedure.

Using Stored Programs from EJB
Enterprise JavaBeans (EJB) is a feature of the J2EE specification that provides for dis-
tributed server-side Java components intended for enterprise systems development.
Entity EJBs provide a way to represent persistent data—usually data from an
RDBMS—in the EJB component model.

Line(s) Explanation

6-10 Retrieve the server connection details as entered by the user on the calling HTML form.

11 Create a StringBuffer object for building the HTML text to avoid churning lots of throwaway
String objects.

13 and 14 Initialize an output stream to return HTML output.

17-20 Create a connection to the MySQL server using the connection details supplied by the user.

22-25 Prepare the stored procedure shown in Example 14-23. On line 24 we register our output parameter,
and on line 25 we supply the input parameter—the name of a database within the server—provided
by the user in the HTML form.

27 Execute the stored procedure.

28-39 This loop executes once for each result set returned by the stored procedure.

29 and 30 Retrieve a result set and—on line 30—a ResultSetMetaData object for that result set.

31-37 If the first column in the result set is called “table_header”, then the result set represents a heading
row for a subsequent result set, so we create an HTML header tag. Otherwise, we pass the result set to
the makeTable( ) method, which returns an HTML table formatted from the result set (see below for
a description of the makeTable( ) method).

37 Call the getMoreResults( ) method to see if there are further result sets. If there are, then
moreResultSets will be set to true and the loop will continue. Otherwise, it will be set to false
and the loop will terminate.

40 Now that all result sets have been processed, retrieve the value of the output parameter, which contains
the MySQL version string.

42-48 Write our formatted HTML report to the print stream.

49-57 Catch any exceptions and print a stack trace to the print stream.

58-61 Whether there is an exception or not, we must flush and close the print stream to send our output back
to the calling session.

64-82 Define the private makeTable( ) method that takes ResultSet and ResultSetMetaData
objects and appends an HTML table representation of that result set to the specified StringBuffer.

69-72 Loop through the column names for the result set and format HTML to create the heading row for the
table.

74-79 Loop through the rows returned by the result set and—in lines 76-77—append the columns in each
row. We generate HTML to create an HTML table cell for each row returned in the result set.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and J2EE Applications | 329

In most J2EE applications, EJBs represent a mapping of relational data to Java
objects. In a very simple case, an EJB may represent a database table, and each
instance of the EJB might represent a row in that table. However, the relationships
between EJBs and relational tables can be as complex as the developer chooses, and
an EJB may represent a complex business object that is represented across many
database tables.

Each EJB includes various methods that allow the application to interact with the
underlying data. Some of these methods are listed in Table 14-1.

Figure 14-4. Output from our stored procedure/servlet example



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 14: Using MySQL Stored Programs with Java

Entity EJBs in a J2EE application are responsible for representing all persistent data
in the application, where persistent means that the data will continue to exist when
the current thread, process, or application ceases to run. There are two styles of per-
sistence management in entity EJBs:

Bean-Managed Persistence (BMP)
In this mode, the interaction with the underlying data source is controlled by
code that is contained within the EJB. In most cases, this means that the pro-
grammer includes JDBC code within the bean to query and update the underly-
ing tables, or uses an abstraction layer such as Hibernate or Spring to generate
the JDBC calls.

Container-Managed Persistence (CMP)
In this mode, the interaction with the underlying data source is controlled by the
EJB container itself. The container generates SQL to retrieve and maintain data
based on deployment data that defines the relationship between the data repre-
sented by the entity bean and the data held in the relational database.

In CMP, the SQL is issued by the EJB container itself and is not under developer con-
trol. Consequently it is not really feasible to use stored programs in conjunction with
a CMP EJB. It’s fair to say that CMP is the recommended method of implementing
entity bean persistence, since it reduces the effort involved in implementing the bean
and since (somewhat surprisingly) CMP implementations can outperform BMP
implementations. Most J2EE experts recommend using BMP only when there is a
very complex relationship between beans and the underlying tables or when some
special SQL coding is required for performance or security reasons.

Note also that the J2EE specification does not forbid accessing the database from
session beans, and the programmer is free to implement JDBC within a session bean
framework in order to retrieve and maintain persistent data. In this model, JDBC
calls would be embedded in the session bean much as we embedded JDBC within a

Table 14-1. Some of the methods of an entity EJB

Method or method type Description

ejbFindfind_type Various “finder” methods allow the application to find a particular instance of an EJB (perhaps
a specific row in a table). There will always be at least an ejbFindByPrimaryKey()
method.

ejbCreate Creates a new instance of an entity bean. This is roughly equivalent to inserting a row into the
database.

ejbStore Applies the in-memory contents of the entity bean to the database. It usually involves one or
more UPDATE statements.

ejbRemove Permanently removes an instance of an entity bean—usually associated with deleting one or
more database rows.

ejbLoad Loads a particular instance of an EJB. This is equivalent to reading a certain table row into
memory.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and J2EE Applications | 331

Java servlet in the “Using Stored Programs Within Java Servlets” section earlier in
this chapter.

However, in the case in which our database logic is contained in a BMP-based entity
bean, we can certainly use a stored program implementation if we choose.

For instance, Example 14-26 shows a typical EJB method that we might use to locate
an EJB representing a particular customer using the customer’s phone number. The
bean method accepts the phone number and returns the primary key of the relevant
customer (the customer_id). This customer_id would later be used by the ejbLoad()
method to load the relevant bean.

The SQL within a BMP entity bean can be implemented as a stored program.
Example 14-27 shows such a finder method. The finder method calls the stored pro-
cedure GetCustomerIdByPhoneno, which returns a customer_id that matches a particu-
lar customer name.

Example 14-26. EJB method to find a customer by phone number

public int ejbFindByPhoneNo(String phoneNo) throws FinderException
{
    try {
        Connection connection = getConnection( );
        PreparedStatement statement = connection.prepareStatement
            ("SELECT customer_id FROM customers WHERE phoneno=?");
        statement.setString(1, phoneNo);
        ResultSet resultSet = statement.executeQuery( );
        if (!resultSet.next( ))
        {
            statement.close( );
            connection.close( );
            throw new FinderException("Could not find: " + phoneNo);
        }
        statement.close( );
        connection.close( );
        return resultSet.getInt(1);
    }
    catch(SQLException e) {
        throw new EJBException ("Could not find: " + phoneNo, e);
    }
}

Example 14-27. EJB finder method that uses a stored procedure

public int ejbFindByPhoneNoSP(String phoneNo) throws FinderException
{
    try {
        Connection connection = getConnection( );
        String sqlText = "{call getcustomeridbyphoneno(?,?,?)}";

        CallableStatement custStmt = connection.prepareCall(sqlText);
        custStmt.registerOutParameter(2, Types.INTEGER);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 14: Using MySQL Stored Programs with Java

Using Stored Procedures with Hibernate
J2EE provides entity EJBs as a mechanism for mapping Java objects to database
tables. In CMP the J2EE system itself generates the SQL necessary to create the EJBs
from the database and to update the database to reflect changes made to the EJBs.
The generic term for a framework that synchronizes program objects with relational
database data in this manner is an Object-Relational Mapping (ORM) framework.

J2EE and the EJB model have its supporters as well as its detractors, but almost
everyone agrees that it is mainly suitable for large-scale distributed applications. To
get the benefits of ORM for non-J2EE applications, programmers typically adopt an
alternative ORM framework, the most popular of which is Hibernate (http://www.
hibernate.org).

Database stored programs and ORM are not necessarily a perfect fit. Gavin King—
the creator of Hibernate—was quoted as saying:

Stored procedures are essentially a nonrelational view of a relational database … my
view, currently, is that the goal of an object-relational mapping tool should be to map
between tables and objects, not between objects and “some other stuff.”*

It’s true that programmers who are building applications that make widespread use
of stored procedures will get less benefit from Hibernate than those working with
native SQL; in particular, Hibernate cannot auto-generate stored procedure calls, so
the programmer needs to configure Hibernate with every stored procedure call that
might be required.

However, demand for stored procedures in Hibernate has remained high, and their
use is now fully supported. This support allows Hibernate to be used with legacy
applications that rely on stored procedures and also allows new applications to take
advantage of both Hibernate and stored procedures where appropriate.

        custStmt.registerOutParameter(3, Types.INTEGER);

        custStmt.setString(1, phoneNo);
        custStmt.execute( );
        if (custStmt.getInt(3) == 1) // Not Found indicator
            throw new FinderException("Could not find: " + phoneNo);

        return custStmt.getInt(2);
    }
    catch(SQLException e) {
        throw new EJBException("Could not find: " + phoneNo, e);
    }
}

* http://www.theserverside.com/talks/videos/GavinKing/interview.tss?bandwidth=dsl

Example 14-27. EJB finder method that uses a stored procedure (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Procedures with Hibernate | 333

In this section we will provide a brief overview of using Hibernate with MySQL
stored procedures. We’re going to assume you have some basic familiarity with
Hibernate—if you are new to Hibernate, you will find a review of Chapter 2 (“Intro-
duction to Hibernate”) of the Hibernate Reference Documentation helpful. Our
examples in this section are based on the Event class described in that chapter.

Hibernate Support for MySQL Stored Procedures
For every supported RDBMS, Hibernate includes a Dialect definition that defines
the capabilities and configurations that the RDBMS supports. At the time of writing,
the Hibernate (3.1rc3) MySQLDialect definition did not include a reference to stored
procedures and, consequently, Hibernate would generate the following error when
configured to use a MySQL stored procedure:

[java] Hibernate: { call getEvent(?) }
[java] Exception in thread "main" java.lang.UnsupportedOperationException: org.
hibernate.dialect.MySQLDialect does not support resultsets via stored procedures.

Modifying the Hibernate MySQLDialect.java file to reflect MySQL 5.0’s ability to
execute stored procedures is relatively simple, and we have submitted a modified ver-
sion of this file to the Hibernate team for inclusion in an upcoming release of Hiber-
nate (JIRA key HHH-1244, scheduled for 3.1 production). You can also obtain this
file from this book’s web site, where we will also include information about the cur-
rent status of Hibernate support for MySQL stored procedures.

Using a Stored Procedure to Load an Object
The load( ) method of the Hibernate session object allows you to create a Hibernate
object using the Hibernate mappings. Under the hood, Hibernate will generate a
SELECT statement to extract the appropriate data from the database. Example 14-28
shows us creating and loading an Event object for the event #1.

We can load the Event object using a stored procedure. A simple stored procedure to
retrieve details for a specific event is shown in Example 14-29.

Example 14-28. Loading a Hibernate object in a Java application

Long id = new Long(1);
Event event = (Event) session.load(Event.class, id);

Example 14-29. Stored procedure to load an Event object

CREATE PROCEDURE getEvent (in_event_id INTEGER)
BEGIN
  SELECT event_id, title, event_date
    FROM events
   WHERE event_id = in_event_id;

END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 14: Using MySQL Stored Programs with Java

To use this stored procedure, we need to create a definition for it in the mapping
document and add a loader entry to the class definition. Example 14-30 shows the
changes we made to the mapping document (Events.hbm.xml) to enable our stored
procedure loader.

Let’s look at the important parts of this document:

Once we rebuild our application, all subsequent load( ) calls will use the getEvent( )
stored procedure to retrieve event data from the database.

Example 14-30. Defining the loader stored procedure in the Hibernate mapping document

1   <hibernate-mapping>
2       <class name="Event" table="EVENTS">
3            <id name="id" column="EVENT_ID">
4                 <generator class="increment" />
5            </id>
6            <property name="title" />
7            <property name="date" type="timestamp" column="EVENT_DATE" />
8
9            <loader query-ref="getEventSP"></loader>
10      </class>
11
12      <sql-query name="getEventSP" callable="true">
13           <return alias="event" class="Event">
14                <return-property name="id" column="EVENT_ID" />
15                <return-property name="title" column="TITLE" />
16                <return-property name="date" column="EVENT_DATE" />
17           </return>
18           { call getEvent(?) }
19      </sql-query>

Line(s) Explanation

9 The mapping tag loader defines the SQL that will be used when the data for a class is first loaded.
query-ref refers to a named query defined elsewhere in the mapping—in this case getEventSP.

12-19 The sql-query section defines a named SQL query that can be used elsewhere in the mapping or from
Java code.

12 The name property allows you to provide a meaningful name for the SQL query. The callable prop-
erty—if set to true— indicates that the SQL query should be executed as a JDBC
CallableStatement—i.e., it is a stored procedure or function.

13-17 The return section provides details about the result set that will be returned by the sql-query sec-
tion.

13 The alias property provides an alias that can be used to prefix column names in the SQL and is not of
much interest for a callable SQL. The class property indicates that the SQL will return properties relating
to the specified class (in this case the Event class).

18 The SQL code that is executed by this sql-query. For a callable SQL, this should be in the same format
used in theprepareCall( )method of theConnection interface, as described earlier in this chapter.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Procedures with Hibernate | 335

Hibernate Queries
It is typical for an application to generate lists of matching objects by issuing Hiber-
nate queries. For instance, to create a List object that includes all events, we might
include the code shown in Example 14-31 in our application.

We could retrieve all Events objects raised since yesterday with the Hibernate query
shown in Example 14-32.

Let’s implement the query expressed in Example 14-32 through a stored procedure
call. A stored procedure to return events raised after a specified date is shown in
Example 14-33.

As in the previous example, we need to add a definition for the stored procedure call
to the mapping file. Example 14-34 shows the mapping for our new stored
procedure.

Now we can use that named query in our Java code. Instead of using the
createQuery( ) method, we use the getNamedQuery( ) method, supplying the name we
have given our stored procedure call in the mapping file and supplying any neces-
sary parameters. Example 14-35 shows the technique.

Example 14-31. Simple Hibernate query to retrieve all objects

List result = session.createQuery("from Event").list( );

Example 14-32. Hibernate query with WHERE clause

List result =
    session.createQuery("from Event as e where e.date > ?")
          .setDate(0, yesterday).list( );

Example 14-33. Stored procedure to support a Hibernate query

CREATE PROCEDURE getRecentEvents(in_event_date DATETIME)
BEGIN
  SELECT event_id AS EVENT_ID, title AS EVENT_TITLE, event_date AS EVENT_DATE
    FROM events
   WHERE event_date > in_event_date;
END;

Example 14-34. Mapping for our query stored procedure

<sql-query name="getRecentEventsSP" callable="true">
     <return alias="event" class="Event">
          <return-property name="id" column="EVENT_ID" />
          <return-property name="title" column="EVENT_TITLE" />
          <return-property name="date" column="EVENT_DATE" />
     </return>
     { call getRecentEvents(?) }
</sql-query>



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 14: Using MySQL Stored Programs with Java

Using Stored Procedures for Persistence
By default, Hibernate constructs and issues INSERT, UPDATE, and DELETE statements, as
appropriate, to persist the contents of Java objects in the database. However, we can
configure Hibernate to use stored procedure calls instead.

For a stored procedure to be used with Hibernate it must accept the same parame-
ters—in the same order—as the SQL that Hibernate would generate by default. For
instance, in the case of a stored procedure to replace an INSERT statement, the stored
procedure will have to provide parameters representing every column in Hibernate’s
INSERT statement, and these parameters must appear in the same order as the columns
appear in that INSERT statement. The easiest way of determining this sequence is to log
the SQL generated by Hibernate before converting it to a stored procedure call.

For UPDATE and DELETE, the stored procedure must return the number of rows affected
by the operation as either a function return value or as the first parameter (which
will, of course, need to be an OUT parameter).

The Hibernate documentation implies that a stored function should be
used to implement UPDATE and DELETE functionality and that the stored
function should return the number of rows affected. Unfortunately,
Hibernate treats stored function return values in a way that works for
SQL Server but not for MySQL, so for now it is necessary to imple-
ment the UPDATE or DELETE through a stored procedure.

Example 14-36 shows stored procedures designed to replace the Hibernate-gener-
ated DML statements to maintain Event objects. Note that in the case of the
updateEvent and deleteEvent procedures, the first parameter is an OUT parameter that
returns the number of rows affected by the DML operation. This parameter is nei-
ther required nor permitted for the createEvent procedure.

Example 14-35. Using a stored procedure to execute a Hibernate query in Java code

List result = session.getNamedQuery("getRecentEventsSP")
                 .setDate(0,yesterday).list( );

Example 14-36. Stored procedure to implement a Hibernate update operation

CREATE PROCEDURE updateEvent
  (OUT row_count INTEGER, in_event_date DATETIME,
   in_title VARCHAR(60),  in_event_id INTEGER)
BEGIN
  UPDATE events
     SET title = in_title, event_date = in_event_date
   WHERE event_id = in_event_id;

  SET row_count = ROW_COUNT( );
END $$



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Procedures with Spring | 337

To ensure that Hibernate uses these stored procedures in place of its self-generated
SQL, we need to add entries in the mapping document to associate the specific oper-
ation with the stored procedure call. Example 14-37 shows the entries we added to
the Event class definition (in Event.hbm.xml) to enable the stored procedures.

Once we rebuild our application, Hibernate will use these stored procedure calls in
place of the INSERT, UPDATE, or DELETE SQL statements that it would normally generate.

We have now completely converted the Event mapping to use stored procedures.
Hibernate will now use MySQL stored procedures exclusively when querying, load-
ing or modifying objects of the Event class.

Using Stored Procedures with Spring
Spring (http://www.springframework.org) is a popular, lightweight framework for the
development of Java applications. Spring offers many facilities that support the
development of Java applications, including support for Model-View-Controller
design, POJO (Plain Old Java Objects), integration with J2EE objects, Aspect Ori-
ented Programming, integration with other complementary frameworks such as
Hibernate, and abstraction layers for transaction management and database access.
Spring aims to deliver on many of the promises of the J2EE framework, but in a less
invasive and more productive manner.

Spring’s JDBC abstraction layer eliminates much of the repetitive coding normally
associated with even simple SQL queries. The abstraction layer includes a

CREATE PROCEDURE deleteEvent(OUT row_count INTEGER, in_event_id INTEGER)
BEGIN
  DELETE FROM events
   WHERE event_id = in_event_id;

  SET row_count = ROW_COUNT( );
END$$

CREATE PROCEDURE createEvent
  ( InEventDate DATE, InEventTitle VARCHAR(60), InEventId INT )
BEGIN
  INSERT INTO events (event_date, title, event_id)
   VALUES(InEventDate, CONCAT(InEventId, InEventTitle), InEventId);
END$$

Example 14-37. Configuring Hibernate to use stored procedures for UPDATE, INSERT, and
DELETE

<sql-insert callable="true">{call createEvent (?, ?, ?)}</sql-insert>
<sql-update callable="true">{call updateEvent(?,?,?,?)}</sql-update>
<sql-delete callable="true">{call deleteEvent(?,?)}</sql-delete>

Example 14-36. Stored procedure to implement a Hibernate update operation (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 14: Using MySQL Stored Programs with Java

StoredProcedure class that can be used to incorporate stored procedure calls into a
Spring application. In this section we will provide a brief overview of how to access a
MySQL stored procedure from within a Spring application.

Example 14-38 shows the stored procedure we are going to use in our Spring exam-
ple. It accepts a single input parameter—the department_id—and returns two result
sets. The first result set contains a list of employees in that department, and the sec-
ond contains a list of customers associated with the department. The stored proce-
dure includes an OUT parameter that returns the total value of all sales associated with
the department.

The natural way to represent the customer and employee rows returned by the stored
procedure is to create customer and employee Java classes. Example 14-39 shows part
of the class that would represent employees. We created a similar class for customers.

Example 14-38. Stored procedure for use with our Spring example

CREATE PROCEDURE sp_department_report
  (in_dept_id INTEGER, OUT sales_total DECIMAL(8,2))
BEGIN

  SELECT employee_id, surname, firstname, address1, address2, salary
    FROM employees
   WHERE department_id = in_dept_id;

  SELECT customer_id, customer_name, address1, address2, zipcode
    FROM customers
   WHERE sales_rep_id IN
      (SELECT employee_id FROM employees
        WHERE department_id = in_dept_id);

   SELECT SUM(sale_value)
     INTO sales_total
     FROM sales
    WHERE customer_id IN
        (SELECT customer_id
           FROM customers
          WHERE sales_rep_id IN
              (SELECT employee_id
                  FROM employees
                 WHERE department_id = in_dept_id));
END

Example 14-39. Java class to represent employees

public class Employee
{
    private long id;
    private String surname;
    private String firstName;
    private String address1;
    private String address2;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Procedures with Spring | 339

To represent the stored procedure, we create a new class that extends the Spring
StoredProcedure class, as shown in Example 14-40.

    private double salary;

    public Employee(long id, String surname, String firstName,
                  String address1, String address2, double salary)
    {
         this.id = id;
         this.surname = surname;
         this.firstName = firstName;
         this.address1 = address1;
         this.address2 = address2;
         this.salary = salary;
    }

    public String toString( ) {
         return "Employee : " + employeeId + " " + surname;
    }

    public String getSurname( ) {
         return surname;
    }

    public String getFirstName( ) {
         return firstName;
    }

    /* Other getters and setters would go here */
}

Example 14-40. Class to represent a stored procedure in Spring

1    private class MyStoredProcedure extends StoredProcedure
2     {
3         public MyStoredProcedure(DataSource ds)
4         {
5              setDataSource(ds);
6              setSql("sp_department_report");
7
8              declareParameter(new SqlReturnResultSet("Employees",
9                        new RowMapper( ) {
10                            public Object mapRow(ResultSet rs, int rowNum)
11                                       throws SQLException {
12                                 Employee e = new Employee(
13                                               rs.getInt("employee_id"),
14                                               rs.getString("surname"),
15                                               rs.getString("firstname"),
16                                               rs.getString("address1"),
17                                               rs.getString("address2"),
18                                               rs.getDouble("salary"));
19                                 return e;

Example 14-39. Java class to represent employees (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 14: Using MySQL Stored Programs with Java

Let’s look at the significant lines of this class:

20                            }
21                      }));
22
23            declareParameter(new SqlReturnResultSet("Customers",
24                      new RowMapper( ) {
25                           public Object mapRow(ResultSet rs, int rowNum)
26                                      throws SQLException {
27                                Customer c = new Customer(
28                                              rs.getInt("customer_id"),
29                                              rs.getString("customer_name"),
30                                              rs.getString("address1"),
31                                              rs.getString("address2"),
32                                              rs.getString("zipcode"));
33                                return c;
34                           }
35                      }));
36
37            declareParameter(new SqlParameter("department_id", Types.INTEGER));
38
39            declareParameter(new SqlOutParameter("sales_total", Types.DOUBLE));
40
41            compile( );
42        }
43
44    }

Line(s) Explanation

3 The constructor method for the class. It takes a single argument that represents the MySQL server connection.

5 Set the data source that was provided as an argument.

6 Set the SQL associated with the stored procedure. The SQL should contain only the stored procedure name —
parentheses, the CALL statement, and parameter placeholders are neither required nor allowed.

8-39 The declareParameter( )method invocations define input and output parameters and also any result sets
returned by the stored procedure.

8-21 Specify the definition of the first—employee list—result set. The SqlReturnResultSet class represents a
result set.

9 Create an implementation of the RowMapper interface that will map the result set rows.

10 The mapRow( ) method processes a single row in a result set. It returns an object that represents the row.

12-18 Create an Employee object to hold a single employee row from the result set. We create the Employee object
using the default constructor with the values of the current row as arguments. We use the normal JDBC syntax
to retrieve each column from the row and assign it to the appropriate constructor argument.

19 Return the new Employee object to the RowMapper, which will add it to the Map being constructed for the
current result set.

23-35 Repeat the process for the second result set, which is used to create a Map of customer objects.

37 Define our single input parameter—department_id—using the SqlParameter method.

39 Define our single output parameter—sales_total—using the SqlOutParameter method.

Example 14-40. Class to represent a stored procedure in Spring (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Procedures with Spring | 341

Now that we have created a class that knows how to process the inputs and outputs
of our stored procedure, we are ready to use the stored procedure within our Java
code. The StoredProcedure class takes, as its argument, a Map that includes all of the
required parameters to the stored procedure call. The class returns a Map that con-
tains all of the result sets and output parameters. Example 14-41 shows us using the
StoredProcedure class in our Java code.

Here is an explanation of this code:

Example 14-41. Using a Spring stored procedure class

1        MyStoredProcedure msp = new MyStoredProcedure(datasource);
2        Map inParameters = new HashMap( );
3        inParameters.put("department_id", new Integer(department_id));
4        Map results = msp.execute(inParameters);
5
6        List employees = (List) results.get("Employees");
7        System.out.println("Employees of department " + department_id);
8        for (int i = 0; i < employees.size( ); i++) {
9            Employee e = (Employee) employees.get(i);
10            System.out.println(e.getEmployeeId( ) + "\t" +
11                            e.getFirstname() + "\t" + e.getSurname( ));
12        }
13
14        List customers = (List) results.get("Customers");
15        System.out.println("Customers of department " + department_id);
16        for (int i = 0; i < customers.size( ); i++) {
17            Customer c = (Customer) customers.get(i);
18            System.out.println(c.getCustomerId() + "\t" + c.getCustomerName( ));
19        }
20
21        Double salesTotal = (Double) results.get("sales_total");
22        System.out.println("Total sales for the department " +
23                        department_id + "=" + salesTotal);

Line(s) Explaination

1 Create a new instance of our MyStoredProcedure class, passing an existing
DriverManagerDataSource object (datasource) to represent the MySQL connection.

2 Create a HashMap that will hold the procedure’s input parameters.

3 Add name-value pairs to the HashMap for each input parameter. In this case, we have only a single
parameter—department_id.

4 Use the execute( ) method of the StoredProcedure object to execute the stored procedure. We
pass in the Map containing input parameters, and we retrieve a new Map containing all the outputs of
the stored procedure call.

6 Use the get( ) method of the Map to retrieve a List that represents the rows in the first result set
(employees).

8 Iterate through each element in the List. This is equivalent to moving through each row in the result
set.

9 Cast each list entry to an Employee object representing the current row in the result set.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 14: Using MySQL Stored Programs with Java

Conclusion
In this chapter we looked at how to use MySQL stored programs from within Java
programs. Java programs access relational databases through the JDBC interfaces
supported by the MySQL Connector/J driver.

We first reviewed the fundamentals of using JDBC to process basic SQL—queries,
updates, inserts, deletes, DDL, and utility statements. We showed how to use the
PreparedStatement interface to execute SQL statements that are repeatedly executed,
possibly with variable query parameters or DML inputs. Finally, we looked at JDBC
structures for implementing transaction and error handling.

JDBC fully supports stored programs through the CallableStatement interface. Call-
able statements support multiple result sets, and they support IN, OUT, and INOUT
parameters. The ResultSetMetaData interface can be used to determine the structure
of result sets returned by stored programs if this is not known in advance.

Stored programs are suitable for use in J2EE applications, and stored procedures can
be invoked from within J2EE application servers such as JBoss, WebLogic, and Web-
Sphere. We can use stored programs in J2EE applications wherever we might embed
standard SQL calls—from servlets, session EJBs, or Bean Managed Persistence
(BMP) EJBs. However, stored programs cannot easily be leveraged from within Con-
tainer Managed Persistence (CMP) EJBs.

We can use stored procedures in ORM frameworks such as Hibernate, although
doing so involves more work than letting Hibernate generate its own native SQL.
The Spring framework also provides full support for MySQL stored procedures.

As with other application development environments, the use of stored programs
from within Java code offers a number of advantages, including encapsulation of
complex transaction logic, abstraction of the underlying schema, and potential per-
formance improvements from reduction in network round trips.

10 Use the methods we created for the Employee class to extract and display the details for the current
employee.

14-19 Process the second result set (customers) in the same way as for the employees result set.

21-23 Retrieve and display the value of the single OUT parameter (sales_total).

Line(s) Explaination



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

343

Chapter 15d CHAPTER 15

Using MySQL Stored Programs
with Perl15

Perl is an open source programming language widely used for system administration
tasks, web site development, data manipulation, and reporting. Perl was the brain-
child of Larry Wall, who initially developed the language to provide a language for
the easy manipulation of text files and the like. Perl rapidly became very popular
among the Unix community as a powerful, easy-to-use, general-purpose program-
ming language. During the explosion of the World Wide Web, Perl’s ease of use and
database connectivity capabilities made it the preferred choice for CGI-based data-
driven web sites.

From very early on, Perl was an extensible language and benefited greatly from a
wide variety of user-contributed packages allowing it to do everything from handling
Unix mail to performing complex statistical analyses. One category of extension
showed particularly rapid uptake—extensions that enabled Perl to interact with rela-
tional databases, allowing Perl users to manipulate RDBMS data as easily as they
could manipulate text files. Initially, these extensions were platform specific—the
extension used to access Oracle had little in common with that used to access
Sybase, for instance.

Perl’s DBI (DataBase Interface) module evolved to provide a common syntax for
interacting with relational databases. DBI defines interfaces and utilities common to
all databases, while for each specific relational database, we use a DBD (DataBase
Driver) module that contains the database-specific implementation of the DBI inter-
face, and may also include database-specific utility routines. The preferred way to
use MySQL with Perl is through the DBD::mysql module.

In this chapter we will first provide a general overview of DBD::mysql capabilities and
then move on to show how to use DBD::mysql to call MySQL stored programs.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 15: Using MySQL Stored Programs with Perl

Review of Perl DBD::mysql Basics
Let’s start with a review of how to install the DBD::mysql driver, and how to use that
driver to perform traditional interactions (i.e., those not using stored programs) with
MySQL. These form the building blocks that we can use to work with stored pro-
grams. However, if you are already familiar with the Perl DBI, you may wish to skip
forward to “Executing Stored Programs with DBD::mysql,” later in this chapter.

Installing DBD::mysql
To access MySQL from Perl, you will normally use the DBD::mysql package. DBD::
mysql is a Perl package that implements the classes defined by the DBI package that
allow Perl to interact with relational databases in a database-independent manner.

The DBI package is probably already included in your Perl distribution. If it is not,
you can follow the instructions given in this section.

Make sure to install the DBI package before installing the DBD::mysql
package.

Installing DBD::mysql on Linux or Unix

The easiest way to install DBD::mysql on a Linux/Unix system is to use the CPAN
(Comprehensive Perl Archive Network) shell. To invoke the CPAN shell, run the fol-
lowing command from a command line (as root):

[root@guyh3 root]# perl -MCPAN -e 'shell'

This invokes the CPAN command line:

[root@guyh3 root]# perl -MCPAN -e 'shell'

cpan shell -- CPAN exploration and modules installation (v1.61)
ReadLine support enabled

cpan>

You can then type install DBD::mysql to download, build and install the DBD::mysql
driver. It’s probably best to specify force install, because otherwise the DBD::mysql
driver will not install unless it has passed all the built-in tests. Unfortunately, the
tests will probably fail if you have a nonstandard database password, so we generally
use force install to ensure that the installation succeeds.

The CPAN install session will look something like this:

cpan> force install DBD::mysql
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
  Database was generated on Wed, 15 Jun 2005 11:57:49 GMT



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of Perl DBD::mysql Basics | 345

Running install for module DBD::mysql
Running make for R/RU/RUDY/DBD-mysql-2.9008.tar.gz
CPAN: Digest::MD5 loaded ok
Checksum for /root/.cpan/sources/authors/id/R/RU/RUDY/DBD-mysql-2.9008.tar.gz ok
Scanning cache /root/.cpan/build for sizes
DBD-mysql-2.9008/
DBD-mysql-2.9008/t/
DBD-mysql-2.9008/t/60leaks.t
DBD-mysql-2.9008/t/40listfields.t
DBD-mysql-2.9008/t/10dsnlist.t
*** LOTS of other output ***
Failed 16/18 test scripts, 11.11% okay. 725/732 subtests failed, 0.96% okay.
make: *** [test_dynamic] Error 2
  /usr/bin/make test -- NOT OK
Running make install
Installing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/auto/DBD/mysql/
mysql.so
Files found in blib/arch: installing files in blib/lib into architecture dependent
library tree
Installing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/DBD/mysql.pm
Installing /usr/share/man/man3/DBD::mysql.3pm
Writing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/auto/DBD/mysql/.
packlist
Appending installation info to /usr/lib/perl5/5.8.0/i386-linux-thread-multi/
perllocal.pod
  /usr/bin/make install  -- OK

Installing DBD::mysql on Windows

If you are using Perl on Windows, you probably are using the ActiveState binary dis-
tribution (http://www.activestate.com). Activestate Perl includes the Perl Package
Manager, which can be used to download binary versions of Perl packages from the
ActiveState site. To use PPM you simply type ppm from a Windows command
prompt. If you are working through a proxy server, you may need to set appropriate
values for HTTP_proxy, HTTP_proxy_user, and HTTP_proxy_pass, as shown below:

C:\>set HTTP_proxy=http://something.proxy.com:8080
C:\>set HTTP_proxy_user=myusername
C:\>set HTTP_proxy_pass=mypassword
C:\>ppm
PPM interactive shell (2.1.6) - type 'help' for available commands.
PPM> install DBD::mysql
Install package 'DBD-mysql?' (y/N): y
Installing package 'DBD-mysql'...
Bytes transferred: 597532
Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.bs
Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.dll
Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.exp
Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.lib
Installing C:\Perl\html\site\lib\Mysql.html
Installing C:\Perl\html\site\lib\DBD\mysql.html
Installing C:\Perl\html\site\lib\DBD\mysql\INSTALL.html
Installing C:\Perl\html\site\lib\Bundle\DBD\mysql.html



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 15: Using MySQL Stored Programs with Perl

Installing C:\Perl\site\lib\Mysql.pm
Installing C:\Perl\site\lib\Mysql\Statement.pm
Installing C:\Perl\site\lib\DBD\mysql.pm
Installing C:\Perl\site\lib\DBD\mysql\GetInfo.pm
Installing C:\Perl\site\lib\DBD\mysql\INSTALL.pod
Installing C:\Perl\site\lib\Bundle\DBD\mysql.pm
Writing C:\Perl\site\lib\auto\DBD\mysql\.packlist

Connecting to MySQL
To connect to MySQL from a Perl program, we first need to issue the use DBI clause
to load the DBI driver that forms the foundation for the DBD::mysql driver. We then
create a database handle using the DBI->connect() method.

The connect method has the following syntax:

Database_handle=DBI->connect(DataSourceName,UserName,PassWord,[Attributes]);

The resulting database handle is used in all subsequent interactions with the
database.

The DataSourceName specifies the database details for the connection. The syntax
depends on the type of database used, but for MySQL it has the following format:

dbi:mysql:database:host:port

where hostname indicates the hostname or IP address of the machine hosting the
MySQL instance, port defines the port on which the MySQL server is listening (3306
by default), and database specifies the database within the server to which the con-
nection is being made.

Attributes defines some optional attributes for the connection; we’ll discuss
attributes in the next section.

In Example 15-1 we connect to a database prod on the MySQL server on the local
machine localhost at port 3306. We connect as root with the password secret.

Connection attributes

DBD:MySQL allows you to specify the following attributes at connection time:

AutoCommit
Determines whether each SQL statement will automatically commit following
execution. This is relevant only for transactional databases such as InnoDB.

PrintError
Determines whether MySQL errors will be printed as warnings.

Example 15-1. Connecting to a MySQL database from Perl

use Strict;
use DBI;
my $dbh = DBI->connect( "DBI:mysql:prod:localhost:3306", "root", "secret" );



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of Perl DBD::mysql Basics | 347

RaiseError
Determines whether MySQL errors will terminate execution.

These attributes are represented as an associative array within the connect() method,
and each takes an argument of either 1 (true) or 0 (false). Example 15-2 shows how
to set up a connection in which automatic commits are suppressed and in which any
errors encountered are reported without terminating execution.

You can modify any of these database handle attributes during execution, as shown
in Example 15-3.

Handling Errors
As shown earlier, we can set up some basic error-handling defaults at connection
time that will control whether MySQL errors cause immediate termination of a pro-
gram. However, we will often want to check the error status of a DBD::mysql call
immediately after execution and take appropriate action if the call fails.

Usually, a DBI method will return true if it is successful, or false otherwise, and so
we can check that return status to determine whether the call was successful, as
shown in Example 15-4. Details about the actual status of execution can be found in
the err and errstr properties of the database handle. These properties can be used to
determine the root cause of the error or to report the error to the user.

Issuing a Simple One-off Statement
The DBI do() method allows us to execute a simple statement that returns no result
sets and takes no parameters. Example 15-5 shows the use of the do() method to set
the value for a user variable.

Example 15-2. Setting database handle attributes on connection

my $dbh = DBI->connect( "DBI:mysql:prod:localhost:3306",
    "root", "secret", { AutoCommit => 0, PrintError => 1, RaiseError => 0 } )

Example 15-3. Enabling autocommit

$dbh->{AutoCommit} = 1;    #Enable autocommit

Example 15-4. Checking for errors in a DBI statement

my $dbh = DBI->connect( "DBI:mysql:prod:localhost:3306",
    "root", "secret", { AutoCommit => 0, PrintError => 0, RaiseError => 0 } )
  || die "Connection error: ".$DBI::errstr;

Example 15-5. Using do( ) to execute a simple SQL

$dbh->do('set @myvariable=10')||die $DBI::errstr;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 15: Using MySQL Stored Programs with Perl

Preparing a Statement for Reuse
To execute a statement more than once, or to execute a SQL statement that retrieves
a result set, we first need to prepare, and then execute, the statement. Example 15-6
shows the use of prepare() and execute() rather than do() to execute a simple SQL
statement.

Using Bind Variables
One of the advantages of using prepared statements is that they can be re-executed
with altered parameters without having to be redefined each time. Bind variables—
also known as substitution variables—are indicated within a SQL statement by ?
placeholders. Prior to execution, we call the bind_param() method to set the values of
these variables.

In Example 15-7 we prepare a statement and then bind and execute() the statement
10 times in a loop. Each execution inserts unique rows into the appropriate table.

Alternatively, we can specify the bind variables in the execute method, as shown in
Example 15-8.

Issuing a Query and Retrieving Results
In line with the core philosophy of Perl—There’s More Than One Way To Do It™—
Perl DBI and the DBD::mysql driver provide a number of ways to retrieve rows from a

Example 15-6. Using prepare( ) and execute( )

my $sth=$dbh->prepare('set @myvariable=9')||die $DBI::errstr;
$sth->execute||die $DBI::errstr;

Example 15-7. Using bind_param( ) to set placeholder values

my $sth=$dbh->prepare('INSERT INTO bind_example(col1,col2) VALUES(?,?)')
    ||die $DBI::errstr;
for (my $i=1; $i<=10;$i++) {
    $sth->bind_param(1,$i);
    $sth->bind_param(2,'Row# '||$i);
    $sth->execute||die $DBI::errstr;
}
$sth->finish;

Example 15-8. Specifying bind values in the execute( ) method

my $sth = $dbh->prepare('INSERT INTO bind_example(col1,col2) VALUES(?,?)')
  || die $DBI::errstr;
for ( my $i = 1 ; $i <= 10 ; $i++ ) {
    my $col2_value = 'Row2#' . $i;
    $sth->execute( $i, $col2_value ) || die $DBI::errstr;
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of Perl DBD::mysql Basics | 349

query. In Example 15-9, we use the fetchrow_array method, which is probably the
most commonly used approach.

After we have prepared and executed a SQL statement that returns a result set
(SELECT, SHOW STATUS, etc.), we can use the fetchrow_array method to retrieve each
row into a Perl array. We can then refer to the column values as numbered elements
in that array (starting with element 0, of course!).

There’s More Than One Way To Do It
Perl DBI offers at least five other ways of retrieving rows from a statement handle,
described in the following subsections.

fetchrow_arrayref method

The fetchrow_arrayref method, shown in Example 15-10, is similar in usage to
fetchrow_array, and has the advantage of returning a reference to an array, rather
than the array itself. This has a small positive impact on performance for each row,
since the data is not copied into a new array.

fetchrow_hashref method

The fetchrow_hashref method, shown in Example 15-11, returns the row as an asso-
ciative array in which each element of the array is keyed by the column name, rather
than the column position. This has the advantage of improving readability, although
you have to know the column names that will be returned by the query.

Example 15-9. Retrieving rows with fetchrow_array

    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    while ( my @row = $sth->fetchrow_array ) {
         print $row[0] ."\t". $row[1] . "\n";
    }
    $sth->finish;

Example 15-10. Retrieving rows with fetchrow_arrayref

    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    while ( my $row_ref = $sth->fetchrow_arrayref ) {
        print $row_ref->[0]."\t".$row_ref->[1]."\n";
    }
    $sth->finish;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 15: Using MySQL Stored Programs with Perl

fetchall_arrayref method

The fetchall_arrayref method allows you to retrieve an entire result set in a single
operation. For noninteractive applications where the result set can fit into available
memory, this can be a very efficient way to retrieve a result set. However, it is not
necessarily appropriate for interactive applications where the user may wish to view
only the first page of data before looking at the rest (for instance, on a web search
page you rarely scroll through the entire list of matching sites). If the result set is too
large for available memory, this method may degrade overall system performance as
memory is swapped out to disk.

There are two main modes for the fetchall_arrayref method. In the first and sim-
plest case, shown in Example 15-12, no arguments are provided to the method, and
the method passes a reference to an array. Each element in the array contains refer-
ences to an array containing the column values for a particular row.

Providing {} as the argument to fetchall_arrayref returns the columns as hashes,
indexed by column name. In Example 15-13, we repeat our previous query but
access our columns as hash references.

Example 15-11. Retrieving rows with fetchrow_hashref

    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    while ( my $hash_ref = $sth->fetchrow_hashref ) {
         print $hash_ref->{customer_id}   . "\t" .
               $hash_ref->{customer_name} . "\n";
    }
    $sth->finish;

Example 15-12. Retrieving rows with fetchall_arrayref

    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    my $table = $sth->fetchall_arrayref||die $DBI::errstr;
    for my $i ( 0 .. $#{$table} ) {
         for my $j ( 0 .. $#{ $table->[$i] } ) {
              print "$table->[$i][$j]\t";
         }
         print "\n";
     }

Example 15-13. Using fetchall_arrayref, returning hash references

    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of Perl DBD::mysql Basics | 351

You can also provide array or hash slice references as an argument to fetchall_
arrayref to restrict the columns returned.

dump_results method

The dump_results method provides a quick-and-dirty way to print the output of a
query. By default, dump_results will output all of the rows from a statement handle
to standard output, surrounding the values in quotes, separating with commas, ter-
minating each row with a line feed, and truncating columns (if necessary) to a maxi-
mum of 35 bytes per value. These default behaviors can be changed by providing
arguments to dump_results:

my $Rowcount=$statement_handle->dump_results(
    [column_length],[line separator],[column separator],[file handle]);

Example 15-14 shows dump_results in action.

The output of dump_results is shown in Example 15-15.

bind_col and fetch methods

The final method we’re going to look at differs from all the preceeding techniques:
instead of the fetch( ) method returning an array or a reference to an array, we asso-
ciate Perl variables ahead of time to each column that will be returned by the query.
We perform this association with the bind_col method. Then we call the fetch
method, which automatically deposits the values of the columns concerned into the
variables nominated earlier. The Perl variables must be passed by reference (pre-
ceded by a \ character), which results in a theoretical performance advantage.

    my $table = $sth->fetchall_arrayref({}) || die $DBI::errstr;
    foreach my $row (@$table) {
         print $row->{customer_id} . "\t" . $row->{customer_name} . "\n";
    }

Example 15-14. Using dump_results to display a result set

    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    my $row_count = $sth->dump_results;
    $sth->finish;

Example 15-15. Output from dump_results

'398', 'BELL INDUSTRIES INC.', 'DAHL', 'PHILIPPA'
'2985', 'GEORGIA-PACIFIC CORPORATION', 'OBRIEN', 'DOYLE'
'4776', 'CFC INTERNATIONAL INC', 'KINDRED', 'TOM'
'8756', 'INFODATA SYSTEMS INC', 'WEATHERFORD', 'KRISTIE'
'10746', 'ADTRAN INC.', 'EATON', 'RAYBURN'

Example 15-13. Using fetchall_arrayref, returning hash references (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 15: Using MySQL Stored Programs with Perl

Example 15-16 provides an example of using this technique.

Getting Result Set Metadata
We don’t necessarily always know the exact structure of the result set that will be
returned by a SQL statement: the SQL might have been built up dynamically or even
supplied by the user. To allow for this possibility, DBI lets us retrieve details about
the result set using attributes of the statement handle. The NUM_OF_FIELDS statement
handle attribute returns the number of columns in the result set, while the NAME and
TYPE attributes are arrays containing the names and data types of each column.

Example 15-17 shows how we can use these attributes to print out the structure of a
result set.

These attributes let us write code that can handle dynamically any result set that
might be returned. For instance, the code in Example 15-18 will print the result set
returned from a SQL statement contained within the $sql variable, without knowing
in advance the structure of the result set that SQL might return.

Example 15-16. Using bind_col and fetch( ) to retrieve data from a query

    my ( $customer_id, $customer_name );
    my $sql =
      "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    $sth->bind_col( 1, \$customer_id );
    $sth->bind_col( 2, \$customer_name );

    while ( $sth->fetch ) {
         print join( "\t", ( $customer_id, $customer_name ) ), "\n";
    }

Example 15-17. Retrieving result-set metadata

    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    foreach my $colno ( 0 .. $sth->{NUM_OF_FIELDS} - 1 ) {
         print "Name= "
           . $sth->{NAME}->[$colno]
           . "\tType="
           . $sth->{TYPE}->[$colno] . "\n";

    }

Example 15-18. Handling a dynamic result set

1    my $sth = $dbh->prepare($sql) || die $DBI::errstr;
2    $sth->execute || die $DBI::errstr;
3
4    # Print a title row



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of Perl DBD::mysql Basics | 353

Let’s examine this example line by line:

Performing Transaction Management
If you’re using a transactional storage engine such as InnoDB, you may want to
implement transactional logic within your Perl code. While you can do that by issu-
ing the MySQL START TRANSACTION, ROLLBACK, and COMMIT statements with the DBI
do() method, DBI provides some native routines that might be more convenient.

The AutoCommit attribute of the connection handle can be set to 0 to disable auto-
matic commits after each statement, while the rollback() and commit() methods of
the connection handle can be used to explicitly roll back or commit transactions.

Example 15-19 uses these methods to control transaction logic in a simple Perl
script.

5    print join("\t",@{$sth->{NAME}}),"\n";
6
7    # Print out the values
8    while ( my @row = $sth->fetchrow_array ) {
9         print join("\t",@row),"\n";
10    }
11    $sth->finish;

Line(s) Explanation

5 Print the names of each column in the result set—separated by tab characters—as a header row.

8-10 This loop repeats once for each row in the result set.

9 Print out a tab-separated list of column values for a particular row.

Example 15-19. DBI transaction management commands in action

    $dbh->{AutoCommit} = 0;

    $dbh->do(
         "UPDATE account_balance
            SET balance=balance-$tfer_amount
          WHERE account_id=$from_account"
    );
    if ($DBI::err) {
         print "transaction aborted: ".$DBI::errstr . "\n";
         $dbh->rollback;
    }
    else {
         $dbh->do(
              "UPDATE account_balance
                SET balance=balance+$tfer_amount
              WHERE account_id=$to_account"
        );
        if ($DBI::err) {
             print "transaction aborted: ".$DBI::errstr . "\n";

Example 15-18. Handling a dynamic result set (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 15: Using MySQL Stored Programs with Perl

Executing Stored Programs with DBD::mysql
We can use the techniques we’ve discussed in the previous sections for executing
stored programs, although there are some circumstances in which you will need to
use some additional techniques—specifically, if you need to retrieve multiple result
sets or retrieve the value of an output parameter.

To execute a simple, one-off stored procedure that returns no result sets, we can sim-
ply invoke it with the do() method of the database handle, as shown in
Example 15-20.

Stored procedures that return only a single result set can be treated in the same man-
ner as simple SELECT statements. Example 15-21 shows a stored procedure that
returns just one result set.

Example 15-22 shows how we would retrieve that result set in Perl. The approach is
exactly the same as the one we would use for a SELECT statement or other SQL that
returns a result set.

Input parameters can be treated in the same way as placeholders in standard SQL.
Input parameters are indicated in the prepare statement as ? characters, and the val-
ues are set using the bind_param method.

             $dbh->rollback;
        }
        else {
             printf("transaction succeeded\n");
             $dbh->commit;
        }
    }

Example 15-20. Executing a very simple stored procedure

my $sql = 'call simple_stored_proc( )';

$dbh->do($sql)||die $DBI::errstr;

Example 15-21. Simple stored procedure with a result set

CREATE PROCEDURE department_list( )
    SELECT  department_name,location from departments;

Example 15-22. Fetching a single result set from a stored procedure

    my $sth = $dbh->prepare('call department_list( )') || die $DBI::errstr;
    $sth->execute || die $DBI::errstr;
    while ( my @row = $sth->fetchrow_array ) {
         print join("\t",@row),"\n";
    }
    $sth->finish;

Example 15-19. DBI transaction management commands in action (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Stored Programs with DBD::mysql | 355

Example 15-23 shows a simple stored procedure that accepts an input parameter.

In Example 15-24 we use bind_param to set that value before executing the stored
procedure and retrieving the result set. The example executes the stored procedure
nine times, supplying 1-9 for the sales_rep_id parameter.

Handling Multiple Result Sets
Since stored procedures may return multiple result sets, DBI provides a method—
more_results—to move to the next result set in a series. The DBD::mysql driver imple-
mentation of this method was still experimental at the time of writing (it is available
in developer releases 3.0002.4 and above). We’ll keep you updated on the status of
DBD::mysql at this book’s web site (see the Preface for details).

Example 15-25 shows a simple stored procedure that returns two result sets.

Example 15-23. Simple stored procedure with an input parameter

CREATE PROCEDURE customer_list(in_sales_rep_id INTEGER)
  SELECT customer_id,customer_name
    FROM customers
   WHERE sales_rep_id=in_sales_rep_id;

Example 15-24. Specifying an input parameter

    my $sth = $dbh->prepare('call customer_list(?)') || die $DBI::errstr;

    for ( my $sales_rep_id = 1 ; $sales_rep_id < 10 ; $sales_rep_id++ ) {
         print "Customers for sales rep id = " . $sales_rep_id;
         $sth->execute($sales_rep_id) || die $DBI::errstr;
         while ( my @row = $sth->fetchrow_array ) {
              print join( "\t", @row ), "\n";
          }
     }
     $sth->finish;

Example 15-25. Stored procedure with two result sets

CREATE PROCEDURE sp_rep_report(in_sales_rep_id int)
BEGIN

   SELECT employee_id,surname,firstname
     FROM employees
    WHERE employee_id=in_sales_rep_id;

   SELECT customer_id,customer_name
     FROM customers
    WHERE sales_rep_id=in_sales_rep_id;

END



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 15: Using MySQL Stored Programs with Perl

Because we know in advance the number and structure of the result sets returned by
the stored procedure, it is relatively simple to process the results. In Example 15-26,
we simply retrieve the first result set as usual, call more_results, and then process the
next result set.

Handling Dynamic Result Sets
A stored program can return a variable number of result sets, and the structure and
number of those result sets can be unpredictable. To process the output of such
stored programs, we need to combine the more_results method with the DBI
attributes that contain result set metadata; these were outlined in the earlier section
“Getting Result Set Metadata.” The more_results method returns false if there are no
further result sets, so we can continue to call more_results until all of the result sets
have been processed. Example 15-27 illustrates this technique.

Example 15-26. Fetching two result sets from a stored procedure

    my $sth = $dbh->prepare("CALL sp_rep_report(?)") || die $DBI::errstr;
    $sth->execute($sales_rep_id) || die $DBI::errstr;

    # first result set: employee_id,surname,firstname
    print 'Employee_id' . "\t" . 'Surname' . "\t" . 'Firstname' . "\n";
    while ( my $row = $sth->fetchrow_hashref ) {
        print $row->{employee_id} . "\t" .
              $row->{surname}     . "\t" .
              $row->{firstname}   . "\n";
    }

    $sth->more_results;

    # second result set: customer_id,customer_name
    print 'Customer_id' . "\t" . 'Customer Name' . "\n";
    while ( my $row = $sth->fetchrow_hashref ) {
        print $row->{customer_id} . "\t" . $row->{customer_name} . "\n";
    }
    $sth->finish;

Example 15-27. Dynamically processing multiple result sets

1   sub execute_procedure( ) {
2       my ( $dbh, $stored_procedure_call ) = @_;
3       my $sth = $dbh->prepare($stored_procedure_call)
4         || die $DBI::err . ": " . $DBI::errstr;
5       $sth->execute || die DBI::err . ": " . $DBI::errstr;
6       my $result_set_no = 0;
7
8       do {
9            print "\n", ( '=' x 20 ) . " Result Set # ",
10             ++$result_set_no . ( '=' x 20 ), "\n\n";
11
12           print join( "\t", @{ $sth->{NAME} } ),"\n", ( '-' x 54 ), "\n";



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Stored Programs with DBD::mysql | 357

Let’s step through this code:

Handling Output Variables
A stored procedure may contain OUT or INOUT parameters that can return individual
scalar values from the stored procedure call. The DBI specification provides the
bind_param_inout method for retrieving the values of such parameters. Unfortu-
nately, this method is not implemented in the DBD::mysql driver as we write this—
we’ll keep you posted on the status of this method for MySQL at the book’s web site.

Luckily, we don’t need the bind_param_inout method to retrieve the value of an out-
put parameter. We can pass in a user variable (see Chapter 3) to receive the output
parameter value, and then select the value of that variable in a subsequent SELECT.
Example 15-28 shows an example of this technique as an alternative to using bind_
param_inout.

13
14           while ( my @row = $sth->fetchrow_array( ) ) {
15                print join( "\t", @row ), "\n";
16           }
17       }until ( !$sth->more_results );
18   }

Lines Explanation

1-7 Here we define our subroutine, and have it extract a database connection handle ($dbh) and stored procedure
call from the parameters passed to the procedure. The stored procedure call is prepared and executed (lines 3-5).

8-17 Specify an until loop that will execute until more_results returns false. This loop will execute at least
once.

9 and 10 This statement prints a “divider” line to separate each result set returned by the stored procedure.

12 Print out the column names for the current result set.

14-16 Loop through the rows in the current result set by calling fetchrow_array to retrieve rows until all rows have
been processed.

15 Print the column values for the current row and print each column value.

17 Call more_results to move to the next result set. If more_results returns false, then there are no more
result sets to be retrieved and the loop will terminate.

Example 15-28. Retrieving an output parameter without the bind_param_inout method

    my $sql =
      'call sp_rep_customer_count(1,@customer_count)';   #watch out for the "@"!
    my $sth = $dbh->prepare($sql);
    $sth->execute( ) || die $DBI::errstr;
    $sth->finish;

    # Now get the output variable

Example 15-27. Dynamically processing multiple result sets (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 15: Using MySQL Stored Programs with Perl

Watch out when creating strings that include user variables in Perl. By default, the @
symbol indicates a Perl array and—if the @ appears in a double-quoted string—Perl
will attempt to replace the apparent array with a Perl value. So you should always
include these types of strings in single quotes or escape the user variable reference by
preceding the @ symbol with “\” (e.g., SELECT \@user_var).

Also, remember that if the stored program includes any result sets, you must process
all of these result sets before attempting to retrieve the values of an output parameter.

A Complete Example
In this section we’ll put all of the techniques we have described so far into an example
procedure that implements a simple web-based MySQL server status display. The
example will prompt the user for MySQL server details and return selected status infor-
mation about that server. The information will be provided by a single stored program
that returns multiple result sets and includes both input and output parameters.

The stored procedure is shown in Example 15-29. The stored procedure returns, as
result sets, the output of various SHOW statements and—if a valid database name is
provided as an input parameter—details about objects in that particular database.
The server version is returned as an output parameter.

    my @result = $dbh->selectrow_array('SELECT @customer_count')
      || die $DBI::errstr;
    print "customer_count=", $result[0], "\n";

Example 15-29. Stored procedure that generates an employee report

CREATE PROCEDURE sp_mysql_info
         (in_database VARCHAR(60),
         OUT server_version VARCHAR(100))
    READS SQL DATA
BEGIN

  DECLARE db_count INT;

  SELECT @@version
    INTO server_version;

  SELECT 'Current processes active in server' as table_header;
  SHOW full processlist;

  SELECT 'Databases in server' as table_header;

  SHOW databases;

  SELECT 'Configuration variables set in server' as table_header;
  SHOW global variables;

Example 15-28. Retrieving an output parameter without the bind_param_inout method (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Stored Programs with DBD::mysql | 359

To help us generate a well-formatted report, the stored procedure outputs a header
row for each of the result sets it returns. This header row is issued as a single-row,
single-column result set in which the column name is table_header.

Our Perl example is contained in Example 15-30. This is a Perl CGI script, designed
to be run from the “CGI bin” directory of a web server such as Apache or Microsoft
IIS. The program generates HTML to prompt for user input, connects to MySQL,
runs the stored procedure, and generates the HTML to output the results.

  SELECT 'Status variables in server' as table_header;
  SHOW global status;

   /* See if there is a matching database */
  SELECT COUNT(*)
    INTO db_count
    FROM information_schema.schemata s
   WHERE schema_name=in_database;
  IF (db_count=1) THEN
    SELECT CONCAT('Tables in database ',in_database) as table_header;
    SELECT table_name
      FROM information_schema.tables
     WHERE table_schema=in_database;
  END IF;
END;

Example 15-30. Perl CGI program to display server status information

1   #!/usr/bin/perl
2   use CGI qw(:standard);
3   use HTML::Table;
4   use DBI;
5   use strict;
6   if ( !param( ) ) {
7       my $form_tbl = new HTML::Table( );
8       $form_tbl->addRow( "Hostname:", textfield( 'hostname', 'localhost' ) );
9       $form_tbl->addRow( "Username:", textfield( 'username', 'root' ) );
10      $form_tbl->addRow( "Password:", password_field('password') );
11      $form_tbl->addRow( "Database:", textfield('database') );
12      $form_tbl->addRow( "Port:",     textfield( 'port', 3306 ) );
13      print header, start_html('MySQL Server Status'),
14      h1('Enter MySQL Server details'), start_form, $form_tbl->getTable,
15      submit,end_form, hr;
16   }
17   else {
18       my $hostname = param('hostname');
19       my $username = param('username');
20       my $password = param('password');
21       my $db       = param('database');
22       my $port     = param('port');
23       my @html_body;
24

Example 15-29. Stored procedure that generates an employee report (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 15: Using MySQL Stored Programs with Perl

25       my $dbh = DBI->connect( "DBI:mysql:$db:$hostname:$port",
26            "$username", "$password", { PrintError => 0 } );
27       if (DBI::err) {
28        print header, start_html("Error"), $DBI::errstr;
29    }
30    else {
31        my $sth = $dbh->prepare('call sp_mysql_info(?,@server_version)')
32          || die $DBI::err . ": " . $DBI::errstr;
33        $sth->bind_param( 1, $db );
34        $sth->execute || die DBI::err . ": " . $DBI::errstr;
35        do {
36            if ($sth->{NAME}->[0] eq "table_header" ) {
37                my @row = $sth->fetchrow_array( );
38                push( @html_body, h2( $row[0] ), p );
39            }
40            else {
41                my $table = new HTML::Table( );
42                $table->setBorder(1);
43                foreach my $colno ( 0 .. $sth->{NUM_OF_FIELDS} ) {
44                     $table->setCell( 1, $colno + 1, $sth->{NAME}->[$colno] );
45                     $table->setCellBGColor( 1, $colno + 1, "silver" );
46                }
47                my $rowno = 1;
48                while ( my @row = $sth->fetchrow_array( ) ) {
49                     $rowno++;
50                     foreach my $colno ( 0 .. $#row ) {
51                          $table->setCell( $rowno, $colno + 1, $row[$colno] );
52                     }
53                 }
54                  push( @html_body, $table->getTable );
55             }
56        } until ( !$sth->more_results );
57
58        $sth = $dbh->prepare('SELECT @server_version') || die $DBI::errstr;
59        $sth->execute( ) || die $DBI::errstr;
60        my @row = $sth->fetchrow_array( );
61        my $mysql_version = $row[0];
62
63        print header, start_html('MySQL Server Status'),
64          h1('MySQL Server Status');
65        print "<b>Server: </b>", $hostname, br, "<b>Port: </b>", $port, br,
66          "<b>Database:</b>", $db, br "<b>Version:</b>", $mysql_version, br;
67        for my $html (@html_body) {
68             print $html;
69        }
70        print end_html;
71     }
72  }

Example 15-30. Perl CGI program to display server status information (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Executing Stored Programs with DBD::mysql | 361

Let’s step through this example:

This Perl program first generates the HTML input form, as shown in Figure 15-1.

When the user clicks the Submit button, the CGI Perl script generates output, as
shown in Figure 15-2.

Line(s) Explanation

1-4 Define the path to the Perl executable—necessary for CGI programs— and import the Perl packages we are
going to use. These packages include the Perl CGI module that assists with HTML formatting, the HTML::
Table package to assist us with our HTML tables, and— of course—the DBI package to allow database
connectivity.

6-16 Create the HTML input form as shown in Figure 15-1. Lines 7-12 create an HTML table that contains our input
fields, while lines 13-15 print titles and other HTML. All HTML is generated by the CGI package.

17-72 Executed once the user clicks the Submit button on our HTML form.

18-22 Retrieve the values the user entered on the input form and assign them to Perl variables.

25-29 Using the inputs provided by the user, establish a connection to the MySQL database.

31-34 Prepare the stored procedure call, bind the database name provided by the user as the first parameter, and exe-
cute the stored procedure.

35-56 Execute once for each result set returned by the stored procedure.

36-39 If the result set contains a column called table_header, then the result set is treated as a title heading for a
subsequent result set, and so we generate an H2 heading row.

All HTML output is added to the @html_body array to be printed once we have retrieved all result sets and the
value for the output variable.

41-46 If the result set does not represent a heading, then we initialize an HTML table to display the results. Here we
create the heading row for the HTML table. Lines 43-46 loop through the column names in the result set and
create a corresponding HTML table heading.

48-53 Loop through the rows in the result set and generate HTML table rows. The loop commencing on line 48 iterates
through each row, and the loop commencing on line 50 iterates through each column in each row. Line 51 sets
the value for a specific row/column combination.

54 Add the HTML for our table to the @html_body array.

56 The until clause controls the execution of the loop that commenced on line 35. While the more_results
call returns true, indicating that there are more result sets, the loop will continue to execute.

58-61 Now that all result sets have been processed, we can retrieve the value of the output parameter. When we pre-
pared the stored procedure on line 31, we provided a user variable—'@server_version'—to receive the
value of the output parameter. Now we issue a SELECT statement to get the value of that variable.

63-66 Having retrieved all the result sets and having retrieved the output parameter, we can generate the HTML out-
put. These lines print the heading and server details (including the server version).

67-69 Output the HTML that we have accumulated into the @html_body array during our program execution. This
includes header rows and HTML tables constructed in our main loop.

70 This completes our HTML output and our Perl example.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 15: Using MySQL Stored Programs with Perl

Conclusion
In this chapter we reviewed the Perl DBD::mysql package, which allows Perl to con-
nect to MySQL databases. We also showed how to use DBD::mysql to interact with
MySQL stored procedures. Perl provides all of the mechanisms necessary for stored
procedure processing, although some of these mechanisms were experimental as we
wrote this chapter. We’ll keep you updated with the status of these extensions at this
book’s web site.

Figure 15-1. Input form for our example



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 363

Figure 15-2. Output from our CGI example



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

364

Chapter 16CHAPTER 16

Using MySQL Stored Programs
with Python 16

Python is an open source, object-oriented, cross-platform language commonly used
for system administration, application development, and many other purposes.
Python is often used in very similar types of applications as Perl. However, Python
devotees believe that Python offers many advantages over Perl in that it is natively
object oriented, results in more readable and maintainable code, and enables greater
programmer productivity, especially for large-scale developments. (Perl devotees
have a different opinion, of course!)

The Python language includes a specification for a vendor-independent database-
access API, the Python Database API Specification v2.0. You can find the specifica-
tion for this API at http://www.python.org/peps/pep-0249.html. The MySQL imple-
mentation of this API is called MySQLdb, and is available at http://sourceforge.net/
projects/mysql-python.

In this chapter we will review how to interact with a MySQL database using Python
and the MySQLdb module, and explain how to exploit MySQL stored programs
through this interface.

Installing the MySQLdb Extension
You can obtain the MySQLdb module for Python at http://sourceforge.net/projects/
mysql-python. For Windows users, the MySQLdb module is packaged as a Windows
executable. For Linux or Unix users, the module is packaged as a gzip tar archive; you
should download the archive and, after unpacking it, run the following commands in
the root directory of the archive (as the root user or using the sudo command):

python setup.py build
python setup.py install



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

MySQLdb Basics | 365

MySQLdb Basics
In this section we’ll review the basic methods provided in the Python MySQLdb exten-
sion for establishing a connection to a MySQL server and processing simple SQL
statements. These methods provide a foundation that we can use when working with
stored programs. If you are already familiar with the MySQLdb extension, then you
might like to skip forward to “Using Stored Programs with MySQLdb,” later in the
chapter.

Creating a Connection
Before we can use MySQLdb, we need to import the module. We can then use the
connect() method of the base MySQLdb class to create a connection object. The
connect() method takes five arguments—host, user, passwd, db, and port—which
identify the MySQL server, account, and database to which we intend to connect.
Each of the arguments is optional, with sensible default values (localhost for the
hostname, for instance).

 Example 16-1 illustrates the basic technique.

Usually we will want to retrieve connection details from the command line. Python
includes a powerful and useful command-line option parser that allows us to do this.
Example 16-2 shows how to retrieve MySQL connection details from the command
line and set up a connection.

Example 16-1. Connecting to MySQL from Python

import MySQLdb

conn = MySQLdb.connect (host = "localhost",
                        user = "root",
                        passwd = "secret",
                        db = "mysql",
                        port=3306)

Example 16-2. Getting connection details from the command line

import MySQLdb
from optparse import OptionParser

parser = OptionParser( )
parser.add_option("-u","--username", dest="username",default="root")
parser.add_option("-H","--hostname",default="localhost")
parser.add_option("-p","--password",dest="password",default="")
parser.add_option("-d","--database",dest="database",default="mysql")
parser.add_option("-P","--port",dest="port",type="int",default=3306)
(options, args) = parser.parse_args( )

conn = MySQLdb.connect (host = options.hostname,



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 16: Using MySQL Stored Programs with Python

Another option is to use a defaults file to store your connection details. In
Example 16-3 we read our connection details from the file ./mysqldb, which contains
name-value pairs including the host, user, and password options.

Older versions of the MySQLdb extension did not enable stored procedure result sets
by default. To override the connection flags—and allow stored procedures to return
result sets—you add the CLIENT.MULTI_RESULT flag to your connection options. You
will also need to import the CLIENT identifer from the MySQLdb.constants module.
Example 16-4 illustrates this procedure.

Handling Exceptions
Python employs an exception-handling paradigm for error handling, and this para-
digm is fully supported within the MySQLdb module.

Without exception handling, any errors result in program termination and a trace-
back message being generated. For instance, if our connection details were invalid,
we could expect a message such as that shown in Example 16-5.

                        user = options.username,
                        passwd = options.password,
                        db = options.database,
                        port=options.port)

Example 16-3. Getting connection details from a defaults file

try:
    option_file = ".mysqldb"
    conn = MySQLdb.connect(read_default_file = "./.mysqldb")
    print "Connected"
except MySQLdb.Error, e:
    print "Top level Error %d: %s" % (e.args[0], e.args[1])
    sys.exit (1)

Example 16-4. Enabling procedure result sets in older versions of MySQLdb

import MySQLdb
from MySQLdb.constants import CLIENT

conn = MySQLdb.connect(  other connection_options ,
                    client_flag=CLIENT.MULTI_RESULTS)

Example 16-5.  Traceback error stack for invalid connection

Traceback (most recent call last):
  File "C:\tools\eclipse\workspace\Python1\MySQLexamples1.py", line 16, in ?
    port=options.port)
  File "C:\tools\python\Lib\site-packages\MySQLdb\__init_ _.py", line 66, in Connect
    return Connection(*args, **kwargs)

Example 16-2. Getting connection details from the command line (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

MySQLdb Basics | 367

We can handle the connection failure, or any other MySQL error, by enclosing the
commands in a try/except block and catching any MySQLdb.Error that might be raised.
If an error is raised by any statement within the try block, control will pass to the
except block, which can interrogate the MySQLdb.Error structure to determine the error
code (args[0]) and error message (args[1]). Example 16-6 shows this technique.

Executing a Simple Statement
To execute a SQL statement with MySQLdb, we create a cursor object using the
cursor( ) method of the connection object. We can then use the execute( ) method of
the cursor object to execute a statement. The rowcount property of the cursor object
will reveal the number of rows affected by the SQL statement. Example 16-7 shows
how to execute an UPDATE statement in this manner.

Passing Parameters to a Statement
The execute() method allows for parameters to a statement to be passed as the sec-
ond parameter to the execute() method. This parameter argument consists of a
Python list containing the parameter values. These are substituted into the SQL
statement contained in the execute clause. The standard Python string formats (%s)
indicate the position of the parameters within the SQL.

  File "C:\tools\python\Lib\site-packages\MySQLdb\connections.py", line 134, in _ _init_ _
    super(Connection, self).__init_ _(*args, **kwargs2)
_mysql_exceptions.OperationalError: (1045, "Access denied for user 'root'@'localhost'
(using password: NO)")

Example 16-6. Using an exception handler to catch MySQL errors

try:
    conn = MySQLdb.connect (host = options.hostname,
                            user = options.username,
                            passwd = options.password,
                            db = options.database,
                            port=options.port)

except MySQLdb.Error, e:
    print "Error connecting %d: %s" % (e.args[0], e.args[1])

Example 16-7.  Executing a simple SQL statement

       cursor1=conn.cursor( )
       cursor1.execute("UPDATE employees "+
                       "   SET manager_id=28"+
                       " WHERE manager_id=24")
       print "%d rows updated" % cursor1.rowcount
       cursor1.execute("COMMIT")
       cursor1.close( )

Example 16-5.  Traceback error stack for invalid connection (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 16: Using MySQL Stored Programs with Python

In Example 16-8 we submit a SQL statement in a for loop which iterates through a
few values of the old_manager parameter. For each employee formally reporting to
these managers, we update the employees to report to a new manager.

Retrieving Rows from a Query
The Python DB API gives us a couple of methods for retrieving result sets from a cur-
sor that executes a SELECT statement or another MySQL statement that might return
a result set.

The simplest method—fetchone( )—retrieves a single row from the cursor and
returns that row as a Python list. To retrieve all rows, we create a loop that calls
fetchone() until we encounter a None object. Columns in the row can be accessed by
retrieving individual elements in the list. Example 16-9 shows this technique.

The fetchall( ) method retrieves all rows in a single operation and returns them as a
sequence of sequences (rows of columns).

In Example 16-10 we use fetchall( ) to retrieve all rows into the allrows object,
which is a sequence of sequences. We iterate through the allrows sequence, creating
row objects, each of which comprises a sequence of values for that row. We then
print out each row value.

Example 16-8. Using parameters when executing a SQL statement

       new_manager=24
       cursor1=conn.cursor( )
       for old_manager in [28,87,60]:
              cursor1.execute("UPDATE employees "+
                              "   SET manager_id=%s"+
                              " WHERE manager_id=%s",
                              [new_manager,old_manager])
              print "%d employees updated from manager %d to %d" % \
                     (cursor1.rowcount,old_manager,new_manager)
       cursor1.execute("COMMIT")
       cursor1.close( )

Example 16-9. Using fetchone( ) to retrieve rows from a cursor

       cursor1=conn.cursor( );
       cursor1.execute("SELECT department_id,department_name "+
                       "  FROM departments")
       while True:
              row = cursor1.fetchone ( )
              if not row:
                     break
              print "%6d %-20s" % (row[0], row[1])
       cursor1.close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

MySQLdb Basics | 369

The fetchmany( ) method is a compromise between fetchone( ) and fetchall( ) in
which we retrieve rows in batches. The size of each batch is defined as an argument
to fetchmany( ).

In order to retrieve all rows using fetchmany( ), we need to construct two loops: one
to retrieve each batch, and an inner loop to retrieve each row in the batch. We termi-
nate the outer loop when we have retrieved an empty set from fetchmany( ).

Example 16-11 shows fetchmany( ) in action.

Let’s look at this code line by line:

In previous examples, we have retrieved rows as lists of columns. MySQLdb also sup-
ports retrieving rows as dictionaries in which each element is indexed by column
name rather than by column offset. To retrieve rows as dictionaries, we specify the
MySQLdb.cursors.DictCursor type as an argument to the con_cursor() method, as
shown in Example 16-12.

Example 16-10. Using fetchall( ) to retrieve rows

       cursor1=conn.cursor( );
       cursor1.execute("SELECT department_id,department_name "+
                       "  FROM departments")

allrows=cursor1.fetchall( )
       for row in allrows:
              print "%6d %-20s" % (row[0],row[1])
       cursor1.close( )

Example 16-11.  Using fetchmany( ) to retrieve rows

1    cursor1=conn.cursor( )
2    cursor1.execute("SELECT department_id,department_name "+ \
3                    "  FROM departments ORDER BY department_id")
4    while True:
5        somerows=cursor1.fetchmany(10)
6        if not somerows :
7            break
8        for row in somerows:
9            print "%6d %-20s" % (row[0],row[1])
10    cursor1.close( )

Line(s) Explanation

4 This is the outer loop in which we loop over batches returned by fetchmany( ). The loop will continue
indefinitely, so we need to end it explicitly with a break statement.

5 Call fetchmany(10) to fetch a batch of 10 rows.

6 and 7 If fetchmany() returns an empty sequence, we break out of the loop we constructed on line 4, having
retrieved all of the rows from the result set.

8 and 9 Iterate through each row in the batch of rows returned by fetchmany( ) and return the row value.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 16: Using MySQL Stored Programs with Python

It is not necessary to use one of the fetch family of methods, at least in recent ver-
sions of Python (2.2 and later). Instead, you can access the rows directly from the
cursor following a successful execute(). In Example 16-13 we retrieve the column
values from the cursor as a sequence.

We can also retrieve the row directly into appropriately named variables, as shown in
Example 16-14.

Managing Transactions
The Python DB API specifies methods to the connection class that can manipulate
the autocommit setting and explicitly issue commits and rollbacks. The methods are:

autocommit({True|False})
Turns autocommit on (True) or off (False). This is equivalent to issuing a SET
AUTOCOMMIT= statement.

commit( )
Commit the active transaction in the connection.

rollback( )
Roll back any active transaction in the connection.

Python exception handling is well suited to handling transaction control logic using a
try/except/else structure:

Example 16-12. Using DictCursor to retrieve rows as Python dictionaries

       cursor1 = conn.cursor (MySQLdb.cursors.DictCursor)
       cursor1.execute ("SELECT department_id,department_name "+
                        "  FROM departments")
       result_set = cursor1.fetchall ( )
       for row in result_set:
              print "%s, %s" % (row["department_id"], row["department_name"])

Example 16-13. . Accessing column values directly from a cursor as a sequence

    cursor1=conn.cursor( );
    cursor1.execute("SELECT department_id,department_name "+
                    "  FROM departments")
    for row in cursor1:
        print "%6d %-20s" % (row[0], row[1])
    cursor1.close( )

Example 16-14.  Accessing column values directly from a cursor, using named variables

    cursor1=conn.cursor( );
    cursor1.execute("SELECT department_id,department_name "+
                    "  FROM departments")
    for department_id, department_name in cursor1:
        print "%6d %-20s" % (department_id, department_name)
    cursor1.close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

MySQLdb Basics | 371

try
This block contains the statements that constitute the transaction.

except
This block fires if any errors are encountered. It issues a rollback and notifies the
user or calling application that the transaction has failed.

else
This block executes if no exceptions have been raised. It is responsible for com-
mitting the transaction and advising of successful completion.

Example 16-15 illustrates the use of the try/except/else structure and the connec-
tion transaction methods to manage transaction logic.

Getting Metadata
If we need to retrieve information about the result set that will be returned by a cur-
sor, we can use the description property of the cursor class. The description prop-
erty consists of a sequence of sequences. The primary sequence consists of one
sequence for each column in the result set. The sequence for each column consists of
the following items:

• The name of the column

• A code representing the data type of the column

• The “display size” of the column, which can be used to allocate space in output
formats

• The “internal” size of the column

• The precision (for numeric columns)

• The scale (for numeric columns)

Example 16-15. Transaction logic in MySQLdb

try:
        conn.autocommit(False)
        csr1.execute("UPDATE account_balance "+
                     "  SET balance=balance-%s "+
                     "WHERE account_id=%s",
                     [tfer_amount,from_account])
        csr1.execute("UPDATE account_balance "+
                     "  SET balance=balance+%s "+
                     "WHERE account_id=%s",
                     [tfer_amount,to_account])

except MySQLdb.Error, e:
        conn.rollback( )
        print "Transaction aborted:  %d: %s" % (e.args[0], e.args[1])

else:
       conn.commit( )
       print "Transaction succeeded"



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 16: Using MySQL Stored Programs with Python

You will most often want to access the first and third elements in the sequence so
that you can format titles and display lengths for the output of a query. For instance,
Example 16-16 uses cursor.description to generate titles for the output of a query.

Dynamically Processing a Result Set
Using cursor.description, we can handle the output of a query even if we don’t
know what the SQL will be when we are writing our Python code (such as whether
the SQL was dynamically generated or provided by the user).

In Example 16-17, adapted from the Python Cookbook by David Ascher, Alex Mar-
telli, and Anna Ravenscroft (O’Reilly, 2005), we define a function that will accept
any SQL statement and “pretty print” the output.

Let us step through this example:

Example 16-16. Retrieving result set metadata

       cursor1=conn.cursor( )
       cursor1.execute("SELECT *"+
                       "  FROM employees")
       print "%-20s %8s" % ("Name","Length")
       print "-----------------------------"
       for col_desc in cursor1.description:
              print "%-20s %8d " % \
                     (col_desc[0],col_desc[3])

Example 16-17. Dynamically processing a result set

1   def dynamic_sql(sql):
2          names=[]
3          lengths=[]
4          dividers=[]
5          cursor1=conn.cursor( )
6          cursor1.execute(sql)
7          for col_desc in  cursor1.description:
8                 col_name=col_desc[0]
9                 col_length=col_desc[2]
10                col_length=max(col_length,len(col_name))
11                names.append(col_name)
12                lengths.append(col_length)
13                dividers.append('-' * col_length)
14         format = " ".join(["%%-%ss" % col_len for col_len in lengths])
15         print format % tuple(names)
16         print format % tuple(dividers)
17         rows=cursor1.fetchall( )
18         for row in rows:
19                print format % tuple(row)
20         cursor1.close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs with MySQLdb | 373

If we submit a SQL statement to this function, as shown below:

dynamic_sql("SELECT * FROM departments")

the function generates a nicely formatted result set:

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION
------------- --------------- ---------- ---------------
1             DUPLIN          33         MORENO VALLEY
2             MADISON         19         BEAVER
3             MCHENRY         5          OKEECHOBEE
4             CHARITON        25         TULLYTOWN
5             SUMMERS         12         OLD CHURCH
6             LINCOLN         20         SWENGEL
7             CHAMPAIGN       37         AMF GREENSBORO
8             WILKES          23         CUSHING
9             CRAVEN          32         TAHOE PARADISE
10            COTTONWOOD      4          WICHITA
11            TAZEWELL        35         KLAWOCK

Using Stored Programs with MySQLdb
The techniques for calling stored programs with MySQLdb differ only slightly from
those for using traditional SQL statements. That is, we create a cursor, execute the
SQL to call the stored program, and iterate through result sets. The two key differ-
ences are that we must potentially deal with multiple result sets and that we may
have to retrieve output parameters from the stored program call.

Line(s) Explanation

1 Define the function and its input parameter: a string containing the SQL to be executed.

2-4 These are the empty lists that we will use to store column names, lengths, and divider strings (for our column
underlines).

5-6 Create and execute a cursor with the SQL provided as a parameter to the function.

7-13 Loop through the elements (columns) in cursor1.description. Lines 8-9 retrieve the column name and
display length.

10 Set the column length to be equal either to the display length or to the length of the column name (so that we
have room for our titles if the column name is longer than the column data).

11 and 12 Store the column names and lengths in the appropriate list.

13 Append a series of dashes equal to the column length. These will form the column dividers for our output.

14 Create a format string that will be used to format column names, dividers, and column data. The format strings
are simply string formats of the appropriate lengths for each column as determined in line 10.

15 and 16 Print the column headings for our formatted output.

17-19 Issue a fetchall( ) to retrieve all rows from the query and then print each row according to the format we
constructed in line 14.

20 All done! So we close the cursor.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 16: Using MySQL Stored Programs with Python

If you read the Python DB API specification, you might notice that the specification
includes a cursor method for directly calling stored programs—the callproc cursor
method. The callproc method was not implemented in MySQLdb as we went to press,
although the maintainer of MySQLdb, Andy Dustman, is working on an implementa-
tion that will likely be available by the time you read this. Check out the book’s web
site (see the Preface) for an update. This method is not implemented in MySQLdb (ver-
sion 1.2, at least). Luckily, everything you need to call stored programs is available
through other methods, so you don’t need to wait for callproc to use stored pro-
grams with Python.

Calling Simple Stored Programs
The procedure for calling a simple stored program—one that returns no result sets
and takes no parameters—is the same as for executing any non-SELECT statement.
We create a cursor and execute the SQL text, as shown in Example 16-18.

If the stored procedure takes input parameters, we can supply them using the sec-
ond argument to the execute( ) method. In Example 16-19, we define a Python func-
tion that accepts input parameters and applies them to the sp_apply_discount
procedure.

Retrieving a Single Stored Program Result Set
Retrieving a single result set from a stored program is exactly the same as retrieving a
result set from a SELECT statement. Example 16-20 shows how to retrieve a single
result set from a stored procedure.

Example 16-18. Executing a simple stored procedure

       cursor1=conn.cursor( )
       cursor1.execute("call simple_stored_proc( )")
       cursor1.close( )

Example 16-19. Supplying input parameters to a stored procedure

def apply_discount(p1,p2):

       cursor1=conn.cursor( )
       cursor1.execute("call sp_apply_discount(%s,%s)",(p1,p2))
       cursor1.close( )

Example 16-20. Retrieving a single result set from a stored procedure

       cursor1=conn.cursor(MySQLdb.cursors.DictCursor)
       cursor1.execute("CALL sp_emps_in_dept(%s)",(1))
       for row in cursor1:
           print "%d %s %s" % \
               (row['employee_id'],row['surname'],row['firstname'])
       cursor1.close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs with MySQLdb | 375

If you receive a 1312 error at this point (PROCEDURE X can't return a result set in the
given context), then it is an indication that you need to specify the CLIENT.MULTI_
RESULTS flag in your connection, as outlined in “Creating a Connection” earlier in
this chapter.

Retrieving Multiple Stored Program Result Sets
Unlike other SQL statements, stored programs can return multiple result sets. To
access more than one result set, we use the nextset( ) method of the cursor object to
move to the next result set.

For instance, suppose that we have a stored procedure that returns two result sets, as
shown in Example 16-21.

To retrieve the two result sets, we fetch the first result set, call nextset( ), then
retrieve the second result set. Example 16-22 shows this technique.

Example 16-21. Stored procedure that returns two result sets

CREATE PROCEDURE sp_rep_report(in_sales_rep_id int)
    READS SQL DATA
BEGIN

     SELECT employee_id,surname,firstname
       FROM employees
      WHERE employee_id=in_sales_rep_id;

     SELECT customer_id,customer_name
       FROM customers
      WHERE sales_rep_id=in_sales_rep_id;

END;

Example 16-22. Retrieving two results from a stored procedure

       cursor=conn.cursor(MySQLdb.cursors.DictCursor)
       cursor.execute("CALL sp_rep_report(%s)",(rep_id))
       print "Employee details:"
       for row in cursor:
           print "%d %s %s" % (row["employee_id"],
                               row["surname"],
                               row["firstname"])
       cursor.nextset( )
       print "Employees customers:"
       for row in cursor:
           print "%d %s" % (row["customer_id"],
                            row["customer_name"])
       cursor.close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 16: Using MySQL Stored Programs with Python

Retrieving Dynamic Result Sets
It’s not at all uncommon for stored programs to return multiple result sets and for
the result set structures to be unpredictable. To process the output of such a stored
program, we need to combine the nextset( ) method with the cursor.description
property described in the “Getting Metadata” section earlier in this chapter. The
nextset( ) method returns a None object if there are no further result sets, so we can
keep calling nextset( ) until all of the result sets have been processed. Example 16-23
illustrates this technique.

Example 16-23 implements a Python function that will accept a stored procedure
name (together with any arguments to the stored procedure), execute the stored pro-
cedure, and retrieve any result sets that might be returned by the stored procedure.

Let’s step through this code:

Example 16-23. Retrieving dynamic result sets from a stored procedure

   1 def call_multi_rs(sp):
   2    rs_id=0;
   3    cursor = conn.cursor( )
   4    cursor.execute ("CALL "+sp)
   5    while True:
   6       data = cursor.fetchall( )
   7       if cursor.description:  #Make sure there is a result
   8          rs_id+=1
   9          print "\nResult set %3d" % (rs_id)
   10          print "--------------\n"
   11          names = []
   12          lengths = []
   13          rules = []
   14          for field_description in cursor.description:
   15             field_name = field_description[0]
   16             names.append(field_name)
   17             field_length = field_description[2] or 12
   18             field_length = max(field_length, len(field_name))
   19             lengths.append(field_length)
   20             rules.append('-' * field_length)
   21             format = " ".join(["%%-%ss" % l for l in lengths])
   22             result = [ format % tuple(names), format % tuple(rules) ]
   23          for row in data:
   24             result.append(format % tuple(row))
   25          print "\n".join(result)
   26       if cursor.nextset( )==None:
   27          break
   28    print "All rowsets returned"
   29    cursor.close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs with MySQLdb | 377

Example 16-24 shows a stored procedure with “dynamic” result sets. The number
and structure of the result sets to be returned by this stored procedure will vary
depending on the status of the employee_id provided to the procedure.

Line(s) Explanation

2 rs_id is a numeric variable that will keep track of our result set sequence.

3-4 Create a cursor and execute the stored procedure call. The sp variable contains the stored procedure text and
is passed in as an argument to the Python function.

5 Commence the loop that will be used to loop over all of the result sets that the stored procedure call might
return.

6 Fetch the result set from the cursor.

7 Ensure that there is a result set from the stored procedure call by checking the value of cursor.
description. This is a workaround to a minor bug in the MySQLdb implementation (version 1.2) in
which nextset( ) returns True even if there is no next result set, and only returns False once an
attempt has been made to retrieve that null result. This bug is expected to be resolved in an upcoming ver-
sion of MySQLdb.

11-22 Determine the structure of the result set and create titles and formats to nicely format the output. This is the
same formatting logic we introduced in Example 16-17.

23-25 Print out the result set.

26 Check to see if there is another result set. If there is not, nextset( ) returns None and we issue a break
to exit from the loop. If there is another result set, we continue the loop and repeat the process starting at
line 6.

28 and 29 Acknowledge the end of all result sets and close the cursor.

Example 16-24. Stored procedure with dynamic result sets

CREATE PROCEDURE sp_employee_report
    (in_emp_id INTEGER,
     OUT out_customer_count INTEGER)
BEGIN

  SELECT employee_id,surname,firstname,date_of_birth
    FROM employees
   WHERE employee_id=in_emp_id;

  SELECT department_id,department_name
    FROM departments
   WHERE department_id=
         (select department_id
            FROM employees
           WHERE employee_id=in_emp_id);

  SELECT COUNT(*)
    INTO out_customer_count
    FROM customers
   WHERE sales_rep_id=in_emp_id;

  IF out_customer_count=0 THEN
    SELECT 'Employee is not a current sales rep';



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 16: Using MySQL Stored Programs with Python

We can use the Python function shown in Example 16-23 to process the output of
this stored procedure. We would invoke it with the following command:

call_multi_rs("sp_employee_report(1,@out_customer_count)")

We pass in 1 to produce a report for employee_id=1; the @out_customer_count vari-
able is included to receive the value of the stored procedure’s output parameter (see
the next section, “Obtaining Output Parameters”). Partial output from this proce-
dure is shown in Example 16-25.

  ELSE
    SELECT customer_name,customer_status
      FROM customers
     WHERE sales_rep_id=in_emp_id;

    SELECT customer_name,SUM(sale_value) as "TOTAL SALES",
           MAX(sale_value) as "MAX SALE"
      FROM sales JOIN customers USING (customer_id)
     WHERE customers.sales_rep_id=in_emp_id
     GROUP BY customer_name;
  END IF;
END

Example 16-25. Output from a dynamic stored procedure call

Result set   1
--------------

employee_id surname firstname date_of_birth
----------- ------- --------- -------------------
1           FERRIS  LUCAS     1960-06-21 00:00:00

Result set   2
--------------

department_id department_name
------------- ---------------
14            KING

Result set   3
--------------

customer_name                   customer_status
------------------------------- ---------------
GRAPHIX ZONE INC DE             None
WASHINGTON M AAAIswAABAAANSjAAS None

Example 16-24. Stored procedure with dynamic result sets (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs with MySQLdb | 379

Obtaining Output Parameters
As you know, stored procedures can include OUT or INOUT parameters, which can pass
data back to the calling program. The MySQLdb extension does not provide a method
to natively retrieve output parameters, but you can access their values through a sim-
ple workaround.

Earlier, in Example 16-24, we showed a stored procedure that returned multiple
result sets, but also included an output parameter. We supplied a MySQL user vari-
able (prefixed by the @ symbol) to receive the value of the parameter. All we need to
do now, in Example 16-26, is to retrieve the value of that user variable using a sim-
ple SELECT.

What about INOUT parameters? This is a little trickier, although luckily we don’t
think you’ll use INOUT parameters very much (it’s usually better practice to use sepa-
rate IN and OUT parameters). Consider the stored procedure in Example 16-27.

To handle an INOUT parameter, we first issue a SQL statement to place the value into
a user variable, execute the stored procedure, and then retrieve the value of that user
parameter. Code that wraps the stored procedure call in a Python function is shown
in Example 16-28.

Example 16-26. Retrieving the value of an output parameter

       call_multi_rs("sp_employee_report(1,@out_customer_count)")
       cursor2=conn.cursor( )
       cursor2.execute("SELECT @out_customer_count")
       row=cursor2.fetchone( )
       print "Customer count=%s" % row[0]
       cursor2.close( )

Example 16-27. Stored procedure with an INOUT parameter

CREATE PROCEDURE randomizer(INOUT a_number FLOAT)
  NOT DETERMINISTIC NO SQL
  SET a_number=RAND( )*a_number;

Example 16-28. Handling an INOUT stored procedure parameter

def randomizer(python_number):
   cursor1=conn.cursor( )
   cursor1.execute("SET @inoutvar=%s",(python_number))
   cursor1.execute("CALL randomizer(@inoutvar)")
   cursor1.execute("SELECT @inoutvar")
   row=cursor1.fetchone( )
   cursor1.close( )
   return(row[0])



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 16: Using MySQL Stored Programs with Python

A Complete Example
In this section we will present a complete Python program that uses a stored proce-
dure to report on the status and configuration of a MySQL server through a web
interface.

The stored procedure we will use is shown in Example 16-29. It takes as an
(optional) argument a database name, and reports on the objects within that data-
base as well as a list of users currently connected to the server, server status vari-
ables, server configuration variables, and a list of databases contained within the
server. It contains one OUT parameter that reports the server version.

Example 16-29. The stored procedure for our complete Python example

CREATE PROCEDURE sp_mysql_info
    (in_database VARCHAR(60),
     OUT server_version VARCHAR(100))
    READS SQL DATA
BEGIN

  DECLARE db_count INT;

  SELECT @@version
    INTO server_version;

  SELECT 'Current processes active in server' as table_header;
  SHOW full processlist;

  SELECT 'Databases in server' as table_header;

  SHOW databases;

  SELECT 'Configuration variables set in server' as table_header;
  SHOW global variables;
  SELECT 'Status variables in server' as table_header;
  SHOW global status;

  SELECT COUNT(*)
    INTO db_count
    FROM information_schema.schemata s
   WHERE schema_name=in_database;
  IF (db_count=1) THEN
    SELECT CONCAT('Tables in database ',in_database) as table_header;
    SELECT table_name
      FROM information_schema.tables
     WHERE table_schema=in_database;
  END IF;

END$$



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A Complete Example | 381

The number and type of result sets is unpredictable, since a list of database objects is
generated only if a database matching the stored procedure’s first parameter is found
on the server.

Prior to every major result set, the stored procedure generates a one-row “title” as a
result set. This  result set is identified by the column title table_header.

In this example we are going to use the Apache mod_python module to run Python
code from within an Apache web page. mod_python allows the Apache web server to
run Python code without having to execute an external Python program. You can
find out more about downloading and configuring mod_python at http://www.
modpython.org.

The HTML part of our web page is shown in Example 16-30. It displays an HTML
form that asks for MySQL server connection details, including a database name.

The most important part of this HTML is the action="form.py/call_sp" portion of
the FORM tag. This tells Apache that when the form is submitted, the Python program
form.py should be executed with the function call_sp() as the entry point. All of the
input values of the form are passed to the Python function as arguments.

Figure 16-1 shows the data entry form created by this HTML.

Example 16-31 shows the Python code that is invoked when the user clicks the Sub-
mit Query button.

Example 16-30. HTML form for mod_python example

<html>
<head>
<title>MySQL Server Statistics</title>
</head>
<h1>Enter MySQL Server Details</h1><b>
    Enter your database connection details below:
  <p>
  <form action="form.py/call_sp" method="POST">
    <table>

      <tr><td>Host:</td>
          <td> <input type="text" name="mhost" value="localhost"></td></tr>
      <tr><td>Port: </td>
          <td><input type="text" name="mport" value="3306"></td></tr>
      <tr><td>Username: </td>
          <td> <input type="text" name="musername" value="root"></td></tr>
      <tr><td>Password: </td>
          <td> <input type="password"  name="mpassword"></td></tr
      <tr><td>Database: </td>
          <td> <input type="test" name="mdatabase" value="prod"></td></tr>
    </table>
     <input type="submit">
  </form>
</html>



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 16: Using MySQL Stored Programs with Python

Figure 16-1. mod_python input form

Example 16-31. Python code for our mod_python example

   1    import MySQLdb
   2
   3    def call_sp(mhost,musername,mpassword,mdatabase,mport):
   4        html_tables=[]
   5        html_out=[]
   6
   7        try:
   8            conn = MySQLdb.connect (host = mhost,
   9                                user = musername,
   10                               passwd =mpassword,
   11                               db = mdatabase,
   12                               port=int(mport))
   13
   14           csr1=conn.cursor( );
   15           csr1.execute("call sp_mysql_info(%s,@server_version)",(mdatabase))
   16           while True:
   17               rows=csr1.fetchall( )
   18               col_desc=csr1.description
   19               if col_desc<>None:  #Make sure there is a result
   20                  if (col_desc[0][0] == "table_header"):
   21                      #This is a special result set that contains a header only



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

A Complete Example | 383

There are two main functions in this Python code:

call_sp()
Invokes the stored procedure to generate the MySQL server status report. This is
the routine referred to in the action clause of the <form> tag within the calling
HTML.

html_table()
A utility function that creates an HTML table from a MySQLdb cursor result set.

   22                     html="<h2>%s</h2>" % rows[0][0]
   23                 else:
   24                     html=html_table(col_desc,rows)
   25                 html_tables.append(html)
   26              if csr1.nextset( )==None:
   27                 break
   28          #Get stored procedure output parameter
   29          csr1.execute("SELECT @server_version")
   30          row=csr1.fetchone( )
   31          mysql_version=row[0]
   32          csr1.close( )
   33
   34          #Build up the html output
   35          html_out.append("<html><head><title>"+
   36                          "MySQL Server status and statistics"+
   37                          "</title></head>"+
   38                          "<h1>MySQL Server status and statistics</h1>")
   39          html_out.append("<b>Host:</b> %s<br>" % mhost)
   40          html_out.append("<b>Port:</b> %s<br>" % mport)
   41          html_out.append("<b>Version:</b> %s<br>" % mysql_version)
   42          html_out.append("".join(html_tables))
   43
   44          html_out.append("</html>")
   45          return "".join(html_out)
   46
   47      except MySQLdb.Error, e:
   48          return "MySQL Error %d: %s" % (e.args[0], e.args[1])
   49
   50    def html_table(col_desc,rows):
   51        # Create HTML table out of cursor.description and cursor.fetchall
   52        html_out=[]
   53        html_out.append('<table border=1><tr>')
   54        for col in col_desc:
   55            html_out.append('<td><b>%s</b></td>' % col[0])
   56        html_out.append('</tr>')
   57        for row in rows:
   58            html_out.append('<tr>')
   59            for col in row:
   60                html_out.append('<td>%s</td>' % col)
   61            html_out.append('</tr>')
   62        html_out.append('</table>')
   63        s='\n'.join(html_out)
   64        return s

Example 16-31. Python code for our mod_python example (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 16: Using MySQL Stored Programs with Python

Let’s start with the call_sp() routine:

The second function—html_table( )—generates an HTML table when passed the
results of the cursor.description and cursor.fetchall output. We call this in our
main program on line 24 when we encounter a result set that we need to format as a
HTML table:

Figure 16-2 shows the output from our mod_python example.

Line(s) Explanation

8-12 Call the MySQLdb.connect( ) method to create the MySQL connection using the parameters specified
on the HTML form.

14-15 Create and execute a cursor that invokes the stored procedure.

16 The WHILE loop that commences on this line will iterate through all of the result sets in the stored proce-
dure. The loop ends on line 27.

17-18 On line 17 we use fetchall( ) to retrieve all the rows in the current result set. On line 18 we retrieve the
column details for that result set.

20-22 If the title for the first column in the result set is table_header, then this result set contains a heading
for a subsequent result set. In that case, we generate an HTML header consisting of the single row and col-
umn returned within the result set.

23-24 Otherwise, create an HTML table to represent the result set. This is done using the other function in the
file—html_table( )—which we will discuss shortly.

26-27 Request the next result set. If there are no further result sets, we issue break to terminate the loop that
commenced on line 16. Otherwise, the loop repeats and we process the next result set.

29-32 Retrieve the value of the OUT parameter.

On line 29 we issue a SELECT to retrieve the user variable that contains the stored procedure OUT variable.
When we called the stored procedure on line 15, we specified @server_version for the second (OUT)
parameter. Now we issue a SELECT to retrieve the value of that parameter.

35-45 So far, we have stored HTML that we want to generate into an array called html_tables. Now we con-
struct the final HTML to return to the calling form.

Lines 35-41 add the initial HTML output into an array html_out. In line 42 we add the HTML generated
from the result sets to that HTML. Finally, we return all of the HTML to the calling form on line 45.

Line(s) Explanation

50 The routine takes two arguments. The first (col_desc) is a columns.description structure as returned
by the description() method of the cursor object. The second is a results structure as would be
returned by the fetchall() method.

54-55 Loop through the rows in the col_desc parameter—each row representing a column in the result set—
and generate HTML to create a title row for our HTML table.

57-60 Generate the bulk of the HTML table. The loop on line 57 iterates through the rows in the result set. The loop on
line 59 iterates through the columns in a specific row. On line 60 we generate the HTML for a specific value (for
a particular column in a particular row).

63-64 Consolidate all of the HTML fragments—stored in the html_out array— into a single string, which is
returned to the calling function.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 385

Conclusion
The Python MySQLdb extension contains all of the tools you need to interface with
MySQL and MySQL stored procedures. Python is a pleasure to program, and it is a
very viable alternative to other dynamic scripting languages such as PHP and Perl.
Using mod_python (or CGI) allows us to easily implement dynamic web content in
Python using MySQL as the backend.

Figure 16-2. Output from our mod_python example



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

386

Chapter 17CHAPTER 17

Using MySQL Stored Programs
with .NET 17

ADO.NET is Microsoft’s database-independent, language-neutral data access inter-
face included within the .NET framework. ADO.NET allows .NET languages such
as C# and VB.NET to communicate with various data sources, primarily relational
databases such as SQL Server, Oracle, and, of course, MySQL. MySQL provides an
ADO-compliant driver—Connector/Net—that allows us to work with MySQL data-
bases using the ADO.NET interfaces.

First, we’ll start with a quick review of how we can use ADO.NET to process stan-
dard SQL statements against a MySQL database. Next, we’ll examine the ADO.NET
syntax for invoking stored programs, including handling input and output parame-
ters and processing multiple result sets. Finally, we’ll show how we can use a MySQL
stored procedure as the basis for an ASP.NET web application.

Review of ADO.NET Basics
Before looking at how to invoke stored programs using ADO.NET, let’s review how
we perform operations in ADO.NET involving simple SQL statements. These opera-
tions form the foundation of stored program interactions. If you are already familiar
with using ADO.NET with MySQL, you might want to skip forward to “Using
Stored Programs in ADO.NET,” later in this chapter.

Installing the Connector/Net Driver and Configuring Your IDE
To connect to MySQL from ADO.NET, we first need to download and install the
Connector/Net provider from MySQL. We can download the Connector/Net driver
from the MySQL web site at http://dev.mysql.com/downloads/connector/net/.

Once we have installed the Connector/Net driver, we are ready to write .NET pro-
grams to connect to MySQL. However, we must add a reference to the Connector/
Net driver in our .NET application.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 387

To do this in Visual Studio, select Project ➝ Add Reference from the main menu, then
select the Browse tab. We find the MySQL.Data.dll file on our system, usually located
in a directory such as C:\Program Files\MySQL\MySQL Connector Net <x.x.x>\bin\.
NET <y.y>; where "x.x.x" corresponds to the version of the Connector/Net driver
(currently 1.0.7) and "y.y" corresponds to the version of .NET that we are using (usu-
ally 1.1 or 2.0). Figure 17-1 shows how we can configure Visual C# Visual Studio
Express Edition to use the Connector/Net driver.

Registering the Driver and Connecting to MySQL
To use the MySQL driver in your program code, we will normally first import the
MySQL.Data.MySqlClient namespace so we don’t have to fully qualify every reference
to Connector/Net classes. In VB.NET, this means we would include Imports MySql.
Data.MySqlClient as the first line of our VB.NET module. In C#, we would include a

Figure 17-1. Adding a reference to the Connector/Net driver in Visual C# Express



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 17: Using MySQL Stored Programs with .NET

using MySql.Data.MySqlClient; statement within the Using directives region, as
shown in Figure 17-2.

To establish a connection to MySQL we need to create a MySQLConnection object. The
Constructer method for the MySQLConnection object accepts a string that defines the
server, database, and connection credentials. This string consists of a set of name-
value pairs separated by semicolons. For instance, the following string defines a con-
nection to a server on the localhost at port 3306 and connects to database prod using
the account fred and the password freddy:

Server=localhost;Port=3306;Database=prod;Username=fred;Password=freddy

Table 17-1 lists the most important keywords that you can provide for the
MySQLConnection object; you can find a complete list in the Connector/Net documen-
tation that ships with the driver.

Figure 17-2. Adding the “using” clause in Visual C# Express



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 389

It would be unusual—and probably bad practice—to hardcode the MySQLConnection
details in your program. More often, you will retrieve the keywords from command-
line arguments or from a login dialog box.

Once the MySQLConnection object is initialized, we can establish the connection using
the open( ) method. If the connection fails, a MySQLException will be thrown, so we
need to enclose this call in a try block if we don’t want to throw a non-handled
exception (see “Handling Errors,” later in this chapter). Example 17-1 shows us con-
necting to MySQL from within a VB.NET program, with the connection details spec-
ified as command-line arguments.

Example 17-2 implements the same logic in C#.

Table 17-1. Some of the keyword values for the MySQLConnection

Keyword Description

Host Name of the host on which the MySQL server is located. This could be an IP address, hostname, or
localhost.

Port Port number upon which the MySQL server is listening.

Database Name of the database for initial connection.

Username MySQL username to use for the connection.

Password Password for the MySQL account.

Example 17-1. Connecting to MySQL in VB.NET

   Sub Main(ByVal CmdArgs( ) As String)

        Dim myHost As String = CmdArgs(0)
        Dim myUserId As String = CmdArgs(1)
        Dim myPassword As String = CmdArgs(2)
        Dim myDatabase As String = CmdArgs(3)

        Dim myConnectionString As String = "Database=" & myDatabase & _
            " ;Data Source=" & myHost & _
            ";User Id=" & myUserId & ";Password=" & myPassword

        Dim myConnection As New MySqlConnection(myConnectionString)

        Try
            myConnection.Open( )
            Console.WriteLine("Connection succeeded")
        Catch MyException As MySqlException
            Console.WriteLine("Connection error: MySQL code: " _
               & MyException.Number & " " & MyException.Message)
        End Try



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 17: Using MySQL Stored Programs with .NET

Issuing a Non-SELECT Statement
It is fairly straightforward to execute a non-SELECT statement—such as UPDATE,
INSERT, DELETE, or SET—in .NET. First, we create a new MySQLCommand object, passing
it the SQL statement to be executed and the name of the active connection (these can
also be specified using the properties of the MySqlCommand object at a later time).

The ExecuteNonQuery() method of the MySqlCommand executes a statement that returns
no result sets. It returns the number of rows affected by the statement. Example 17-3
shows an example of this in C#.

Example 17-4 shows the same logic in VB.NET.

Example 17-2. Connecting to MySQL in C#

static void Main(string[] args)
    {
        String myHost=args[0];
        String myUserId=args[1];
        String myPassword=args[2];
        String myDatabase=args[3];

        String myConnectionString = "Database=" + myDatabase +
               " ;Host=" + myHost +
               ";UserName=" + myUserId  + ";Password=" + myPassword;

        MySqlConnection myConnection;
        myConnection = new MySqlConnection( );
        myConnection.ConnectionString = myConnectionString;

        try  {
             myConnection.Open( );
             Console.WriteLine("Connection succeded");
        }
        catch (MySqlException MyException)            {
             Console.WriteLine("Connection error: MySQL code: "+MyException.Number
                               +" "+ MyException.Message);
            }

Example 17-3. Executing a non-SELECT SQL statement in C#

 MySqlCommand NonSelect = new MySqlCommand(
           "DELETE FROM employees WHERE employee_id=2001", myConnection);
 int RowsAffected = NonSelect.ExecuteNonQuery( );

Example 17-4. Executing a non-SELECT statement in VB.NET

Dim NonSelect As MySqlCommand
NonSelect = New MySqlCommand( _
        "DELETE FROM employees WHERE employee_id=2001", myConnection)
Dim RowsAffected As Int16
RowsAffected = NonSelect.ExecuteNonQuery( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 391

Reusing a Statement Object
We don’t have to create a new statement object for every SQL statement we execute.
By changing the CommandText property of the MySqlCommand object, we associate the
object with a new SQL statement text, which we can submit to the database by call-
ing the ExecuteNonQuery() method. Example 17-5 provides an example of this tech-
nique in C#.

Using Parameters
A lot of the time we execute the same logical SQL statement with different values for
the WHERE clause or some other variable part of the statement. It might seem simple to
do this by manipulating the CommandText and “pasting it” in the variable portions. For
instance, in Example 17-6 we generate a new unique SQL statement to update
employees’ salaries based on some values in arrays.

While this method will work—and is, in fact, a common technique—it is neither
efficient nor safe. In particular, this style of coding cannot take advantage of MySQL
server-side prepared statements, and it is vulnerable to SQL injection (a form of
attack in which SQL syntax is inserted into parameters, leading to unintended SQL
syntax being executed).

A far better way of performing this kind of iterative processing is to use the
Parameters collection of the MySqlCommand object. Parameters are prefixed in the SQL
text with the "?" character. You then use the Parameter methods of the MySqlCommand
object to define the parameters and set their values, as shown in Example 17-7.

Example 17-5. Reusing a MySqlCommand object in C#

MySqlCommand NonSelect = new MySqlCommand("set autocommit=0",myConnection);
int RowsAffected=NonSelect.ExecuteNonQuery( );

NonSelect.CommandText = "update departments "+
                           "set location=location "+
                         "where department_id=1";
RowsAffected = NonSelect.ExecuteNonQuery( );
Console.WriteLine(RowsAffected + " rows affected");

Example 17-6. “Paste” method of changing SQL parameters (not recommended)

For i = 1 To N
    NonSelect.CommandText = "UPDATE employees " + _
                            "   SET salary= " + EmployeeSal(i).ToString + _
                            " WHERE employee_id=" + EmployeeID(i).ToString
    NonSelect.ExecuteNonQuery( )

Next



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 17: Using MySQL Stored Programs with .NET

Let’s step through this example:

Using parameters rather than hardcoded literals is highly recommended, especially
since—as we will see later—we really must use parameters if we are going to invoke
stored programs in .NET.

Example 17-8 shows the logic of Example 17-7 expressed in C#.NET.

Example 17-7. Using parameters in VB.NET

1 Dim ParameterSQL As MySqlCommand
2 Dim SQLText As String
3 SQLText = "UPDATE employees " + _
4           "   SET salary= ?NewSal" + _
5           " WHERE employee_id= ?EmpID"
6 ParameterSQL = New MySqlCommand(SQLText, myConnection)
7
8 Dim EmpSal As MySqlParameter
9 EmpSal = ParameterSQL.Parameters.Add("?NewSal", MySqlDbType.Float)
10    Dim EmpId As MySqlParameter
11    EmpId = ParameterSQL.Parameters.Add("?EmpID", MySqlDbType.Int16)
12    Dim RowCount As Int16
13
14    For i = 1 To N
15       EmpSal.Value = EmployeeSal(i)
16       EmpId.Value = EmployeeID(i)
17       RowCount = ParameterSQL.ExecuteNonQuery( )
18       Console.WriteLine(RowCount.ToString)
19    Next

Line(s) Explanation

3 Create the text for our SQL. The parameters in the SQL (?NewSal and ?EmpID) are prefixed by ? characters to
distinguish them from normal MySQL identifiers.

6 Create the MySqlCommand object and associate it with our SQL text.

8-9 Declare a MySqlParameter object for the NewSal parameter on line 8, and on line 9, associate it with the
MySqlCommand object. The name of the parameter provided to the Add()method should match exactly the
name of the parameter in your SQL text. The second argument to Add() specifies the data type of the
parameter.

10-11 Create a second parameter to represent the EmpID parameter.

14-19 Iterate through the EmployeeSal and EmployeeID arrays, which contain new salaries for specific
employees.

15-16 Assign the appropriate values to the parameter objects. The values are taken from the EmployeeSal and
EmployeeID arrays.

17 The ExecuteNonQuery() method executes the SQL with the parameters supplied.

Example 17-8. Using parameters in C#

String SQLText = "UPDATE employees " +
                 "   SET salary= ?NewSal" +
                 " WHERE employee_id= ?EmpID";



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 393

Issuing a SELECT and Using a DataReader
MySQL supports a wide variety of methods of dealing with the output from a query.
In this section, we will first review what is arguably the most straightforward of these
methods: the DataReader.

A DataReader allows us to fetch rows from a result set in a manner similar to the
fetching of rows from a stored program cursor. To create a MySqlDataReader object,
we use the ExecuteReader( ) method of the MySqlCommand object. We iterate through
the MySqlDataReader using the Read( ) method, and retrieve data values using
GetInt32( ), GetString( ), and other data type–specific Get methods.

Example 17-9 is an example of using a MySqlDataReader in C#.

Let us step through this example:

MySqlCommand ParameterSQL = new MySqlCommand(SQLText,myConnection);

MySqlParameter EmpSal  = ParameterSQL.Parameters.Add(
                               "?NewSal", MySqlDbType.Float);
MySqlParameter EmpId = ParameterSQL.Parameters.Add(
                               "?EmpID", MySqlDbType.Int16);

for(i=1;i<=N;i++)
   {
        EmpSal.Value = EmployeeSal[i];
        EmpId.Value = EmployeeID[i];
        RowCount = ParameterSQL.ExecuteNonQuery( );
    }

Example 17-9. Using a MySqlDataReader in C#

1   String SelectText = "SELECT department_id, department_name FROM departments";
2   MySqlCommand SelectStatement = new MySqlCommand(SelectText, myConnection);
3   MySqlDataReader SelectReader = SelectStatement.ExecuteReader( );
4   while (SelectReader.Read( ))
5     {
6         Console.WriteLine(SelectReader.GetInt32(0) + "\t" +
7                           SelectReader.GetString(1));
8     }
9   SelectReader.Close( );

Line(s) Explanation

2 Create a MySqlCommand object for a SELECT statement.

3 Use the ExecuteReader( ) method to create a MySqlDataReader object.

4-8 Loop through the rows returned by the SELECT statement using the Read( ) method of the
MySqlDataReader.

Example 17-8. Using parameters in C# (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 17: Using MySQL Stored Programs with .NET

Example 17-10 shows the logic in Example 17-9 implemented in VB.NET.

Getting DataReader Metadata
The DataReader provides methods for retrieving information about the columns that
will be returned in the Reader. This information is essential if we are going to pro-
cess dynamic SQL—for instance, SQL that is entered at a terminal by an end user or
generated on-the-fly by some other module in our program.

The FieldCount() method returns the number of columns in the DataReader’s result
set. GetFieldType() and GetName() return the name and data type of a column within
the result set, where GetName(0) would return the name of the first column.
Example 17-11 uses these methods to retrieve the names and data types of a query
from within VB.NET and displays those to the console.

6 Use the GetInt32() and GetString() methods to retrieve the current values for the department_
id and department_name columns. The argument for these methods is the numeric position of the col-
umn in the result set—starting with “0” as the first column.

9 Close the Reader. We should always do this since it releases database resources and is also a prerequisite for
retrieving OUT parameters from stored procedures.

Example 17-10. Using a MySqlDataReader in VB.NET

            Dim SelectText As String
            Dim SelectStatement As MySqlCommand
            Dim SelectReader As MySqlDataReader
            SelectText = "SELECT department_id, department_name FROM departments"
            SelectStatement = New MySqlCommand(SelectText, myConnection)
            SelectReader = SelectStatement.ExecuteReader( )
            While (SelectReader.Read( ))
                Console.WriteLine(SelectReader.GetInt32(0).ToString + _
                        " " + SelectReader.GetString(1))
            End While
            SelectReader.Close( )

Example 17-11. Accessing DataReader metadata

SelectText = "SELECT * FROM departments"
SelectStatement = New MySqlCommand(SelectText, myConnection)
SelectReader = SelectStatement.ExecuteReader( )
For i = 0 To SelectReader.FieldCount( ) - 1
    Console.WriteLine(SelectReader.GetName(i) + " " + _
                      SelectReader.GetFieldType(i).ToString)
Next

Line(s) Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 395

DataSets
While DataReaders offer a convenient way to access query result sets, the ADO.NET
DataSet class provides an alternative that is a little more complex, but that offers
increased flexibility and functionality. In particular, because we can only ever have a
single DataReader open simultaneously for a given connection, we are likely to use
DataSets in most complex applications.

DataSets provide an in-memory, datasource-independent representation of data that
can persist even when a connection is closed. DataSets offer a number of methods for
handling data modification, including a mechanism for resynchronizing data when a
closed connection is reopened.

In this section we will provide a simple example of using a DataSet to retrieve the
outputs only from a simple SQL query.

A DataSet object contains a collection of tables, each of which includes a collection
of columns and rows. We can access and manipulate the tables, columns, and rows
in the DataSet using the DataTable, DataColumn, and DataRow objects.

A DataSet is associated with its data source through a DataAdapter object. In our
case, we have to create a MySqlDataAdapator object to associate a DataSet with a
MySqlCommand.

The general steps for processing a SQL query through a DataSet are as follows:

1. Create the MySqlCommand object.

2. Create a MySqlDataAdpator object and associate it with the MySQLCommand.

3. Create a DataSet object.

4. Use the MySqlDataAdapter object to populate the DataSet.

5. Use the DataTable, DataColumn, and DataRow objects to retrieve the contents of the
DataSet.

Example 17-12 shows an example of populating and examining a DataSet object in C#.

Example 17-12. Populating a DataSet from a simple SQL statement in C#

1            String SqlText = "SELECT * FROM departments";
2            MySqlCommand SqlCmd = new MySqlCommand(SqlText, myConnection);
3
4            MySqlDataAdapter MyAdapter=new MySqlDataAdapter(SqlCmd);
5            DataSet MyDataSet=new DataSet( );
6            int rows = MyAdapter.Fill(MyDataSet);
7
8            DataTable MyTable=MyDataSet.Tables[0];
9
10           //Write column headings
11           foreach(DataColumn MyColumn in MyTable.Columns)
12           {
13               Console.Write(MyColumn.Caption+"\t");



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 17: Using MySQL Stored Programs with .NET

 Let’s step through this example:

Example 17-13 shows this logic in VB.NET.

14           }
15           Console.WriteLine( );
16
17           //Write Column Rows
18           foreach(DataRow MyRow in MyTable.Rows)
19           {
20               foreach(DataColumn MyColumn in MyTable.Columns)
21               {
22                   Console.Write(MyRow[MyColumn]+"\t");
23               }
24               Console.WriteLine( );
25            }

Line(s) Explanation

1-2 Define a MySqlCommand object (SqlCmd) that will issue our query.

4 Create a new MySQLDataAdapator object and associate it with SqlCmd (our MySqlCommand object).

5 Create a new DataSet and, in line 6, we populate this data set with the output of the SELECT statement (via
the MySqlDataAdapter).

8 Declare a DataTable (MyTable) that references the first table (index “0”) in the DataSet MyDataSet.
Remember that a DataSet can contain multiple tables, but in this case we know that we need only concern
ourselves with the first and only DataTable in the DataSet.

11-15 Print the names of the columns in the DataTable. We do this by iterating through the Columns collection in
the DataTable and printing the Caption property for each column.

18-25 Print out the data rows. We do this by iterating through the Rows collection in the DataTable. For each Row,
we iterate through the Columns collection to print an individual column value. MyRow[MyColumn] repre-
sents the value of a specific column within a specific row.

Example 17-13. Populating a DataSet from a SELECT statement in VB.NET

        Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
        Dim SqlText As String = "SELECT * FROM departments"
        Dim SqlCmd As MySqlCommand = New MySqlCommand(SqlText, myConnection)

        Dim MyAdapter As MySqlDataAdapter = New MySqlDataAdapter(SqlCmd)

        Dim MyDataSet As DataSet = New DataSet
        Dim rows As Integer = MyAdapter.Fill(MyDataSet)

        Dim MyTable As DataTable = MyDataSet.Tables(0)

        For Each MyColumn As DataColumn In MyTable.Columns
            Console.Write(MyColumn.Caption + "" & TabChr & "")
        Next
        Console.WriteLine( )
        For Each MyRow As DataRow In MyTable.Rows

Example 17-12. Populating a DataSet from a simple SQL statement in C# (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 397

As we will see later, using a DataSet is a good technique for stored procedures, which
might return multiple result sets. However, for a single result set, we can populate
the DataTable directly from the MySqlDataAdaptor() method, as shown in
Example 17-14.

Handling Errors
The Connector/Net methods will throw a MySqlException exception if the database
returns an error with respect to any of our ADO.NET calls. Therefore, we will usu-
ally want to enclose our ADO.NET sections in a try/catch block to ensure that we
do not generate an unhandled exception condition at runtime. Example 17-15 shows
a simple example of using an exception handler in VB.NET.

            For Each MyColumn As DataColumn In MyTable.Columns
                Console.Write(MyRow(MyColumn).ToString + "" & TabChr & "")
            Next
            Console.WriteLine( )
        Next
    End Sub

Example 17-14. Populating a DataTable directly from a MySqlDataAdapter( ) method

    String SqlText = "SELECT * FROM departments";
    MySqlCommand SqlCmd = new MySqlCommand(SqlText, myConnection);

    MySqlDataAdapter MyAdapter = new MySqlDataAdapter(SqlCmd);
    DataTable MyTable = new DataTable( );

    MyAdapter.Fill(MyTable);

Example 17-15. Error handling in VB.NET

  Sub CreateDemoTables( )
        Dim MySqlText As String
        MySqlText = "CREATE TABLE DEMO" & _
                    "  (MyInt INT," & _
                    "     MyString VARCHAR(30)) "

        Dim CrDemoSQL As MySqlCommand

Try
            CrDemoSQL = New MySqlCommand(MySqlText, myConnection)
            CrDemoSQL.ExecuteNonQuery( )

Catch MyException As MySqlException
            Console.WriteLine("Error creating demo tables:")
            Console.WriteLine(MyException.Number.ToString & ": " & _
                              MyException.Message)
            Console.WriteLine(MyException.StackTrace)

End Try

    End Sub

Example 17-13. Populating a DataSet from a SELECT statement in VB.NET (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 17: Using MySQL Stored Programs with .NET

In this example, the SQL statement is executed within a Try block. If an error occurs,
control is passed to the Catch block that creates a MySqlException object call
“MyException”. The Number property returns the MySQL error code; the Message
property contains the MySQL error message. StackTrace generates a familiar .NET
stack trace that can be useful during debugging (though not so useful for Auntie
Edna or other end users).

Example 17-16 demonstrates the same exception handling in C#.

Managing Transactions
You can execute the usual MySQL statements to manage your transactions in .NET
programs, such as BEGIN TRANSACTION, COMMIT, and ROLLBACK. However, instead of
using these statements, you may want to take advantage of the built-in transaction
object to manage your transactions. Doing so may help make your code more read-
able and maintainable.

Connector/Net allows us to create a MySqlTransaction object that represents a trans-
action. Methods to the MySqlTransaction object allow us to commit and roll back our
transaction, or to set the transaction isolation levels.

Example 17-17 shows an example of using these facilities in C#.

Example 17-16. Exception handling in C#

       static void CreateDemoTables( )
        {
            String MySqlText= "CREATE TABLE DEMO" +
                              "  (MyInt INT," +
                              "   MyString VARCHAR(30)) ";

try
            {
                MySqlCommand CrDemoSQL=new MySqlCommand(MySqlText,myConnection);
                CrDemoSQL.ExecuteNonQuery( );
            }

catch(MySqlException MyException)
            {
                Console.WriteLine("Error creating demo tables:");
                Console.WriteLine(MyException.Number +
                                  ": " + MyException.Message);
                Console.WriteLine(MyException.StackTrace);
            }
        }

Example 17-17. Transaction management in C#

1  static void TferFunds(int FromAccount, int ToAccount, float TferAmount)
2   {
3      String TransSQL = "UPDATE account_balance " +
4                         "  SET balance=balance+?tfer_amount " +
5                         "WHERE account_id=?account_id";



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Review of ADO.NET Basics | 399

The function is designed to transfer some money from one account to another. It is
absolutely essential that both operations succeed or fail as a unit, and therefore they
are enclosed within a transaction.

This is a relatively long example and ties in the use of parameters and exception han-
dlers, so let us step through it line by line:

6      MySqlCommand TransCmd = new MySqlCommand(TransSQL, myConnection);
7      MySqlParameter P_tfer_amount = TransCmd.Parameters.Add("?tfer_amount",
8                                                         MySqlDbType.Float);
9      MySqlParameter P_account_id = TransCmd.Parameters.Add("?account_id",
10                                                         MySqlDbType.Int32);
11
12 MySqlTransaction myTransaction = myConnection.BeginTransaction( );
13 try
14        {
15           //Remove amount from from_account
16           P_tfer_amount.Value = TferAmount * -1;
17           P_account_id.Value = FromAccount;
18           TransCmd.ExecuteNonQuery( );
19           //Add amount to to_account;
20           P_tfer_amount.Value = TferAmount;
21           P_account_id.Value = ToAccount;
22           TransCmd.ExecuteNonQuery( );
23
24 myTransaction.Commit( );
25           Console.WriteLine("Transaction Succeeded");
26         }
27 catch (MySqlException TransException)
28         {
29           Console.WriteLine("Error in transaction: ");
30           Console.WriteLine(TransException.Message);
31           try
32             {
33 myTransaction.Rollback( );
34                 Console.WriteLine("Transaction rollback");
35              }
36           catch (MySqlException RollbackException)
37              {
38                 Console.WriteLine("Failed to rollback transaction:");
39                 Console.WriteLine(RollbackException.Message);
40               }
41          }
42      }

Line(s) Explanation

3-9 Create a SQL UPDATE statement to adjust the account balance for a specific account. The statement
includes parameters for the account ids and amounts, so we can reuse the statement to do both parts of
the transfer and could also reuse it for subsequent transactions.

12 The BeginTransaction( ) method of the connection indicates the commencement of the
transaction.

Example 17-17. Transaction management in C# (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 17: Using MySQL Stored Programs with .NET

Example 17-18 implements the same transaction logic in VB.NET.

13 Declare a try/catch block that will handle any errors that occur within our transaction.

15-22 Execute the transfer by placing the appropriate values into the account and amount parameters, and then
executing the UPDATE statement twice— once to reduce the balance in the “from” account and once to
increase the balance in the “to” account.

24 Commit the transaction. Note that this statement would be reached only if all of the previous statements
succeed. If any of the previous ADO.NET statements raised an exception, control would be assumed by the
code in the catch block.

27-41 This is the catch block that will be invoked if a SQL error occurs. It executes a ROLLBACK statement (line
33) to undo any parts of the transaction that may have successfully executed.

31-41 We’ve nested another catch block without the main error handler to catch any problems that occur
when we execute the rollback. This might seem a bit paranoid, but it is possible that the errors that caused
the statements to fail will also cause us to fail to execute a rollback (the server may have crashed, for
instance).

Example 17-18. Transaction handling in VB.NET

  Sub TferFunds(ByVal FromAccount As Integer, _
                ByVal ToAccount As Integer, _
                ByVal TferAmount As Single)

        Dim TransSQL As String = "UPDATE account_balance " + _
                                  " SET balance=balance+?tfer_amount " + _
                                  "WHERE account_id=?account_id"
        Dim TransCmd As MySqlCommand = New MySqlCommand(TransSQL, myConnection)
        Dim P_tfer_amount As MySqlParameter = _
            TransCmd.Parameters.Add("?tfer_amount", MySqlDbType.Float)
        Dim P_account_id As MySqlParameter = _
            TransCmd.Parameters.Add("?account_id", MySqlDbType.Int32)
        Dim myTransaction As MySqlTransaction = myConnection.BeginTransaction

Try
            'Remove amount from FromAccount
            P_tfer_amount.Value = TferAmount * -1
            P_account_id.Value = FromAccount
            TransCmd.ExecuteNonQuery( )
            'Add amount to ToAccount
            P_tfer_amount.Value = TferAmount
            P_account_id.Value = ToAccount
            TransCmd.ExecuteNonQuery( )

            myTransaction.Commit( )
            Console.WriteLine("Transaction Succeded")

Catch TransException As MySqlException
            Console.WriteLine("Error in transaction: ")
            Console.WriteLine(TransException.Message)
            Try
                myTransaction.Rollback( )
                Console.WriteLine("Transaction rollback")

Line(s) Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ADO.NET | 401

Using Stored Programs in ADO.NET
Stored programs have always been an integral and important part of application
development within SQL Server, and SQL Server support is a primary focus of the
ADO.NET interfaces. Unlike some implementations of stored programs (Oracle’s for
instance), SQL Server’s stored programs can directly return multiple result sets,
which results in the ADO.NET interfaces providing very natural support for the
MySQL implementation.

Calling a Simple Stored Procedure
Let’s start with a very simple stored procedure. Example 17-19 shows a simple stored
procedure that takes no parameters and returns no result sets.

Calling this stored procedure is only slightly more complex than calling a non-SELECT
statement, as described in “Issuing a Non-SELECT Statement” earlier in this chap-
ter. The procedure for calling this stored procedure differs in two small ways:

• The text for the SQL call contains only the stored procedure—the CALL state-
ment is unnecessary, as are parentheses to represent the parameter list.

• The CommandType property of the MySqlCommand object should be set to
CommandType.StoredProcedure.

Example 17-20 illustrates the process of calling the simple stored procedure from
Example 17-19 in VB.NET. The name of the stored procedure is used to initialize the
MySqlCommand object, and the CommandType for that object is set to CommandType.
StoredProcedure. The stored procedure is then executed using the ExecuteNonQuery()
method of the MySqlCommand object.

            Catch RollbackException As MySqlException
                Console.WriteLine("Failed to rollback transaction:")
                Console.WriteLine(RollbackException.Message)
            End Try

End Try
 End Sub

Example 17-19. A simple stored procedure

CREATE PROCEDURE sp_simple( )
BEGIN
 SET autocommit=0;
END;

Example 17-20. Calling a simple stored procedure in VB.NET

        Dim SpSimple As MySqlCommand
        SpSimple = New MySqlCommand("sp_simple", myConnection)

Example 17-18. Transaction handling in VB.NET (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 17: Using MySQL Stored Programs with .NET

Example 17-21 shows the same logic implemented in C#.

Supplying Input Parameters
Earlier in this chapter we saw how to use the Parameters collection of the
MySqlCommand class to specify parameters to simple SQL statements. The Parameters
collection can be used to manipulate stored procedure parameters as well. In this
section we’ll look at specifying input parameters. Example 17-22 shows a simple
stored procedure that takes a single input parameter.

To specify a value for this parameter, we can create a parameter object using the
Parameters.Add() method of the MySqlCommand object. We can then use the Values
property of the resulting object to set a value for the parameter prior to executing the
procedure. Example 17-23 shows us doing just that in C#.

In lines 1-3 we create the stored procedure definition. On line 4 we create a parame-
ter object representing the first (and only) parameter to the stored procedure. On line
7 we assign a value to this parameter, and finally—on line 9—we execute the stored
procedure.

        SpSimple.CommandType = CommandType.StoredProcedure
        SpSimple.ExecuteNonQuery( )

Example 17-21. Calling a simple stored procedure in C#

            MySqlCommand SpSimple;
            SpSimple = new MySqlCommand("sp_simple", myConnection);
            SpSimple.CommandType = CommandType.StoredProcedure;
            SpSimple.ExecuteNonQuery( );

Example 17-22.  Stored procedure with an input parameter

CREATE PROCEDURE sp_simple_parameter(in_autocommit INT)
BEGIN
 SET autocommit=in_autocommit;
END;

Example 17-23. Calling a stored procedure with an input parameter in C#

1   MySqlCommand SpCmd;
2   SpCmd = new MySqlCommand("sp_Simple_Parameter", myConnection);
3   SpCmd.CommandType = CommandType.StoredProcedure;
4   MySqlParameter Parm1 = SpCmd.Parameters.Add(
5                          "in_autocommit",MySqlDbType.Int32);
6
7   Parm1.Value = 0;
8
9   SpCmd.ExecuteNonQuery( );

Example 17-20. Calling a simple stored procedure in VB.NET (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ADO.NET | 403

Note that once the stored procedure (including its parameters) is defined, we can
change the parameter value and re-execute the procedure as many times as we like.
We’ll see an example of this technique at the end of this chapter.

Example 17-24 shows how we can set the stored procedure parameter and execute
the stored procedure in VB.NET.

Using a DataReader with a Stored Program
Retrieving a single result set from a stored procedure can be achieved by using pretty
much the same coding as we would use to obtain the results of a SELECT statement.
Consider a stored procedure that returns only a single result set, as shown in
Example 17-25.

To retrieve a result set from this stored procedure, we can use the ExecuteReader()
method to return a DataReader object and then loop through the DataReader in the
usual way. Example 17-26 shows how to do this in C#.

Example 17-27 shows how to create a DataReader from a stored procedure execution
in VB.NET.

Example 17-24. Calling a stored procedure with an input parameter in VB.NET

        Dim SpCmd As MySqlCommand
        SpCmd = New MySqlCommand("sp_Simple_Parameter", myConnection)
        SpCmd.CommandType = CommandType.StoredProcedure
        Dim Parm1 As MySqlParameter

Parm1 = SpCmd.Parameters.Add("in_autocommit", MySqlDbType.Int32)
Parm1.Value = 0

        SpCmd.ExecuteNonQuery( )

Example 17-25. Stored procedure with a single result set

CREATE PROCEDURE Sp_one_result_set( )
 SELECT department_id,department_name
   FROM departments;

Example 17-26.  Creating a DataReader from a stored procedure in C#

MySqlCommand SpCmd;
SpCmd = new MySqlCommand("sp_one_result_set", myConnection);
SpCmd.CommandType = CommandType.StoredProcedure;
MySqlDataReader MyReader=SpCmd.ExecuteReader( );
while (MyReader.Read( ))
{
    Console.Write(MyReader.GetInt32(0)+"\t");
    Console.WriteLine(MyReader.GetString(1));
}



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 17: Using MySQL Stored Programs with .NET

Processing Multiple Result Sets in a DataReader
The DataReader class provides a method for processing multiple result sets: the
DataReader method NextResult( ) will return true if there is an additional result set
available from the SqlCommand and will move the DataReader to that result set.

To illustrate, let’s retrieve the two result sets returned from the stored procedure in
Example 17-28.

We can process the second result set by calling the NextResult( ) method after finish-
ing with the first result set, then reading the rows from the second result set.
Example 17-29 illustrates this technique in VB.NET.

Example 17-27.  Creating a DataReader from a stored procedure in VB.NET

Dim SpCmd As MySqlCommand
SpCmd = New MySqlCommand("sp_one_result_set", myConnection)
SpCmd.CommandType = CommandType.StoredProcedure
Dim MyReader As MySqlDataReader = SpCmd.ExecuteReader
While MyReader.Read
    Console.Write(MyReader.GetInt32(0).ToString + _
                      "" & Microsoft.VisualBasic.Chr(9) & "")
    Console.WriteLine(MyReader.GetString(1))
End While
MyReader.Close( )

Example 17-28. Stored procedure returning two result sets

CREATE PROCEDURE sp_two_results( )
BEGIN
    SELECT location,address1,address2
      FROM locations;
    SELECT department_id,department_name
      FROM departments;
END;

Example 17-29.  Processing two result sets using a DataReader in VB.NET

        Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
        Dim SpCmd As MySqlCommand
        SpCmd = New MySqlCommand("sp_two_results", myConnection)
        SpCmd.CommandType = CommandType.StoredProcedure
        Dim MyReader As MySqlDataReader = SpCmd.ExecuteReader
        While MyReader.Read
            Console.Write(MyReader.GetString(0) + TabChr)
            Console.Write(MyReader.GetString(1))
            Console.WriteLine(MyReader.GetString(2))
        End While

MyReader.NextResult( )
        While MyReader.Read
            Console.Write(MyReader.GetInt32(0).ToString +TabChr)
            Console.WriteLine(MyReader.GetString(1))
        End While
        MyReader.Close( )



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ADO.NET | 405

Using this technique is a bit cumbersome, especially if there is a large number of
result sets. As we will see later on, writing code to dynamically process multiple
result sets from a DataReader, or processing multiple result sets using the DataSet
class, can often result in simpler and more robust code.

Dynamically Processing Result Sets
In the previous example, we knew exactly how many result sets to expect from the
stored procedure and we knew in advance the number and types of columns to be
returned from each. While this is a realistic scenario, we may often need to process a
stored procedure where the number and types of result sets might change depending
on the input parameters.

For instance, the stored procedure in Example 17-30 returns a different set of result
sets depending on the characteristics of the employee whose identity is defined by
the input employee_id parameter. If the employee is a sales representative, then three
result sets are returned. Otherwise, only two result sets are returned. Furthermore,
the structure of the second result set for a sales rep is different from the result set
returned by a normal employee.

Example 17-30. Stored procedure that returns an unpredictable number of result sets

CREATE PROCEDURE sp_employee_report
    (in_emp_id decimal(8,0),
     OUT out_customer_count INT)
         READS SQL DATA

BEGIN

    SELECT employee_id,surname,firstname,date_of_birth,address1,address2,zipcode
      FROM employees
     WHERE employee_id=in_emp_id;

    SELECT department_id,department_name
      FROM departments
     WHERE department_id=
           (SELECT department_id
              FROM employees
             WHERE employee_id=in_emp_id);

    SELECT count(*)
      INTO out_customer_count
      FROM customers
     WHERE sales_rep_id=in_emp_id;

    IF out_customer_count=0 THEN
         SELECT 'Employee is not a current sales rep';
    ELSE
        SELECT customer_name,customer_status,contact_surname,contact_firstname
          FROM customers



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 17: Using MySQL Stored Programs with .NET

To process this stored procedure, our code needs to:

• Loop through all of the result sets with no assumption as to how many there
may be.

• Loop through the columns in each result set without knowing at compile time
how many columns exist in each result set.

We can easily achieve the first objective simply by iterating through the result sets of
a DataReader as long as the NextResult( ) call returns true.

We achieve the second objective by using the FieldCount property of the Reader and
the GetName( ) and GetString( ) methods, which allow us to retrieve the name and
value for each column, as shown in Example 17-31.

         WHERE sales_rep_id=in_emp_id;

        SELECT customer_name,sum(sale_value) as "TOTAL SALES",
               max(sale_value) as "MAX SALE"
          FROM sales JOIN customers USING (customer_id)
         WHERE customers.sales_rep_id=in_emp_id
         GROUP BY customer_name;
   END IF;

END$$;

Example 17-31. Processing result sets dynamically with a DataReader

1  static void EmployeeReport(int EmployeeId)
2  {
3        MySqlCommand SpCmd = new MySqlCommand("sp_employee_report", myConnection);
4        SpCmd.CommandType = CommandType.StoredProcedure;
5        MySqlParameter Param_empid = SpCmd.Parameters.Add(
6                                     "in_emp_id", MySqlDbType.Int32);
7
8        Param_empid.Value = EmployeeId;
9        MySqlDataReader EmpReader=SpCmd.ExecuteReader( );
10
11 do
12       {
13            //Print Column Names
14            Console.WriteLine("-------------------------------------");
15            for (int i = 0; i < EmpReader.FieldCount; i++)
16           {
17                Console.Write(EmpReader.GetName(i)+"\t");
18           }
19           Console.WriteLine("\n-----------------------------------");
20           //Print out the row values
21           while (EmpReader.Read( ))
22           {
23               for (int i = 0; i < EmpReader.FieldCount; i++)
24               {

Example 17-30. Stored procedure that returns an unpredictable number of result sets (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ADO.NET | 407

Let’s step through this example:

Example 17-32 shows Example 17-31 writen in VB.NET.

25                   Console.Write(EmpReader.GetString(i)+"\t");
26               }
27               Console.WriteLine( );
28            }
29        } while (EmpReader.NextResult( ));
30        EmpReader.Close( );
31   }

Line(s) Explanation

3-5 Define a MySqlCommand object to call the stored procedure. The object has a single parameter that
corresponds to the EmployeeId argument passed to our routine on line 1.

8-9 Assign the value of the stored procedure parameter to the value of the input parameter and create a
MySqlDataReader to process the result sets.

11-29 This loop will continue until a call to NextResult( ) returns false. In other words, it will continue
until all of the result sets have been retrieved from the stored procedure.

15-18 Print out the names of the columns of the result set. FieldCount returns the number of columns;
GetName(i) returns the name of a particular column.

21-28 Loop through each row in the result set.

23-26 Loop through each column in the current row. We use GetString(i) to retrieve the value of the
current column. GetString will successfully retrieve values for most MySQL data types (numbers,
dates, etc.), but if we need to retrieve the values into a more appropriate variable (perhaps we want
to perform some calculations on a float, for instance), then we can use GetType(i) to determine
the appropriate method (GetFloat(i) for instance).

30 Close the DataReader having processed all of the rows in all of the result sets.

Example 17-32. Processing dynamic result sets using a DataReader in VB.NET

Sub EmployeeReport(ByVal EmployeeId As Integer)

        Dim i As Integer = 0
        Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
        Dim RetChr As Char = Microsoft.VisualBasic.Chr(10)
        Dim SpCmd As MySqlCommand
        SpCmd = New MySqlCommand("sp_employee_report", myConnection)
        SpCmd.CommandType = CommandType.StoredProcedure
        Dim Param_empid As MySqlParameter
        Param_empid = SpCmd.Parameters.Add("in_emp_id", MySqlDbType.Int32)
        Param_empid.Value = EmployeeId
        Dim EmpReader As MySqlDataReader = SpCmd.ExecuteReader

Do
            Console.WriteLine("-------------------------------------")

            For i = 0 To EmpReader.FieldCount - 1
                Console.Write(EmpReader.GetName(i) + TabChr)
            Next

Example 17-31. Processing result sets dynamically with a DataReader (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 17: Using MySQL Stored Programs with .NET

Using DataSets with Stored Programs
DataSets offer an alternative to the DataReader class for retrieving result sets from
stored procedures. We can store more than one result set into a single DataSet
object, which allows us to easily process the multiple result sets that might be
returned by a stored procedure.

A DataReader may be more convenient than a DataSet for processing a single result
set where we know the column names and types in advance. However, when we are
processing more than one result set, or when we don’t know the structure of the
result sets in advance, we find the DataSet more convenient.

Example 17-33 shows us dynamically processing multiple result sets from a stored
procedure using a DataSet. We’ve used this stored procedure before: see
Example 17-28.

            Console.WriteLine(RetChr+ "-----------------------------------")
            While EmpReader.Read( )

                For i = 0 To EmpReader.FieldCount - 1
                    Console.Write(EmpReader.GetString(i) + TabChr)
                Next
                Console.WriteLine( )
            End While
        Loop While EmpReader.NextResult( )
        EmpReader.Close( )
    End Sub

Example 17-33. Dynamically processing multiple result sets using a DataSet in VB.NET

1        Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
2        Dim SpCmd As MySqlCommand
3        SpCmd = New MySqlCommand("sp_two_results", myConnection)
4        SpCmd.CommandType = CommandType.StoredProcedure
5
6        Dim MyAdapter As MySqlDataAdapter = New MySqlDataAdapter(SpCmd)
7        Dim SpDataSet As DataSet = New DataSet
8 MyAdapter.Fill(SpDataSet)
9
10 For Each SpTable As DataTable In SpDataSet.Tables
11 For Each SpCol As DataColumn In SpTable.Columns
12                Console.Write(SpCol.ToString( ) + TabChr)
13            Next
14            Console.WriteLine( )
15
16 For Each SpRow As DataRow In SpTable.Rows
17                For Each SpCol As DataColumn In SpTable.Columns
18                    Console.Write(SpRow(SpCol).ToString + TabChr)

Example 17-32. Processing dynamic result sets using a DataReader in VB.NET (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ADO.NET | 409

You may want to review the section “DataSets” earlier in this chapter if you’re not
sure of the relationship between MySqlCommands, MySqlDataAdapters, and DataSets.

Let’s look at how Example 17-33 works, line by line:

Example 17-34 shows this logic implemented in C#.

19                Next
20                Console.WriteLine( )
21            Next
22        Next

Line(s) Explanation

2-4 Create a MySqlCommand object to represent our stored procedure call in the usual way.

6 Create a MySqlDataAdapter object and associate it with the MySqlCommand object.

7 Create a new DataSet object.

8 Populate the DataSet from our MySqlDataAdapter. Since MySqlDataApadapter is associated
with the MySqlCommand for our stored procedure, this results in all of the results sets from the stored
procedure being stored into the DataSet.

10 The DataSet will now contain one DataTable for each result set returned by the stored procedure.
Here we iterate through these tables using the Tables collection of the DataSet object.

11-13 Iterate through the columns in the current DataTable using the Columns collection and print the col-
umn name.

16-21 Iterate through the DataRows in the current DataTable using the Rows collection of the DataTable
object.

17-19 Iterate through the columns in the current DataRow and print the appropriate column value.
SpRow(SpCol) represents a specific column value for a specific row.

Example 17-34. Dynamically processing result sets using a DataSet in C#

            MySqlCommand SpCmd;
            SpCmd = new MySqlCommand("sp_two_results", myConnection);
            SpCmd.CommandType = CommandType.StoredProcedure;

            MySqlDataAdapter MyAdapter = new MySqlDataAdapter(SpCmd);
            MyAdapter.SelectCommand = SpCmd;
            DataSet SpDataSet = new DataSet( );

MyAdapter.Fill(SpDataSet);

foreach (DataTable SpTable in SpDataSet.Tables)
            {

foreach (DataColumn SpCol in SpTable.Columns)
                {
                    Console.Write(SpCol.ToString( ) + "\t");
                }
                Console.WriteLine( );

foreach (DataRow SpRow in SpTable.Rows)

Example 17-33. Dynamically processing multiple result sets using a DataSet in VB.NET (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 17: Using MySQL Stored Programs with .NET

Retrieving Output Parameters
We’ve left the processing of output parameters until almost the end of this chapter,
because obtaining the value of an output parameter (OUT or INOUT) is the last thing we
should do when processing a stored program. In particular, we should make sure
that we have retrieved all result sets from the stored procedure before trying to access
the value of the output parameter. Before all the result sets are processed, the value
of the parameter will be NULL, which could lead to subtle bugs—especially if there
is a variable number of output parameters.

To use an output parameter in Connector/Net, we define the parameter as we would
for an input parameter, but set the ParameterDirection property of the parameter to
either Output or InputOutput.

Example 17-35 is an example of a stored procedure that contains an OUT parameter.

In Example 17-36 we execute this stored procedure and retrieve the value of the out-
put parameter. Prior to executing the stored procedure, we set the value of the
Parameter.Direction property to ParameterDirection.Output. After we have pro-
cessed all of the rows from the result set returned by the stored procedure, we can
examine the parameter’s Value property to see the value placed by the stored proce-
dure into the OUT parameter.

                {
                    foreach (DataColumn SpCol in SpTable.Columns)
                    {
                        Console.Write(SpRow[SpCol] + "\t");
                    }
                    Console.WriteLine( );
                }
            }

Example 17-35. Stored procedure with an OUT parameter

CREATE PROCEDURE sp_custsales
  (in_customer_id INT,
   OUT out_sales_total FLOAT)
BEGIN
    SELECT customer_name
      FROM customers
     WHERE customer_id=in_customer_id;

    SELECT sum(sale_value)
      INTO out_sales_total
      FROM sales
     WHERE customer_id=in_customer_id;

END;

Example 17-34. Dynamically processing result sets using a DataSet in C# (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ADO.NET | 411

Example 17-37 shows this logic coded in VB.NET.

Example 17-36. Processing a stored procedure with an OUT parameter in C#

       static void CustomerSales(int CustomerId)
        {
            MySqlCommand SpCustSales;
            MySqlParameter PCustId,PSalesTotal;
            MySqlDataReader CustReader;

            SpCustSales = new MySqlCommand("sp_custsales", myConnection);
            SpCustSales.CommandType = CommandType.StoredProcedure;
            PCustId = SpCustSales.Parameters.Add(
                                   "in_customer_id", MySqlDbType.Int32);
            PSalesTotal = SpCustSales.Parameters.Add(
                                   "out_sales_total", MySqlDbType.Float);
            PSalesTotal.Direction = ParameterDirection.Output;

            PCustId.Value = CustomerId;
            CustReader=SpCustSales.ExecuteReader( );
            while (CustReader.Read( ))
            {
                Console.WriteLine(CustReader.GetString(0));
            }
            CustReader.Close( );
            Console.WriteLine(PSalesTotal.Value);

            Console.WriteLine("====");

        }

Example 17-37. Processing an output parameter in VB.NET

Sub CustomerSales(ByVal CustomerId As Integer)

        Dim SpCustSales As MySqlCommand
        Dim PCustId As MySqlParameter
        Dim PSalesTotal As MySqlParameter
        Dim CustReader As MySqlDataReader

        SpCustSales = New MySqlCommand("sp_custsales", myConnection)
        SpCustSales.CommandType = CommandType.StoredProcedure
        PCustId = SpCustSales.Parameters.Add("in_customer_id", MySqlDbType.Int32)
        PSalesTotal = SpCustSales.Parameters.Add("out_sales_total", MySqlDbType.Float)
        PSalesTotal.Direction = ParameterDirection.Output

        PCustId.Value = CustomerId
        CustReader = SpCustSales.ExecuteReader( )
        While CustReader.Read( )
            Console.WriteLine(CustReader.GetString(0))
        End While
        CustReader.Close( )
        Console.WriteLine(PSalesTotal.Value)

    End Sub



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 17: Using MySQL Stored Programs with .NET

Make sure you have processed all of the result sets returned from a
stored procedure before attempting to access any output parameters.

Calling Stored Functions
In languages such as Perl or PHP, if we want to get the results of a stored function
call, we simply embed it into a SELECT statement and retrieve the result of the func-
tion call as a single-row SELECT.

This technique is available to us in ADO.NET, but we also have the option of retriev-
ing the result of a function call in a more direct fashion. We can call a function as we
would a stored procedure that has no result sets, and we can retrieve the results of
the function execution by associating a parameter with ParameterDirection set to
ReturnValue.

For instance, consider the very simple stored function in Example 17-38, which
returns a date formatted just the way we like it.

To call this directly in ADO.NET, we call the function as we would a stored proce-
dure, but we create a special parameter to retrieve the function return value with the
Direction property set to ReturnValue. Example 17-39 shows us processing our sim-
ple date function in C#.

Example 17-40 shows the same logic in VB.NET.

Example 17-38. Simple MySQL stored function

CREATE FUNCTION my_date( )
 RETURNS VARCHAR(50)
BEGIN
  RETURN(DATE_FORMAT(NOW( ),'%W, %D of %M, %Y'));
END$$

Example 17-39. Processing a stored function in C#

       MySqlCommand FCmd = new MySqlCommand("my_date", myConnection);
       FCmd.CommandType = CommandType.StoredProcedure;
       MySqlParameter rv = FCmd.Parameters.Add("rv", MySqlDbType.String);
       rv.Direction = ParameterDirection.ReturnValue;
       FCmd.ExecuteNonQuery( );
       Console.WriteLine("return value=" + rv.Value);

Example 17-40. Processing a stored function in VB.NET

       Dim FCmd As MySqlCommand = New MySqlCommand("my_date", myConnection)
       FCmd.CommandType = CommandType.StoredProcedure
       Dim rv As MySqlParameter = FCmd.Parameters.Add("rv", MySqlDbType.String)
       rv.Direction = ParameterDirection.ReturnValue
       FCmd.ExecuteNonQuery( )
       Console.WriteLine("return value=" + rv.Value)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ASP.NET | 413

Using Stored Programs in ASP.NET
In the final section of this chapter, let’s put our newly acquired Connector/Net and
stored program skills to work to create a simple ASP.NET application.

The stored procedure we will use is shown in Example 17-41. It takes as an
(optional) argument a database name, and it reports on the objects within that data-
base, along with a list of users currently connected to the server, server status vari-
ables, server configuration variables, and a list of databases contained within the
server. It contains one OUT parameter that reports the server version.

Example 17-41. Stored procedure for our ASP.NET example

CREATE PROCEDURE sp_mysql_info
    (in_database VARCHAR(60),
     OUT server_version VARCHAR(100))
    READS SQL DATA
BEGIN

  DECLARE db_count INT;

  SELECT @@version
    INTO server_version;

  SELECT 'Current processes active in server' as table_header;
  SHOW full processlist;

  SELECT 'Databases in server' as table_header;

  SHOW databases;

  SELECT 'Configuration variables set in server' as table_header;
  SHOW global variables;
  SELECT 'Status variables in server' as table_header;
  SHOW global status;

  SELECT COUNT(*)
    INTO db_count
    FROM information_schema.schemata s
   WHERE schema_name=in_database;
  IF (db_count=1) THEN
    SELECT CONCAT('Tables in database ',in_database) as table_header;
    SELECT table_name
      FROM information_schema.tables
     WHERE table_schema=in_database;
  END IF;

END$$



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 17: Using MySQL Stored Programs with .NET

The number and type of result sets is unpredictable, since a list of database objects is
generated only if a database matching the stored procedure’s first parameter is found
on the server.

Prior to every major result set, the stored procedure generates a one-row “title” as a
result set. This “title” result set is identified by the column title table_header.

First, we need to create an ASP.NET form to retrieve the information we need to
connect to the MySQL server and to obtain the parameters we need to call the stored
procedure.

Creating the input form in Visual Studio is fairly straightforward. We create TextBox
controls to retrieve our input parameters, as shown in Figure 17-3.

Notice that in addition to the standard TextBox controls, we also added Literal and
PlaceHolder controls. These controls allow us to insert dynamic content when the
stored procedure is executed.

Figure 17-3. ASP.NET form



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Using Stored Programs in ASP.NET | 415

Next, we add the code that controls the database interaction. All of our database
interaction logic is contained within the method associated with the Submit button.
This logic is shown in Example 17-42.

Example 17-42. Database access logic for our ASP.NET page

1    void FindButton_Click(object sender, EventArgs e)
2    {
3        //Arrays of grids and literals for our output.
4        System.Web.UI.WebControls.DataGrid[] DataGrids;
5        DataGrids = new System.Web.UI.WebControls.DataGrid[20];
6        System.Web.UI.WebControls.Literal[] Literals;
7        Literals = new System.Web.UI.WebControls.Literal[20];
8
9
10        String myConnectionString = "Database=" + tDatabase.Text +
11           " ;Host=" + tHost.Text +
12           ";UserName=" + tUsername.Text+ ";Password=" + tPassword.Text;
13
14
15        MySqlConnection myConnection = new MySqlConnection( );
16        myConnection.ConnectionString = myConnectionString;
17
18        try
19        {
20            myConnection.Open( );
21            MySqlCommand SpCmd = new MySqlCommand("sp_mysql_info", myConnection);
22            SpCmd.CommandType = CommandType.StoredProcedure;
23            MySqlParameter InDbParm = SpCmd.Parameters.Add(
24                           "in_database",MySqlDbType.String);
25            InDbParm.Value = tDatabase.Text;
26            MySqlParameter OutMyVersion = SpCmd.Parameters.Add(
27                           "server_version", MySqlDbType.String);
28            OutMyVersion.Direction = ParameterDirection.Output;
29
30            MySqlDataAdapter MyAdapter = new MySqlDataAdapter(SpCmd);
31            MyAdapter.SelectCommand = SpCmd;
32            DataSet SpDataSet = new DataSet( );
33            MyAdapter.Fill(SpDataSet);
34
35            ReportHeaderl.Text = "<h1>MySQL Server status and statistics</h1>" +
36                     "<b>Host:</b>"+tHost.Text+"<br>"+
37                     " <b>Port:</b> "+tPort.Text+"<br>"+
38                     "<b>Version:</b>"+OutMyVersion.Value+"<br>";
39
40            int grid_no = 0;
41            int heading_no=0;
42            foreach (DataTable SpTable in SpDataSet.Tables) {
43                if (SpTable.Columns[0].ColumnName == "table_header")
44                {
45                    Literals[heading_no]=new Literal( );
46                    Literals[heading_no].Text="<h2>"+ SpTable.Rows[0][0]+"</h2>";
47                    PlaceHolder.Controls.Add(Literals[heading_no]);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 17: Using MySQL Stored Programs with .NET

There is quite a bit of code in this example, but the basic principles are fairly simple:

• We connect to MySQL using the connection information given.

• We call the stored procedure, passing the database name as an input parameter.

• We cycle through the result sets in the stored procedure. If the result set is a one-
line, one-column “title” for a subsequent result set, we store an HTML header
into a literal control and add this to the Placeholder control we placed on the
HTML form earlier.

• If the result set is not a “title” result set, we bind the result set to a DataGrid con-
trol and add that to the Placeholder.

• When all of the result sets have been processed, we retrieve the output parame-
ter (MySQL version) and display this and other information in the Literal con-
trol we placed on the ASP.NET form earlier.

Let’s examine this code in a bit more detail:

48                    heading_no++;
49                }
50                else
51                {
52                    DataGrids[grid_no] = new DataGrid( );
53                    DataGrids[grid_no].DataSource = SpTable;
54                    DataGrids[grid_no].DataBind( );
55                    DataGrids[grid_no].BorderWidth = 1;
56                    DataGrids[grid_no].HeaderStyle.BackColor =
57                         System.Drawing.Color.Silver;
58                    PlaceHolder.Controls.Add(DataGrids[grid_no]);
59                    grid_no++;
60                }
61            }
62
63
64
65        }
66        catch (MySqlException MyException)
67        {
68            Response.Write("Connection error: MySQL code: " + MyException.Number
69                              + " " + MyException.Message);
70        }
71
72
73    }

Example 17-42. Database access logic for our ASP.NET page (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 417

Figure 17-4 shows some of the output generated by our ASP.NET application. The
ASP.NET code can render virtually any output that might be returned by the stored
procedure, so if we want to add a new set of output to the procedure, we do not need
to modify the ASP.NET code.

Conclusion
In this chapter we looked at calling stored programs from within .NET code written
in both C# and VB.NET.

Because of Microsoft’s long history of stored procedures with SQL Server, support
for stored programs in the ADO.NET interfaces is robust and feels very natural.
There is no reason to avoid the use of stored programs in .NET applications, and no
reason to avoid calling stored programs directly from .NET code.

Line(s) Explanation

4-7 Create an array of DataGrid and Literal controls. DataGrids are data-bound controls similar
to HTML tables. Literals are controls in which we can insert regular HTML arguments. Later in the
code, we will populate the controls in these arrays with data from the stored procedure output and
insert the resulting controls into the Placeholder control on the ASPX page.

10-20 Construct a MySqlConnection string using the parameters provided in the input form and then
establish a connection. The final connection call is embedded within a try/catch block so that we
will handle any errors that might occur when attempting to connect.

21-28 Set up the stored procedure for execution. Both input and output parameters are defined.

30-31 Create a MySqlDataAdpator associated with the stored procedure.

23-33 Create a DataSet, and use the MySqlDataAdapter to populate the DataSet. This effectively
executes the stored procedure and populates the DataSet with all the result sets from that stored
procedure call.

35-38 Now that we have retrieved all of the result sets, we can access the value of the output parameter.
Consequently, we can populate the Literal control with HTML to generate the first part of our
report, which provides identity information for the MySQL server.

42-61 Generate the bulk of the report, which is based on the result sets generated from the stored proce-
dure. This loop iterates through the DataTables contained within the DataSet.

43-49 If the first column within the table is called table_header, then this is a heading row, so we cre-
ate a Literal containing an H2 HTML header containing the text of the row.

50-60 If the result set is not a heading, then we need to create an HTML table to represent the output. We
use the ASP.NET DataGrid control, which is a data-bound table control. Line 53 attaches the
DataGrid to the current DataTable. Lines 55-57 format the DataGrid. Finally on line 58 we
add the DataGrid to the PlaceHolder control on the ASP.NET page.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 17: Using MySQL Stored Programs with .NET

Figure 17-4. ASP.NET form in action



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PART IV

IV.Optimizing Stored Programs

This final part of the book hopes to take you from “good” to “great.” Getting pro-
grams to work correctly is hard enough: any program that works is probably a good
program. A “great” program is one that performs efficiently, is robust and secure,
and is easily maintained.

Stored procedures and functions raise a number of unique security concerns and
opportunities: these are discussed in Chapter 18. Chapters 19 through 22 cover per-
formance optimization of stored programs. Chapter 19 kicks off with a general dis-
cussion of performance tuning tools and techniques. The performance of your stored
programs will be largely dependent on the performance of the SQL inside, so Chap-
ters 20 and 21 provide guidelines for tuning SQL. Chapter 22 covers performance
tuning of the stored program code itself.

Chapter 23 wraps up the book with a look at best practices in stored program devel-
opment. These guidelines should help you write stored programs that are fast,
secure, maintainable, and bug-free.

Chapter 18, Stored Program Security

Chapter 19, Tuning Stored Programs and Their SQL

Chapter 20, Basic SQL Tuning

Chapter 21, Advanced SQL Tuning

Chapter 22, Optimizing Stored Program Code

Chapter 23, Best Practices in MySQL Stored Program Development





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

421

Chapter 18 CHAPTER 18

Stored Program Security18

Security has always been critical in the world of databases and stored programs that
work with those databases. Yet database security has taken on heightened impor-
tance in the last decade, with the global reach of the Internet and the increasing ten-
dency for the database to be the target of those trying to compromise application
security. In this chapter we explore two different aspects of security as it pertains to
MySQL stored programming:

• Controlling access to the execution and modification of stored programs
themselves

• Using stored programs to secure the underlying data in MySQL databases

Stored programs—in particular, stored procedures—are subject to most of the secu-
rity restrictions that apply to other database objects, such as tables, indexes, and
views. Specific permissions are required before a user can create a stored program,
and, similarly, specific permissions are needed in order to execute a program.

What sets the stored program security model apart from that of other database
objects—and from other programming languages—is that stored programs may exe-
cute with the permissions of the user who created the stored program, rather than
those of the user who is executing the stored program. This model allows users to
execute operations via a stored program that they would not be privileged to execute
using straight SQL.

This facility—sometimes called definer rights security—allows us to tighten our data-
base security: we can ensure that a user gains access to tables only via stored pro-
gram code that restricts the types of operations that can be performed on those tables
and that can implement various business and data integrity rules. For instance, by
establishing a stored program as the only mechanism available for certain table
inserts or updates, we can ensure that all of these operations are logged, and we can
prevent any invalid data entry from making its way into the table.

We can also create stored programs that execute with the privileges of the calling
user, rather than those of the user who created the program. This mode of security is



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 18: Stored Program Security

sometimes called invoker rights security, and it offers other advantages beyond those
of definer rights, which we will explore in this chapter.

Before delving into the two execution modes available in MySQL, we will first exam-
ine the basic permissions needed to create, manage, and execute stored programs.
Then we’ll go into a detailed discussion of definer rights and invoker rights, and con-
sider how these capabilities might be used in our applications. Finally, we will con-
sider the use of stored programs to increase the general security of our MySQL server
and, conversely, identify ways in which the use of stored programs can reduce over-
all security if developers are not careful.

Permissions Required for Stored Programs
MySQL 5.0 introduced a few new privileges to manage stored programs. These privi-
leges are:

CREATE ROUTINE
Allows a user to create new stored programs.

ALTER ROUTINE
Allows a user to alter the security mode, SQL mode, or comment for an existing
stored program.

EXECUTE
Allows a user to execute a stored procedure or function.

With these distinct privileges available, we can very granularly decide what we want
to allow individual developers to be able to do (as in “Sam can run program X, but
not make any changes to it.”).

Granting Privileges to Create a Stored Program
To give a user permission to create a stored procedure, function, or trigger, grant the
CREATE ROUTINE privilege to that user using the GRANT statement. We can do this for a
specific database or for all databases on the server. For example, the following GRANT
statement gives the user sp_creator permission to create stored programs within the
database mydatabase:

GRANT CREATE ROUTINE ON mydatabase.* TO sp_creator;

Granting Privileges to Modify a Stored Program
The ALTER ROUTINE privilege gives a user permission to change the security mode,
SQL mode, or comment for a stored procedure or function. However, this privilege
does not allow us to change the actual program code of a procedure. To change the
program code, we must DROP and then CREATE a new program. In the following exam-
ple, we change the security mode, sql_mode setting, and comment for a procedure:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Execution Mode Options for Stored Programs | 423

ALTER PROCEDURE simple_stored_proc
   SQL SECURITY INVOKER
   READS SQL DATA
   COMMENT 'A simple stored procedure';

Granting Privileges to Execute a Stored Program
The EXECUTE privilege gives a user permission to execute a stored procedure or func-
tion. (For triggers, see Chapter 11.) EXECUTE privileges should be granted selectively,
especially if the program is created with the “definer rights” security setting (see the
section “The SQL SECURITY Clause” later in this chapter). The syntax for this form
of the GRANT statement is:

GRANT EXECUTE [ON {PROCEDURE|FUNCTION}] database.program_name TO user

You can omit the ON PROCEDURE or ON FUNCTION clause if you are performing a wild-
card grant, as in the following example:

GRANT EXECUTE ON mydatabase.* TO sp_creator;

If you are granting access to a specific program, you must specify ON PROCEDURE or ON
FUNCTION explicitly; it is possible for a stored procedure and a stored function to have
the same name, and it is unacceptable to issue an ambiguous security command. To
grant the EXECUTE privilege on the procedure mydatabase.test1, issue the following
statement:

GRANT EXECUTE ON PROCEDURE mydatabase.test1 TO sp_creator;

Execution Mode Options for Stored Programs
Stored program code differs from any other kind of code that might execute against
the database in that it can have database privileges that are different from those of
the account that executes the stored program. Normally, when we execute some
SQL—whether it is inside the MySQL client, a PHP program, or whatever—the
activities that the SQL will perform (read table X, update table Y, etc.) will be
checked against the privileges that are associated with the database account to which
we are connected. If our account lacks privilege to perform the activity, the SQL
statement will fail with the appropriate error.

Stored programs can be defined to act in the same way, if the SQL SECURITY INVOKER
clause is included in the CREATE PROCEDURE or CREATE FUNCTION statement used to cre-
ate the program. However, if SQL SECURITY DEFINER (the default) is specified instead,
then the stored program executes with the privilege of the account that created the
stored program, rather than the account that is executing the stored program. Known
as definer rights, this execution mode can be a very powerful way of restricting ad
hoc table modifications and avoiding security breaches. Definer rights can also be a
problem, however, if you are relying on traditional security privileges to secure your
database.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 18: Stored Program Security

Let’s go through a quick example before we dig in more deeply. A user creates a pro-
cedure to execute a simple transaction, as shown in Example 18-1.

We grant the EXECUTE privilege on this procedure to Fred, who has no other privi-
leges to the account_balance table:

GRANT EXECUTE ON PROCEDURE prod.tfer_funds TO 'FRED'@'%';

Now, Fred would like to make some illicit changes to the account_balance table, but
he is unable to do so directly:

C:\bin32>mysql -uFRED -pFRED -Dprod
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.0.18-nightly-20051211-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT * FROM account_balance;
ERROR 1142 (42000): SELECT command denied to user 'FRED'@'localhost' for table
'account_balance'
mysql> INSERT INTO account_balance (account_id,balance) values(324,4000);
ERROR 1142 (42000): INSERT command denied to user 'FRED'@'localhost' for table
'account_balance'
mysql> ARGH!
    -> ;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual
that corresponds to your MySQL server version for the right syntax to use
near 'ARGH'!' at line 1

Example 18-1. Simple transaction using definer rights security

CREATE PROCEDURE tfer_funds
       (from_account INT, to_account INT,tfer_amount NUMERIC(10,2))
    SQL SECURITY DEFINER
BEGIN
    START TRANSACTION;

    UPDATE account_balance
       SET balance=balance-tfer_amount
     WHERE account_id=from_account;

    UPDATE account_balance
       SET balance=balance+tfer_amount
     WHERE account_id=to_account;

    INSERT into transaction_log
     (user_id, description)
     values(user( ), concat('Transfer of ',tfer_amount,' from ',
            from_account,' to ',to_account));

    COMMIT;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Execution Mode Options for Stored Programs | 425

Fred can use the stored procedure to adjust balances (as shown in Figure 18-1), but
by doing so he is required to take the money “from” somewhere and to create an
incriminating row in the transaction_log table:

mysql> CALL tfer_funds(324,916,200);
Query OK, 0 rows affected (0.44 sec)

mysql> SELECT * FROM transaction_log WHERE user_id LIKE 'FRED%';
+---------------------+----------------+---------------------------------+
| txn_timestamp       | user_id        | description                     |
+---------------------+----------------+---------------------------------+
| 2005-04-14 11:23:45 | FRED@localhost | Transfer of 200 from 324 to 916 |
+---------------------+----------------+---------------------------------+
2 rows in set (0.00 sec)

mysql> ARGH!
    -> ;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ARGH!' at
line 1

In short, using “definer rights” lets us grant permission to use the database only in
ways that we clearly define through stored programs. If you like, you can think of
such stored programs as an API to the database that we provide to users.

The down side of using stored programs in this way is that it makes it much harder
to be certain how you have restricted access to certain objects. For instance, we can
issue the following statement to try and make sure that Fred cannot look at account
balances:

REVOKE SELECT ON prod.account_balance FROM 'FRED'@'%';

However, we would need to review all of the stored programs that Fred has access to
before we could be 100% sure that he cannot perform any such activity.

Figure 18-1. A definer rights stored program can execute SQL that the user does not have direct
permission to execute

Table
CREDIT_CARDS

User Fred Stored procedure
check_credit_card

CALL
check_credit_card()

SELECT FROM credit_cards
WHERE. . .

SELECT statement denied. . .

SELECT FROM credit_cards
WHERE. . .

Production Account



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 18: Stored Program Security

If we want stored programs to succeed only if the user has sufficient privileges to exe-
cute the SQL statements that they contain, then we need to create an invoker rights
program instead. Example 18-2 shows the tfer_funds stored procedure created with
the SQL SECURITY INVOKER option specified.

Now if we want Fred to be able to execute this stored program, we will have to
explicitly grant him access to the tables involved. Otherwise, he gets a security error
when he executes the procedure:

mysql> CALL  tfer_funds(324,916,200);
ERROR 1142 (42000): UPDATE command denied to user 'FRED'@'localhost' for table
'account_balance'

Figure 18-2 illustrates these operations.

As well as arguably clarifying the relationship between users and table privileges, the
use of the SQL SECURITY INVOKER option allows us to prevent certain security holes that
can arise when stored programs execute dynamic SQL. A stored program that can
execute dynamic SQL (see Chapter 5) and that runs with definer rights can represent
a significant security risk; see the section “SQL Injection in Stored Programs” later in
this chapter.

The SQL SECURITY Clause
The SQL SECURITY clause of the CREATE PROCEDURE and CREATE FUNCTION statements
determines whether the program will operate with the privileges of the invoker or
those of the definer. The syntax is straightforward:

Example 18-2. Invoker rights stored procedure

CREATE PROCEDURE tfer_funds
       (from_account INT, to_account INT,tfer_amount NUMERIC(10,2))
    SQL SECURITY INVOKER
BEGIN
    START TRANSACTION;

    UPDATE account_balance
       SET balance=balance-tfer_amount
     WHERE account_id=from_account;

    UPDATE account_balance
       SET balance=balance+tfer_amount
     WHERE account_id=to_account;

    INSERT into transaction_log
     (user_id, description)
     values(user( ), concat('Transfer of ',tfer_amount,' from ',
            from_account,' to ',to_account));

    COMMIT;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Execution Mode Options for Stored Programs | 427

CREATE {PROCEDURE|FUNCTION} program_name (parameter_definitions)
    [ SQL SECURITY {INVOKER|DEFINER} ]

stored_program_statements

If no SQL SECURITY clause appears, then the program is created with the SQL SECURITY
DEFINER option.

The SQL SECURITY clause can be changed without having to re-create the stored proce-
dure or function using the ALTER PROCEDURE or ALTER FUNCTION statement as follows:

ALTER {PROCEDURE|FUNCTION} program_name
    SQL SECURITY {INVOKER|DEFINER};

The SQL SECURITY clause applies only to procedures or functions; a related clause—
DEFINER—can be applied to triggers if you want to change the execution privileges
under which a trigger runs. See Chapter 11 for more details about this clause.

Using Definer Rights to Implement Security Policies
As we have already discussed, stored programs defined with the SQL SECURITY DEFINER
clause can execute SQL statements that would normally not be available to the
account executing the stored program. We can use this facility to provide extensive
control over the way in which the user interacts with the database.

If we write our application without stored programs, then our front-end code (writ-
ten in, say, PHP) interacts directly with the underlying MySQL tables. As a conse-
quence, each MySQL account that will be used to run the application must be
granted all of the permissions required by the application code.

Directly granting privileges to accounts, however, can lead to significant security
problems. Users can take advantage of any client tool, including the MySQL

Figure 18-2. An invoker rights procedure can only issue SQL that the user has permission to
execute

Table
CREDIT_CARDS

User Fred Stored procedure
check_credit_card

CALL
check_credit_card()

SELECT FROM credit_cards
WHERE. . .

SELECT statement denied. . .

SELECT FROM credit_cards
WHERE. . .

Production Account

SELECT statement denied......



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 18: Stored Program Security

command line, to connect to this account, thereby circumventing any security con-
trols that might have been placed within the application logic.

Let’s take a look at a scenario that demonstrates the security issues with a MySQL
application that does not use stored programs. If an application performs operations
on tables within the prod schema, we might create an account for that application
and grant it rights to perform queries and DML on all of the tables in that schema:

GRANT SELECT, UPDATE, DELETE, INSERT ON prod.* TO myapp@'%'

The myapp account is now a highly privileged account—a hacker who got hold of the
account password could delete any or all rows in any of the application tables, select
any data (salaries, credit cards, etc.), and perform any number of malicious or dis-
honest activities.

On the other hand, in a scenario in which we use stored programs to control access
to the database, we only need to grant EXECUTE permission on the programs that
make up the application:

GRANT EXECUTE ON prod.* TO myapp@'%'

A user connecting to the myapp account can still get her work done, by calling the
appropriate elements in the application—but that is precisely all that the user can
do. If the capability is not implemented within the application, then it is not avail-
able to the user. This significantly reduces the exposure of the database to malicious
users if the connection information for the myapp account is compromised.

For instance, our application might contain internal logic that prevents a user from
accessing the salary information of employees unless the user is a senior-level man-
ager or a member of the Payroll department. However, this application-level restric-
tion can easily be circumvented if the user logs into the database using the MySQL
Query Browser and issues SQL against the database.

By using a “definer rights” stored program, we can ensure that the user gains access
to database tables only via code that we provide within the stored program. In that
way, we can ensure that the security and integrity of our database is maintained,
even if a user logs onto the database directly.

Example 18-3 shows a stored procedure that returns employee details. The stored
procedure was created with the SQL SECURITY DEFINER clause, so anyone with the
EXECUTE privilege on this procedure will be able to view the employee details, even if
he or she doesn’t have the SELECT privilege on this table.

The stored procedure checks the ID of the user who executes the procedure and
compares this ID with information in the employees table. If the user executing the
stored procedure is a senior-level manager or a member of the Payroll department,
then the employee details are returned without modification. Otherwise, the
employee details are returned with the salary details obscured.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Execution Mode Options for Stored Programs | 429

Let’s look at the key parts of this code:

Example 18-3. Procedure that restricts access to employee salary data

1  CREATE PROCEDURE sp_employee_list(in_department_id DECIMAL(8,0))
2      SQL SECURITY DEFINER READS SQL DATA
3  BEGIN
4      DECLARE l_user_name VARCHAR(30);
5      DECLARE l_not_found INT DEFAULT 0;
6      DECLARE l_department_name VARCHAR(30);
7      DECLARE l_manager_id INT;
8
9      DECLARE user_csr CURSOR FOR
10          SELECT d.department_name,e.manager_id
11            FROM departments d JOIN employees e USING(department_id)
12           WHERE db_user=l_user_name;
13
14      DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_not_found=1;
15
16      /* Strip out the host from the user name */
17      SELECT  SUBSTR(USER(),1,INSTR(USER( ),'@')-1)
18       INTO l_user_name;
19
20      OPEN user_csr;
21      FETCH user_csr INTO l_department_name,l_manager_id;
22      CLOSE user_csr;
23
24      IF l_department_name='PAYROLL' OR l_manager_id IN (0,1) THEN
25            SELECT surname,firstname,salary
26              FROM employees
27                WHERE department_id=in_department_id
28                ORDER BY employee_id;
29      ELSE
30           /* Not authorized to see salary */
31          SELECT surname,firstname,'XXXXXXX' AS salary
32            FROM employees
33              WHERE department_id=in_department_id
34              ORDER BY employee_id;
35      END IF;
36
37  END;

Line(s) Explanation

17 Retrieve the name of the account currently executing the stored procedure.

20-22 Retrieve the employee record with the matching ID.

24-28 If the corresponding user is in the Payroll department or is a first- or second-level manager, then we return
the employee salary unmasked.

31-34 Otherwise, return the data with the salary details masked.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 18: Stored Program Security

Fred is a software developer with our company who should not be able to see
employee salary details. When he executes the stored procedure, the salary details
are masked out, as shown in Example 18-4.

Fred is unable to select from the employees table directly, so there is no way for him
to retrieve the employee salary data, as shown in Example 18-5.

Jane is a member of the Payroll department, so when she executes the procedure, she
can see the salary details, as shown in Example 18-6.

Example 18-4. Using a stored procedure to restrict access to sensitive information

C:\>mysql -ufred -pfred -Dprod
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 21 to server version: 5.0.18-nightly-20051211-log
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CALL sp_employee_list(3);
+-------------+-----------+---------+
| surname     | firstname | salary  |
+-------------+-----------+---------+
| RAYMOND     | GOLDIE    | XXXXXXX |
| RACE        | ARLENA    | XXXXXXX |
| HAGAN       | LYNNA     | XXXXXXX |
| MARSTEN     | ALOYS     | XXXXXXX |
| FILBERT     | LEON      | XXXXXXX |
| RAM         | SANCHO    | XXXXXXX |
| SAVAGE      | SORAH     | XXXXXXX |
| FLOOD       | ULRIC     | XXXXXXX |
| INGOLD      | GUTHREY   | XXXXXXX |
| WARNER      | WORTH     | XXXXXXX |
| LEOPARD     | AUSTIN    | XXXXXXX |
| ROBBINETTE  | BRIAN     | XXXXXXX |
| REUTER      | LORIS     | XXXXXXX |
| MITCHELL    | HUGO      | XXXXXXX |

Example 18-5. Direct access to the underlying tables is denied

mysql> SELECT * FROM employees;
ERROR 1142 (42000): SELECT command denied to user 'fred'@'localhost' for table
'employees'

Example 18-6. The stored procedure allows authorized users to view salary details

C:\>mysql -uJane -pJane  -Dprod
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 21 to server version: 5.0.18-nightly-20051211-log



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Execution Mode Options for Stored Programs | 431

Note that, like Fred, Jane may not directly access the employees table. Instead, she
must call the sp_employee_list procedure when she wants to see the salaries for a
department. If we move her to another department, she will automatically lose the
ability to view these salary details.

We can also use definer rights programs to ensure that transactions applied to the
database always conform to various business rules and regulatory compliance mea-
sures that we might have in place. Using a stored program to control all inserts into
the sales table, for example, could be used to automate the maintenance of audit
and summary tables. We saw an example of logging DML within a stored procedure
in Example 18-2.

Stored Program or View?
It is sometimes possible to use a view rather than a stored program to implement
some aspects of database security. For example, a user can select from a view even if
he does not have access to the underlying tables, so with a view you can control
which columns and rows a user can see.

Using CASE statements and WHERE clause conditions, it is often possible to create views
that restrict access to only appropriate rows or—using updatable views—those that
restrict modifications. For instance, the two views in Example 18-7 were designed to
perform some of the security limitations provided by the stored procedure from
Example 18-3.

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CALL sp_employee_list(3);
+-------------+-----------+--------+
| surname     | firstname | salary |
+-------------+-----------+--------+
| RAYMOND     | GOLDIE    | 53465  |
| RACE        | ARLENA    | 45733  |
| HAGAN       | LYNNA     | 85259  |
| MARSTEN     | ALOYS     | 49200  |
| FILBERT     | LEON      | 97467  |
| RAM         | SANCHO    | 58866  |
| SAVAGE      | SORAH     | 83897  |
| FLOOD       | ULRIC     | 84275  |
| INGOLD      | GUTHREY   | 60306  |
| WARNER      | WORTH     | 47473  |

Example 18-6. The stored procedure allows authorized users to view salary details (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 18: Stored Program Security

Using a view to implement these kinds of access restrictions is attractive, since the
view implementation would allow the user more flexible query capabilities (aggre-
gate functions, WHERE clause restrictions, etc.). On the other hand, as the security
restrictions become more complex, it becomes increasingly difficult—and ultimately

Definer Rights in N-tier Applications
In the days when client/server applications ruled the earth, end users were often given
individual database accounts, and they authenticated themselves to the application by
connecting to the database. In modern web-based or N-tier applications, users typi-
cally authenticate with a middle-tier application or web server, and all users share a
pool of common “proxy” database connections.

The definer rights stored program security model was first defined during the client/
server era, and it largely reflects this idea that the end user might actually know her
database username and password. Nevertheless, the definer rights model still has a
valid role in a web-based environment, since it helps limit the exposure if the proxy
account is compromised.

In a modern application that uses proxy accounts, access to the password for the proxy
account will be carefully restricted. The proxy account should generally be used only
by the application server. If a malicious user obtains the password to the proxy
account, however, he could then have unrestricted access to the underlying database
tables.

By using stored programs to mediate between the application server and the database,
we can carefully limit the activities that the proxy account can undertake. We can also
implement auditing, alarming, and logging to help us identify any malicious use of this
account.

Of course, you should very carefully secure an application’s proxy database account
under any scenario. But if you are careful to limit that proxy account to execution of
application stored programs, you will also limit the damage a malicious user can inflict
in a compromised scenario.

Example 18-7. Using a view to implement security policies

CREATE VIEW current_user_details_view AS
        SELECT departments.department_name,employees.manager_id
          FROM employees join departments using (department_id)
         WHERE db_user=convert(SUBSTR(USER(),1,INSTR(USER( ),'@')-1) using latin1) ;

CREATE VIEW employees_view AS
     SELECT firstname,surname,salary,db_user,
       CASE  WHEN u.department_name='PAYROLL' OR u.manager_id IN (0,1) THEN
                     salary
             ELSE '0000000000'
        END CASE AS salary
  FROM employees e, current_user_details_view u ;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Execution Mode Options for Stored Programs | 433

impossible—to create views to implement those restrictions. Finally, most organiza-
tions must ensure the integrity of transactions, and this cannot be encoded in view
definitions.

Handling Invoker Rights Errors
When you create a stored program with invoker rights, you can be sure that the
stored program will succeed only if the user executing the stored program has the
necessary privileges. This means that you don’t have to be particularly careful about
who gets EXECUTE privileges to the program—the program will never let them do
something that they didn’t already have the privilege to do in native SQL. What this
means, however, is that the program is now more likely to raise an exception at run-
time, since we can’t know in advance that the user has the required privileges.

The possibility of runtime security exceptions in invoker rights programs means that
you will generally want to add handler logic to these programs. Consider the stored
procedure shown in Example 18-8.

This stored procedure includes the SQL SECURITY INVOKER clause, so any user who
invokes the stored procedure must have the SELECT privilege on the customers table.
When Fred, who does not have this privilege, runs sp_cust_list, he will see the error
message shown in Example 18-9.

Under some circumstances, throwing an unhandled exception in this way might be
sufficient. For many applications, however, it will be necessary to trap the error and
provide better information and guidance to the user. Consider the revised implemen-
tation of the sp_cust_list procedure, shown in Example 18-10.

Example 18-8. Stored procedure using invoker rights

CREATE PROCEDURE sp_cust_list (in_sales_rep_id INT)
     SQL SECURITY INVOKER
BEGIN
     SELECT customer_id, customer_name
       FROM customers
      WHERE sales_rep_id=in_sales_rep_id;
END;

Example 18-9. Invoker privileges can lead to unhandled security-violation errors

mysql> CALL sp_cust_list(14);
ERROR 1142 (42000): SELECT command denied to
   user 'fred'@'localhost' for table 'customers'

Example 18-10. Handling security violations with invoker rights procedures

CREATE PROCEDURE sp_cust_list2 (in_sales_rep_id INT)
     SQL SECURITY INVOKER
BEGIN



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 18: Stored Program Security

Now when Fred runs this program, he is denied the ability to see the customer infor-
mation, but at least gets a clearer explanation of the problem, as shown in
Example 18-11.

Stored Programs and Code Injection
SQL injection is the name given to a particular form of security attack in applications
that rely on dynamic SQL. With dynamic SQL, the SQL statement is constructed,
parsed, and executed at runtime. If that statement is pieced together from one or
more fragments of SQL syntax, a malicious user could inject unintended and
unwanted code for execution within the dynamic SQL framework.

For an example of code injection, consider the PHP code shown in Example 18-12.
This code requests a department ID from the user (line 7) and then builds up a SQL
statement to retrieve the names of all employees in that department (lines 24-35).

See Chapter 13 for a detailed discussion of interfacing between PHP and MySQL.

     DECLARE denied INT DEFAULT 0;

     DECLARE command_denied CONDITION FOR 1142;
     DECLARE CONTINUE HANDLER FOR command_denied SET denied=1;

     SELECT customer_id, customer_name
       FROM customers
      WHERE sales_rep_id=14;

     IF denied =1 THEN
           SELECT 'You may not view customer data.'
               AS 'Permission Denied';
     END IF;
END;

Example 18-11. Handling security violations in a stored procedure

mysql> CALL sp_cust_list2(14);
+--------------------------------------------------------------------+
| Permission Denied                                                  |
+--------------------------------------------------------------------+
| You may not view customer data.                                    |
+--------------------------------------------------------------------+
1 row in set (0.00 sec)

Example 18-12. PHP code susceptible to SQL injection

1  <html>
2  <title>Employee Query</title>
3  <h1>Employee Query</h1>
4
5  <FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>" METHOD=POST>

Example 18-10. Handling security violations with invoker rights procedures (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and Code Injection | 435

Notice, however, that this program does not perform any validation of the user
input; it is simply appended directly to the end of the SELECT statement. This careless
method of construction allows a user to type in text that subverts the intention of the
programmer, and—in this case—it causes the application to return data that was
never intended. Figure 18-3 demonstrates this problem. The user enters UNION and
SELECT clauses, and causes the application to return not just the names of employees
for a specific department, but also the salaries of all employees in all departments.

6  <p>Enter Department Id:
7  <input type="text" name="department" size="60">
8  <input type="submit" name="submit" value="submit"><p>
9  </form>
10
11  <?php
12  require_once "HTML/Table.php";
13
14
15  /*Check to see if user has hit submit*/
16  if (IsSet ($_POST['submit'])) {
17    $dbh = new mysqli($hostname, $username, $password, $database);
18
19    /* check connection */
20    if (mysqli_connect_errno( )) {
21      printf("Connect failed: %s\n", mysqli_connect_error( ));
22      exit ( );
23    }
24    $sql="SELECT employee_id,surname,firstname FROM employees".
25      "    WHERE department_id =".$_POST['department'];
26    print $sql;
27   if ($result_set = $dbh->query($sql)) {
28       $table =new HTML_Table('border=1');
29       $table->addRow(array('ID','Surname','Firstname'));
30       $table->setRowAttributes(0,array("bgcolor" => "silver"));
31
32     while ($row = $result_set->fetch_row( )) {
33       $table->addRow(array($row[0],$row[1],$row[2]));
34     }
35     print $table->toHtml( );
36   }
37   else {
38     printf("<p>Error retrieving stored procedure result set:%d (%s) %s\n",
39        mysqli_errno($dbh), mysqli_sqlstate($dbh), mysqli_error($dbh));
40   }
41
42
43  result_set->close( );
44  $dbh->close( );
45? >
46
47  </body></html>

Example 18-12. PHP code susceptible to SQL injection (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 18: Stored Program Security

The application intended to issue a SQL statement that looked something like this:

SELECT employee_id,surname,firstname
  FROM employees
 WHERE department_id =1;

However, by “injecting” SQL into the department_id, the application was tricked
into running this SQL instead:

SELECT employee_id,surname,firstname
  FROM employees
 WHERE department_id =-1
 UNION

Figure 18-3. Using SQL injection to obtain employee salaries



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and Code Injection | 437

SELECT salary,surname,firstname
  FROM employees

Using this technique, it would be possible for a malicious user to “coerce” the appli-
cation to display data from any tables to which it has access, even potentially includ-
ing internal MySQL tables such as mysql.user.

Although it is distressingly easy to create an application that is vulnerable to SQL
injection, it is, thankfully, not all that difficult to immunize an application from such
an attack. Essentially, SQL injection becomes possible when the application fails to
validate user input before inserting that text into a SQL statement. So the simplest
solution is often to validate that input. For instance, in Example 18-13, we check
that the user input represents a numeric value before inserting it into the SQL.

Most of the APIs that support MySQL allow you to predefine parameters or “bind
variables” to a SQL statement and to supply these just prior to execution of the SQL.
These APIs will typically not allow the injection of SQL syntax into the resulting SQL
and will often validate the data type of the user input. So, for instance, in
Example 18-14, we use the bind_param() method of the mysqli PHP interface to
accept only a numeric parameter. Even if the parameter were a string, it would be
impossible to “inject” SQL syntax when using mysqli prepared SQL statements.

Example 18-13. Using simple validation to protect against SQL injection

  $department=$_POST['department'];
  if (is_numeric($department)) {

    $sql="SELECT employee_id,surname,firstname FROM employees".
      "    WHERE department_id = $department";
    if ($result_set = $dbh->query($sql)) {

Example 18-14. Binding parameters to resist SQL injection

$sql="SELECT employee_id,surname,firstname FROM employees ".
    "    WHERE department_id = ? ";
  $sth=$dbh->prepare($sql) or die($dbh->error);
  $sth->bind_param("i",$department);
  $sth->bind_result($employee_id,$surname,$firstname);
  $sth->execute( ) or die ($dbh->error);
  $table =new HTML_Table('border=1');
  $table->addRow(array('ID','Surname','Firstname'));
  $table->setRowAttributes(0,array("bgcolor" => "silver"));

   while ($sth->fetch( )) {
     $table->addRow(array($employee_id,$surname,$firstname));
  }



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 18: Stored Program Security

Protecting Against SQL Injection with Stored Programs
MySQL stored programs provide yet another way to protect against SQL injection
attacks. The CALL statement that is used to invoke stored programs cannot be modi-
fied by a UNION statement or other SQL syntax—it can only accept parameters to the
stored program call. This makes a stored program call effectively immune to SQL
injection—regardless of whether the application validates user input or uses parame-
ter binding.

To illustrate, consider the short stored procedure in Example 18-15, which returns
employee details for a specific department.

We can use this stored procedure in our PHP program as the mechanism by which
we retrieve our employee list, as shown in Example 18-16. This PHP code contains
the same lack of input validation as our original example, and does not use parame-
ter binding. Nevertheless, it is immune to SQL injection because the stored proce-
dure can only accept a numeric input, and, additionally, the SQL statement within
the stored procedure cannot be modified.

Although there are many ways of structuring application code to with-
stand a SQL injection attack, stored programs that do not contain pre-
pared statements are immune to SQL statement injection, and an
application that interacts with the database only through these stored
programs will also be immune to SQL injection.

Example 18-15. Stored procedure to replace embedded SQL in PHP

CREATE PROCEDURE emps_in_dept(in_dept_id int)
       READS SQL DATA
BEGIN
    SELECT employee_id,firstname,surname
      FROM employees
     WHERE department_id=in_dept_id;
END;

Example 18-16. Stored procedure calls are (usually) immune to SQL injection

  $department = $_POST['department'];
  $sql="CALL emps_in_dept( $department )";
  if ($result_set = $dbh->query($sql)) {
    $table =new HTML_Table('border=1');
    $table->addRow(array('ID','Surname','Firstname'));
    $table->setRowAttributes(0,array("bgcolor" => "silver"));
    while ($row = $result_set->fetch_row( )) {
      $table->addRow(array($row[0],$row[1],$row[2]));
    }
    print $table->toHtml( );



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs and Code Injection | 439

SQL Injection in Stored Programs
There is, unfortunately, one circumstance in which a stored program itself might be
vulnerable to a SQL injection attack: when the stored program builds dynamic SQL
using a PREPARE statement that includes values passed into the stored program as
parameters.

We looked initially at prepared statements in Chapter 5: using prepared statements,
we can build dynamic SQL that potentially includes strings provided as parameters
to the stored program. These parameter strings might include SQL fragments and,
hence, make the program susceptible to SQL injection.

Consider the stored procedure shown in Example 18-17; for reasons known only to
the author, the stored procedure builds the SQL dynamically and executes it as a
stored procedure. Strangely, the author also used a very long VARCHAR parameter even
though department_id is a numeric column.

This stored procedure is susceptible to exactly the same form of SQL injection attack
as the PHP code shown in Example 18-12. For instance, we can extract employee
details from the stored procedure by executing it as shown in Example 18-18.

If the PHP application relied on this stored procedure to retrieve department_ids, it
would continue to be vulnerable to SQL injection attack.

Example 18-17. Stored procedure susceptible to SQL injection

CREATE PROCEDURE `emps_in_dept2`(in_dept_id VARCHAR(1000))
BEGIN
  SET @sql=CONCAT(
      "SELECT employee_id,firstname,surname
         FROM employees
        WHERE department_id=",in_dept_id);
   PREPARE s1 FROM @sql;
   EXECUTE s1;
   DEALLOCATE PREPARE s1;
END;

Example 18-18. Injecting SQL into a stored procedure call

mysql> CALL emps_in_dept2("-1 UNION SELECT salary,surname,firstname
    FROM employees ");
+-------------+-----------+----------+
| employee_id | firstname | surname  |
+-------------+-----------+----------+
|      105402 | FERRIS    | LUCAS    |
|       89949 | KIPP      | STAFFORD |
|       77142 | HOLMES    | GUTHREY  |
|       86839 | KNOX      | TALIA    |
|       55638 | MORALES   | JOHN     |



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 18: Stored Program Security

SQL injection through stored programs can be serious, since stored programs that
execute with definer rights can execute SQL not normally available to the user invok-
ing the stored programs. Not only would the database be vulnerable to SQL injec-
tion attacks through a privileged account associated with a web application, but SQL
could be injected by a nonprivileged user at the MySQL command line.

In this example, the use of dynamic SQL was unnecessary and arguably dangerous,
since no validation of the input parameter was undertaken. In general, dynamic SQL
inside of stored programs represents a significant security risk. We recommend the
following policies to minimize your vulnerability:

• Use prepared statements inside of stored programs only when absolutely
necessary.

• If you must use a prepared statement, and if that prepared statement includes
strings provided as input parameters, make sure to validate that the strings are of
the expected data type and length. For instance, in our previous example, had
the input parameter been defined as an INTEGER, then the SQL injection would
not be possible.

• Consider using invoker rights (SQL SECURITY INVOKER) when a stored program
includes prepared statements. This limits your exposure, since the invoker will
only be able to inject SQL that is within her security rights.

Conclusion
In this chapter we looked at the basic security permissions required for creating and
executing stored programs and at how the SQL SECURITY clause affects the security
context of an executing stored program.

By default—or if the SQL SECURITY DEFINER clause is specified—stored programs exe-
cute with the permissions of the account that created the stored program. This means
that a database user can execute a stored program that can perform database opera-
tions not available to that user through normal SQL. You can use this feature to
implement a scheme in which a user can manipulate the database through stored
programs but has no privilege to manipulate the database through normal SQL.
Restricting database access in this way through stored programs can improve data-
base security, since you can ensure that table accesses are restricted to known rou-
tines that perform appropriate validation or logging. You can reduce your exposure
should the database account involved be compromised.

If the SQL SECURITY INVOKER clause is specified, then the stored program will execute
with the permissions of the account that is executing the stored program. In this
case, an exception will be raised if the stored program attempts to execute a SQL
statement that the invoker does not have permission to execute as native SQL.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 441

Stored programs in MySQL 5.0 are implicitly resistant to SQL injection—unless they
include dynamic SQL via prepared statements. We recommend that you exercise
caution when using dynamic SQL in stored programs—take every precaution to
ensure that the stored procedure or function is not vulnerable to malicious SQL
injection. If prepared statements and dynamic SQL are necessary, then make sure to
validate input parameters, and consider using the SQL SECURITY INVOKER mode to limit
your exposure.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

442

Chapter 19CHAPTER 19

Tuning Stored Programs and Their SQL 19

This chapter kicks off the set of chapters in this book that are concerned with opti-
mizing the performance of your stored programs. Like any program, a stored pro-
gram might be correct in all of its functional aspects, but still be considered a failure
if it does not perform well. Performance tuning of MySQL stored programs is of par-
ticular importance because the stored program language is interpreted, and thus it
does not benefit from the performance improvements that can be obtained by opti-
mizing compilers such as the ones common in languages such as C and Java. (Strictly
speaking, Java is also an interpreted language, but the Java JVM performs a number
of sophisticated optimizations.) Stored programs also almost always involve signifi-
cant database activity and therefore are quite likely to become a performance bottle-
neck for the application as a whole.

We believe that there are three main principles of stored program optimization:

Optimize SQL
The SQL inside of a stored program must be optimized if the stored program has
any chance of running efficiently. Untuned SQL statements can easily take hun-
dreds or even thousands of times longer to return results than well-tuned SQL
statements, so we therefore recommend tuning the SQL inside a stored program
before tuning the stored program code itself. We’ll look at SQL tuning in detail
in the next few chapters.

Break up complex SQL
Sometimes you can use stored programs to break up complex and hard-to-tune
SQL statements into distinct, smaller statements that are easier to tune individu-
ally—both for the MySQL optimizer (the part of MySQL that determines how
SQL should be executed) and for the programmer who is trying to tune the SQL.
We’ll look at these cases in Chapter 22.

Perform non-SQL optimization
Finally, optimizations that are common and well known in other programming
languages also apply to the MySQL stored program language. Loop structures,
use of recursion, caching, and branching structures can all affect how fast the



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Why SQL Tuning Is So Important | 443

SQL will run. We’ll examine how to optimize the non-SQL stored program code
in detail in Chapter 22.

In this chapter, we provide a brief overview of the way in which MySQL processes
SQL statements, review the tuning tools at our disposal, and provide a brief over-
view of tuning. In subsequent chapters we will delve more deeply into the tuning of
stored programs and the SQL statements they contain.

Why SQL Tuning Is So Important
It might be surprising to you that a book dedicated to stored programming has such
extensive coverage of SQL tuning. The reason for this is simple: we regard SQL tun-
ing as an essential skill for anyone writing MySQL stored programs. The simple fact
is this:

The vast majority of your stored program execution time is going to be spent execut-
ing SQL statements.

Furthermore, poorly tuned (or untuned) SQL can result in programs that are slower
by orders of magnitude (e.g., thousands of times slower). Finally, untuned SQL
almost never scales well as data volumes increase, so even if your program seems to
run in a reasonable amount of time today, ignoring SQL statement tuning now can
result in major problems later.

An Instructive Example
The following example demonstrates just how critical the role of SQL tuning is in
overall system performance. An application executes a query (which might even be
implemented within a stored program) that involves a simple join between two
tables, as shown here:

SELECT sum(sale_value)
  FROM ta_10000 a,tb_10000 b
 WHERE a.sales_id=b.sales_id;

The tables grow in size with each day’s accumulation of data. Initial performance is
satisfactory, but within a few days performance is questionable, and within a week
the application is virtually unusable. You are called in to examine the situation.
When you examine the relationship between table size and elapsed time, you dis-
cover the relationship shown in Figure 19-1.

Not only is the performance of the query growing worse as the tables grow, but the
rate of increase is itself accelerating. Extrapolating the performance trend, you pre-
dict that by the time the tables reach their estimated peak sizes of 1,000,000 rows
each, the join will take more than 20 hours to complete!



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 19: Tuning Stored Programs and Their SQL

After examining the SQL statements involved in the application, the problem—and
the solution—seems obvious. An index is needed to support the join, and you can
create one with the following statement:

CREATE INDEX i_tb_1000 ON tb_1000 (sales_id)

Once the index is created, the performance trend adopts the profile shown in
Figure 19-2.

The performance improvement is remarkable—the elapsed time for the query has
been reduced by more than 99%, and the SQL is more than 100 times faster. Fur-
thermore, the SQL will now scale appropriately as the volumes of data in the tables
increase.

Figure 19-1. Response time and table row counts—before tuning

Figure 19-2. Table row counts versus elapsed time—after tuning

0

5

10

15

20

25

30

0 5,000 10,000 15,000 20,000
Number of rows in each table

Re
sp

on
se

 ti
m

e 
(s

ec
on

ds
)

0 5,000 10,000 15,000 20,000
Number of rows in each table

Re
sp

on
se

 ti
m

e 
(s

ec
on

ds
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

How MySQL Processes SQL | 445

No amount of server tuning, stored program tuning, or hardware upgrades could
have obtained this improvement. Any such efforts would also have been ultimately
futile, because the exponential degradation would eventually overwhelm any perfor-
mance improvements gained by other measures. For these reasons, SQL tuning
should always be performed before attempting any other optimization.

SQL tuning is the most important aspect of overall MySQL tuning.
Ensure that SQL is tuned before starting any other optimization
exercises.

How MySQL Processes SQL
The following sections provide a brief overview of the parsing and caching steps that
MySQL undertakes as it processes a SQL statement.

Parsing SQL
A SQL statement sent to the MySQL server must first be parsed. Parsing involves the
following actions:

• Ensure that the SQL statement contains valid syntax.

• Check that that you have been granted appropriate access to the objects
involved.

• Confirm that all required objects exist.

• Determine an execution plan for the SQL statement.

The execution plan represents MySQL’s strategy for retrieving or modifying the data
specified by the SQL statement. The optimizer is that part of the MySQL code that is
responsible for making these decisions. Here are some of the questions that the opti-
mizer needs to ask before it can come up with its plan:

• Is there a way to rewrite the SQL so that it will execute more efficiently?

• Are there any indexes available to retrieve the required data?

• Will using these indexes improve performance? If so, which of the possible
indexes should be used?

• If multiple tables are to be processed, in what order should the tables be pro-
cessed?

Compared to some of the major relational databases (Oracle, SQL Server, DB2),
MySQL’s optimizer might seem, at first glance, to be relatively simplistic. MySQL’s
optimizer is, however, extremely effective. You will only rarely need to rewrite a SQL
statement to make it perform more efficiently—the optimizer will usually make the
right decision. Since the optimizer cannot create “missing” indexes that might make



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 19: Tuning Stored Programs and Their SQL

your statement run faster, the most important thing you can do to assist the opti-
mizer is to create a good set of supporting indexes on your tables.

Understanding how the optimizer makes its decisions will help you to make sound
database design and SQL programming decisions. In the next two chapters, we will
look at specific SQL tuning scenarios, explain how the optimizer deals with each of
these scenarios, and discuss techniques for optimizing the SQL involved.

Caching
MySQL supports some in-memory structures (also known generally as caches),
which can improve the performance of SQL statements.

Buffer pool and key cache

Almost every SQL statement needs to work with data from the database—either to
return it to the calling program or to modify it as instructed by an INSERT, UPDATE, or
DELETE statement. In many cases, however, MySQL can obtain this data without the
overhead of disk I/O by retrieving the required data from one of a number of caches.

For MyISAM tables, MySQL relies on the operating system to cache the data con-
tained in the individual files that make up the tables. All operating systems include
read caches, and if you read from a MyISAM file more than once, there is a chance
that the data will still be in the operating system cache when you try to read it a sec-
ond time. You will usually have very little control over the size of the OS read cache,
since it is normally managed by the operating system itself.

MyISAM does, however, have its own cache for index blocks. This is controlled by
the startup parameter KEY_BUFFER_SIZE.

The InnoDB storage engine maintains a single cache for both index and table blocks.
This is controlled by the parameter INNODB_BUFFER_POOL_SIZE.

Correctly sizing these two buffers can help reduce the amount of disk I/O required to
satisfy the data requirements of your SQL statements. In general, you should allo-
cate as much memory as possible to these caches. However, beware of allocating too
much memory for the MyISAM key buffer—you might inadvertently starve the OS
read buffer and reduce the amount of memory available for caching table data.

Table cache

The table cache maintains metadata about tables in memory and also contains the
link to the storage handler’s physical representation of the table. In MyISAM, these
links are file descriptors pointing to the .frm files and the .MYD files. Each session
that needs to access a table will require its own table cache entry. The default value
of TABLE_CACHE (typically 256) is often too small for systems with large numbers of
tables and/or high numbers of concurrent users.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

How MySQL Processes SQL | 447

Query cache

Before MySQL goes to the trouble of parsing a SQL statement, it will look in the
query cache to see if it already has in memory a copy of the SQL statement and its
result set. If it finds a match, it can return the result set directly from the query cache.
This “shortcut” can greatly improve query performance. So what are the criteria for
determining a match?

In order for MySQL to take advantage of a cached result set, the new SQL statement
must match exactly the statement associated with the result set, including whitespace
and comments. If the same logical statement is written more than once within an
application, there is a very good chance that the statements will not be physically
identical, thus negating a key performance enhancement.

In addition, if any table referred to in the statement is modified, then that statement
and its result set will be flushed from the query cache. This behavior makes the query
cache most useful for applications or tables that are read-intensive. If a table is being
modified many times a second—as might be the case in an OLTP application—then
it is unlikely that queries against that table are going to remain in cache long enough
to be useful. Remember: any modification to the table will cause queries using that
table to be flushed—even if the modification does not impact the rows returned by
the query.

Some SQL statements cannot be cached at all—particularly if they contain a function
that is not guaranteed to return the same result every time it is called. For instance,
the CURDATE function will return a different value (the current date-time) every time it
is called. So if you include a call to CURDATE in your query, it will not be cached.

The query cache will be most effective when at least some of the following are true:

• The SQL statements being cached are expensive to execute (they may require
scans of big tables or sort operations).

• The result sets are relatively small (otherwise, the result set may not fit in the
cache).

• The SQL statements are executed with some frequency (otherwise, the result set
may be flushed from the cache before the SQL is re-executed).

• The underlying tables are rarely modified.

You can control the size of the cache with the SET GLOBAL query_cache_size=size
statement.

You can view statistics about query cache usage with the SHOW STATUS LIKE 'qcache%';
statement.

Stored programs can benefit from the query cache. A stored program that returns a
result set will be cached, and any subsequent execution of that program can be satis-
fied using the query cache. However, SQL statements within stored programs cannot



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 19: Tuning Stored Programs and Their SQL

currently be satisfied from the cache (we might imagine that when they execute
within the database, they are executing “behind the cache”).

Table statistics

Like most query optimizers, MySQL maintains statistics about table and index data
so that it can use this additional information to formulate the most efficient execu-
tion plan.

You can view the statistics that MySQL keeps for a table with the SHOW TABLE STATUS
statement. Example 19-1 shows an example of using this statement.

You can view the statistics that MySQL keeps for the indexes on a table with the SHOW
INDEXES statement, as shown in Example 19-2.

Example 19-1. Viewing table statistics

mysql> SHOW TABLE STATUS LIKE 'sales' \G
*************************** 1. row ***************************
           Name: sales
         Engine: InnoDB
        Version: 9
     Row_format: Fixed
           Rows: 2500137
 Avg_row_length: 114
    Data_length: 285016064
Max_data_length: 0
   Index_length: 0
      Data_free: 0
 Auto_increment: 2500001
    Create_time: 2004-12-28 10:47:35
    Update_time: NULL
     Check_time: NULL
      Collation: latin1_swedish_ci
       Checksum: NULL
 Create_options:
        Comment: InnoDB free: 1766400 kB
1 row in set (0.60 sec)

Example 19-2. Viewing index statistics

mysql> SHOW INDEXES FROM sales \G
*************************** 1. row ***************************
       Table: sales
  Non_unique: 0
    Key_name: PRIMARY
Seq_in_index: 1
 Column_name: SALES_ID
   Collation: A
 Cardinality: 2500137
    Sub_part: NULL
      Packed: NULL
        Null:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Tuning Statements and Practices | 449

The two most important columns in the output from these commands are Rows and
Avg_row_length from SHOW TABLE STATUS and Cardinality from SHOW INDEXES. Cardinal-
ity reports the number of distinct rows in the index—this helps MySQL to deter-
mine how efficient the index will be in retrieving rows. Indexes that have a high
cardinality-to-rows ratio are often called selective indexes.

These statistics are created by MySQL (or the storage engine) during certain opera-
tions such as bulk loads/deletes, index creation, and ALTER TABLE operations. You can
request that MySQL update the statistics with the ANALYZE TABLE statement. If your
database is subject to large fluctuations in data volumes, you may want to run
ANALYZE TABLE periodically, but be aware that this statement places a read lock on the
table, preventing concurrent update, and therefore should not be run during times of
heavy concurrent updates activity.

The optimizer also obtains additional statistics at runtime by probing a table’s
indexes to determine the relative cardinality of an index against the query values
requested. Through this analysis, the optimizer may determine that although an
index has low overall cardinality, it is highly selective for the values provided in the
query.

Suppose, for instance, that we have an index on gender ('male', 'female', 'unsure').
MySQL will ignore this index for a query that requests all males or all females, but
will choose to use the index for a query of all those unsure of their gender. Since this
group comprises only a small proportion of the rows, the index will, in this case,
help MySQL locate the total result set quickly. We’ll look in detail in the next chap-
ter at how MySQL chooses indexes.

SQL Tuning Statements and Practices
MySQL provides several statements and utilities that assist with tuning SQL, and
you need to be familiar with these resources. The statements and utilities are
described in the following sections.

EXPLAIN Statement
The most important SQL tuning statement in the MySQL language is EXPLAIN.
EXPLAIN exposes the execution plan that the optimizer will use to resolve a particular
SQL statement. Without EXPLAIN, you are doomed to trial-and-error tuning.

EXPLAIN has a simple syntax:

EXPLAIN sql_text;

  Index_type: BTREE
     Comment:
1 row in set (0.18 sec)

Example 19-2. Viewing index statistics (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 19: Tuning Stored Programs and Their SQL

EXPLAIN returns a result set consisting of at least one row for each table referenced in
the SQL. Additional rows might be returned to indicate how subqueries or derived
tables are used in the query. Example 19-3 is a simple demonstration of an explain
plan for a two-table join (we used the \G option to print the output with each col-
umn on a separate line).

Let’s take a look at the most important pieces of information from these plans. Num-
bers used in the explanation below correspond to superscripts in the EXPLAIN output
above.

1. For joins, the order of the rows output by EXPLAIN corresponds to the join order,
so the presence of the employees table in the first row indicates that employees
was the first table in the join.

2. customers is the second table in the join.

3. MySQL had a choice between the primary key index and the i_employees_name
index.

4. MySQL chose the i_employees_name index to retrieve rows from employees. This
index was on (surname, firstname).

Example 19-3. Example of EXPLAIN output

mysql> EXPLAIN SELECT customer_name
    ->   FROM employees join customers
    ->        ON(customers.sales_rep_id=employees.employee_id)
    ->  WHERE employees.surname='GRIGSBY'
    ->    AND employees.firstname='RAY' \G

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: employees1

         type: ref
possible_keys: PRIMARY,i_employees_name3

          key: i_employees_name4

      key_len: 80
          ref: const,const
         rows: 15

        Extra: Using where; Using index6

*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: customers2

         type: ref
possible_keys: i_customers_sales_rep
          key: i_customers_sales_rep8

      key_len: 9
          ref: sqltune.employees.EMPLOYEE_ID7

         rows: 55589

        Extra: Using where
2 rows in set (0.04 sec)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Tuning Statements and Practices | 451

5. MySQL has determined that it will fetch only a single row in this stage of the
query (e.g., it determined that there was only one employees row with that partic-
ular surname+firstname combination).

6. Because the columns in the i_employees_name index were the only employees col-
umns included in the SQL, MySQL was able to satisfy this part of the query
using the index alone—accessing rows in the table itself was unnecessary.

7. MySQL was required to find rows in the customers table that matched specific
values of employees.employee_id.

8. MySQL used the i_customers_sales_rep index to retrieve these rows (this was an
index on customers.sales_rep_id).

9. MySQL expected to retrieve about 5558 rows from customers. The value here
refers to the number of rows that are expected to be processed each time this
step is executed—which, in this case, is only once.

We’ll look at a variety of EXPLAIN outputs for common query scenarios in the next
few chapters. For now, the main thing to recognize and accept is that if you are going
to be tuning SQL statements, you will need to get familiar with the EXPLAIN state-
ment and learn how to interpret the EXPLAIN output.

The EXPLAIN statement is the primary tool in your SQL tuning tool-
box. You should become competent in the interpretation of EXPLAIN
output.

EXPLAIN and Stored Programs
Unfortunately, there is no way to directly obtain EXPLAIN output for the SQL state-
ments inside stored programs. EXPLAIN will generate an error if asked to explain a
CALL statement or a stored program name.

We hope that this restriction will be relaxed in future releases. In the meantime, to
tune the SQL in your stored programs, you need to work with the SQL outside of the
stored program and only add it to the program when you are satisfied that it is
optimized.

Details of the EXPLAIN Output
The output from the EXPLAIN statement consists of lines containing the following
columns:

id
Identifies the individual SELECT statement within a SQL statement that contains
multiple SELECT clauses. There will be multiple SELECT statements in SQL state-
ments that contain subqueries, in-line views, or UNION operations. All rows in the
EXPLAIN output that have the same ID will belong to the same SELECT statement.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 19: Tuning Stored Programs and Their SQL

select_type
This column identifies the type of the SELECT statement responsible for this step.
Table 19-1 lists the possible values.

table
Indicates the name of the table involved in this step. If the table is aliased within
the SQL statement, then the name of the alias rather than the name of the table
will be reported.

type
Indicates the method by which rows will be selected from the table involved.
Table 19-2 shows the possible values for the type column.

Table 19-1. Possible values for the select_type column of the EXPLAIN statement output

select_type Explanation

SIMPLE A simple SELECT statement that does not involve either subqueries or UNIONs.

PRIMARY If the SQL contains subqueries or UNIONs, PRIMARY indicates the outermost SQL. PRIMARY
could be the SELECT statement that contains subqueries within it or the first SELECT in a
UNION.

UNION The second or subsequent SELECT statements contributing to a UNION operation.

UNION RESULT The result set of a UNION operation.

SUBQUERY A subquery that returns rows that are not “dependent” on the rows in the outer SELECT. In
practice, this means that the subquery does not contain references to columns in other SELECT
statements.

DEPENDENT SUBQUERY A subquery whose results are dependent on the values in an outer SELECT. This is typical of
EXISTS subqueries and of IN subqueries (which MySQL rewrites as EXISTS).

DEPENDENT UNION The second or subsequent SELECT in a UNION that is dependent on rows from an outer
SELECT.

DERIVED SELECT that appears within a subquery within the FROM clause of another SQL.

Table 19-2. Possible values for the type column of the EXPLAIN statement output

type Explanation

all All rows in the table concerned will be read. This occurs primarily when no suitable index exists to
retrieve the rows, or when MySQL determines that a full scan of the table will be less expensive than an
index lookup.

const An index is used to retrieve all values from the table matching a constant value supplied in the WHERE
clause.

eq_ref An index is used to retrieve all rows from the table that match the rows supplied by a previous SELECT.
eq_ref is typically seen in conjunction with a well-optimized, indexed join. eq_ref indicates that all
parts of a unique or primary key index are used.

ref Like eq_ref except that either only part of the index can be used or the index is not unique or primary.

ref_or_null Like ref except that the condition also includes a search for null values.

index merge Occurs when MySQL merges multiple indexes to retrieve the results.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Tuning Statements and Practices | 453

possible_keys
Lists all of the keys (indexes) that MySQL considered as having potential to
resolve this step. If an index is listed here, but is not used to resolve the step, you
can consider using optimizer hints to force or encourage the use of the index. If
the index is not listed, then in all probability MySQL cannot use it.

key
Indicates the key (index) that MySQL used to resolve the query.

key_len
Shows the length of the columns in the index used to resolve the query. If there
is more than one column in the index, key_len might indicate that only part of
the index is used.

ref
Shows which columns are used to select rows from the table. ref may list col-
umns from other tables (join columns from other tables) or the word const if a
constant value will be used (this constant value might have come from a WHERE
clause literal, or might have been obtained earlier in the query execution).

rows
Indicates the number of rows that MySQL estimates will be processed by this
step.

Extra
Contains additional information about the execution step. Possible values for
Extra are shown in Table 19-3. Multiple values from this column may appear in
the Extra column, separated by semicolons.

unique_
subquery

An index lookup is used to satisfy the result of a subquery.

range An index is used to retrieve a range of values from the table. This occurs typically when >, <, or
BETWEEN operators are involved.

index A full scan of the index is undertaken to find the necessary rows.

Table 19-3. Possible values for the extra column of the EXPLAIN statement output

Extra Explanation

distinct MySQL will stop searching for more rows after the first match is found.

not exists Occurs in a LEFT JOIN when there is an additional WHERE clause condition that indicates that the
WHERE clause condition will never be satisfied. A LEFT JOIN with an IS NULL condition will gen-
erate this output. This allows the optimizer to eliminate the table from further processing.

range checked
for each record

There is no good general-purpose index to support a join. MySQL will determine on a row-by-row
basis whether to use an index and/or which index to use.

Table 19-2. Possible values for the type column of the EXPLAIN statement output (continued)

type Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 19: Tuning Stored Programs and Their SQL

Extended EXPLAIN
An undocumented feature of the EXPLAIN statement can be used to reveal the rewrites
that MySQL performs on a statement prior to execution.

If you issue the statement EXPLAIN EXTENDED sql, followed by SHOW WARNINGS, MySQL
will print the SQL that it actually executes, including any rewrites applied to the SQL
by the optimizer. For instance, in Example 19-4, we see how MySQL rewrites an IN
subquery to an EXISTS subquery.

Using filesort MySQL needs to return rows in order, and no index is available to support that ordering. MySQL will
need to sort the rows and may need to write to disk during that sorting. Even if there is sufficient
memory to avoid a disk sort, you will still see this tag if a sort is necessary.

Using index This step could be resolved by reading an index alone. Typically, this occurs when all of the columns
required to resolve the step are present in an index.

Using index for
group-by

Same as Using index, but used to support a GROUP BY operation.

Using temporary A temporary table is created to hold intermediate results. Often seen in conjunction with using
filesort.

Using where The results returned by this step are filtered to satisfy the WHERE clause condition.

Using sort_
union

Similar to using union except that the rows had to be sorted before the UNION could be per-
formed, usually because range conditions are involved.

Using union A form of index merge in which rows that appeared in any of the index scans are returned. Typically
used to support WHERE clause conditions that include OR conditions.

Using intersect A form of index merge in which only the rows appearing in all of the index scans are returned. Typi-
cally used to support WHERE clause conditions that include only AND conditions.

Example 19-4. Using EXPLAIN EXTENDED

mysql> EXPLAIN EXTENDED SELECT COUNT(*) FROM ta_5000 WHERE sales_id  IN (SELECT sales_id
FROM tb_5000)\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: ta_5000
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 5131
        Extra: Using where
*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: tb_5000

Table 19-3. Possible values for the extra column of the EXPLAIN statement output (continued)

Extra Explanation



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Tuning Statements and Practices | 455

Most of the time, MySQL rewrites are not particularly significant. However, if you
are completely at a loss to understand MySQL’s refusal to use an index or some
other execution plan decision, examining the rewrite might be useful.

Optimizer Hints
Optimizer hints are instructions that you can embed in your SQL that do not change
the meaning of the SQL, but rather instruct or suggest to the optimizer how you
would like the SQL to be executed.

Most of the time, you will not need to add hints. In fact, hints can be dangerous
because they limit the choices the optimizer has available, and if data in the tables
change or if new indexes are added to the table, MySQL may be unable to adapt
because of your hints. However, there definitely will be situations where you will dis-
cover that the optimizer has made a less than perfect decision and you will want to
give the optimizer specific instructions.

Table 19-4 lists the commonly used optimizer hints. We will see examples of each of
these hints in the next two chapters.

         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 4985
        Extra: Using where
2 rows in set, 1 warning (0.04 sec)

mysql> SHOW WARNINGS \G
*************************** 1. row ***************************
  Level: Note
   Code: 1003
Message: select count(0) AS `count(*)` from `sqltune`.`ta_5000` where <in_optimizer>
(`sqltune`.`ta_5000`.`SALES_ID`,<exists>(select
1 AS `Not_used` from `sqltune`.`tb_5000` where (<cache>(`sqltune`.`ta_5000`.`SALES_ID`) =
`sqltune`.`tb_5000`.`SALES_ID`)))
1 row in set (0.05 sec)

Table 19-4. MySQL optimizer hints

Hint Where it appears What it does

STRAIGHT_JOIN After the SELECT clause Forces the optimizer to join the tables in the order in which
they appear in the FROM clause. Use this if you want to force
tables to be joined in a particular order.

USE INDEX(index
[,index...])

After a table name in the
FROM clause

Instructs MySQL to only consider using the indexes listed.
MySQL may choose to use none of the indexes if it calculates
that using them would not be faster than scanning the entire
table.

Example 19-4. Using EXPLAIN EXTENDED (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 19: Tuning Stored Programs and Their SQL

Measuring SQL and Stored Program Execution
When we execute a SQL statement from the MySQL command line, MySQL is kind
enough to report on the elapsed time taken to execute the statement:

mysql> CALL TestProc1( );
Query OK, 0 rows affected (9.35 sec)

Elapsed time is a good first measurement of SQL or stored program performance,
but there are lots of reasons why elapsed time might vary between runs that may
have absolutely nothing to do with how well the SQL statement is optimized:

• Other users may be running jobs on the host while we execute our SQL state-
ments; we will be contending with them for CPU, disk I/O, and locks.

• The number of physical I/Os necessary to execute our statement will vary
depending on the amount of data cached in the operating system, the MyISAM
key cache, the InnoDB buffer pool, and/or some other storage engine–specific
cache.

For these reasons, it is sometimes better to obtain additional metrics to work out
whether our tuning efforts are successful. Useful execution statistics can be obtained
from the SHOW STATUS statement, although the level of detail will vary depending on
our storage engine, with InnoDB currently offering the most comprehensive selec-
tion of statistics.

Generally, we will want to compare before and after variables for each statistic and—
because the statistics are sometimes computed across all sessions using the MySQL
server—ensure that our session has exclusive use of the server while the statement runs.

In Example 19-5, we calculate the number of logical and physical reads performed
while counting the number of rows on the InnoDB-based sales table. Logical reads
are the number of block requests from the InnoDB buffer pool, while physical reads
reflect the number of blocks that actually had to be read from disk.

FORCE INDEX(index
[,index...])

After a table name in the
FROM clause

Instructs MySQL to use one of the indexes listed. This differs
from USE INDEX in that MySQL is instructed not to perform a
table scan of the data unless it is impossible to use any of the
indexes listed.

IGNORE INDEX(index
[,index...])

After a table name in the
FROM clause

Instructs MySQL not to consider any of the listed indexes when
working out the execution plan.

Example 19-5. Examining InnoDB execution statistics before and after SQL
statement execution

mysql> /* Logical reads before execution*/
SHOW STATUS LIKE 'Innodb_buffer_pool_read_requests';
+----------------------------------+-------+

Table 19-4. MySQL optimizer hints (continued)

Hint Where it appears What it does



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL Tuning Statements and Practices | 457

Subtracting the before values from the after values gives us a logical read count of
364,579 and a physical read count of 17,393. We also note the elapsed time of 27.67
seconds.

The next time we execute this query, we might see a lower physical read count and a
lower elapsed time because the data we need is already in cache. However, we would
not expect the logical read count to change unless the data in the table was changed.

| Variable_name                    | Value |
+----------------------------------+-------+
| Innodb_buffer_pool_read_requests | 598   |
+----------------------------------+-------+
1 row in set (0.01 sec)

mysql> /* Physical reads before execution*/
SHOW STATUS LIKE 'Innodb_data_reads';
+-------------------+-------+
| Variable_name     | Value |
+-------------------+-------+
| Innodb_data_reads | 79    |
+-------------------+-------+
1 row in set (0.01 sec)

mysql>
mysql> SELECT count(*) from sales;
+----------+
| count(*) |
+----------+
|  2500000 |
+----------+
1 row in set (27.67 sec)

mysql>
mysql> /* Logical reads after execution*/
SHOW STATUS LIKE 'Innodb_buffer_pool_read_requests';
+----------------------------------+--------+
| Variable_name                    | Value  |
+----------------------------------+--------+
| Innodb_buffer_pool_read_requests | 365177 |
+----------------------------------+--------+
1 row in set (0.46 sec)

mysql> /* Physical reads after execution*/
SHOW STATUS LIKE 'Innodb_data_reads';
+-------------------+-------+
| Variable_name     | Value |
+-------------------+-------+
| Innodb_data_reads | 17472 |
+-------------------+-------+
1 row in set (0.01 sec)

Example 19-5. Examining InnoDB execution statistics before and after SQL
statement execution (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 19: Tuning Stored Programs and Their SQL

This makes the logical read statistics (Innodb_buffer_pool_read_requests) arguably the
most useful statistics for determining if our SQL tuning efforts have been successful.

Table 19-5 shows the SHOW STATUS variables that are most useful for measuring SQL
execution performance.

The Slow Query Log
One way to identify SQL statements or stored programs that may need tuning is to
enable the MySQL slow query log. We can do this by adding the following lines to
our MySQL initialization files:

log_slow_queries
long_query_time=N

This will cause MySQL to write any queries that exceed an elapsed time exceeding N
seconds to a log file. The log file can be found in the MySQL data directory and is
named hostname-slow.log. For each SQL statement identified, MySQL will print the
SQL statement along with a few execution statistics, as shown in Example 19-6.

Table 19-5. SHOW STATUS statistics that are useful when measuring SQL performance

SHOW STATUS statistic Explanation

Innodb_buffer_pool_
read_requests

Number of requests from the InnoDB buffer pool. This statistic is sometimes called logical
reads since it reflects the absolute number of data reads required to satisfy a query. This
value will remain constant between runs provided that our data does not change. If we
observe a reduction in this statistic, then we have almost certainly improved the perfor-
mance of our query.

Innodb_data_reads Number of blocks from disk that InnoDB had to read to execute the query. If the cache is
empty, then this value will be equal to Innodb_buffer_pool_read_requests. If all
of the required blocks are in the cache, then this statistic will be 0. Usually, the value will be
somewhere in between. If two executions of the same SQL have different response times,
we can look at this statistic to determine if the difference is because one execution required
more physical I/Oa.

a For example, if we execute a new SQL statement twice, the second execution will usually have a lower
elapsed time because the first execution brings the required blocks into the InnoDB buffer pool or the
MyISAM key cache.

Innodb_rows_read Number of rows read by InnoDB to satisfy the query. For some SQL statements, we may see
excessive values for this statistic, which generally indicates that the SQL is inefficient
(because it is accessing the same rows twice, or because it is accessing more rows than are
required).

Last_query_cost Optimizer’s “cost” estimate for the last SQL executed. Unlike the other metrics, this statistic
does not require us to have to calculate a delta value. Higher costs indicate that the opti-
mizer thinks the SQL will take longer to run.

Sort_rows Number of rows that had to be sorted.

Sort_merge_passes Number of disk sort “merge runs” that had to be performed. The fewer merge runs, the
faster the sort. Chapter 21 describes sort optimization in detail.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

About the Upcoming Examples | 459

The slow query log execution statistics are not particularly enlightening, and there is
no EXPLAIN output, so we would normally paste the SQL into our MySQL client for
further analysis.

Starting with MySQL 5.1.6, the slow query log can be directed to the database table
mysql.slow_log. This allows us to more easily access the information from MySQL
clients and gives us the power to analyze the information using SQL statements. We
enable logging to this table by specifying log_output=TABLE in our initialization file.

About the Upcoming Examples
For every significant tuning principle in the following chapters, we have provided at
least one benchmarked example to illustrate the performance gains that can be
obtained. However, you should be aware of the following:

• Any example is just that—an example. Your real-life performance might not
show the same improvements that we obtained in our tests, and indeed you
might find that some of the techniques shown do not work for you at all. Differ-
ences in data volumes and distributions, the MySQL version, and the storage
engine you are using—as well as many other factors—might result in signifi-
cantly different outcomes. Nevertheless, the principles we outline are fairly gen-
eral-purpose and should work for a wide range of applications and data types.

• All of our examples were done using MySQL 5.0 with either the InnoDB or
MyISAM storage engine (with the InnoDB engine being our default). Many of
the optimizations involved (index merges, for instance) appeared only in 5.0,
and you will certainly see different results if you use a different storage engine
such as HEAP or BDB.

• We looked only at “standard” SQL that is common to all of the storage engines.
We felt that specialized operations—such as full text search or spatial queries—
were beyond the scope of this book, since our intention is to provide a founda-
tion in SQL tuning with respect to stored program development only.

We used a Perl program (MyTrace.pl) to perform our tests. This program can take a
normal SQL file, such as you might submit to the MySQL command-line client, and
it generates several varieties of performance reports that we used to display the exe-
cution plans and the performance characteristics of our examples.

Example 19-6. Example of slow query log contents

Time                 Id Command    Argument
# Time: 050214 23:42:30
# User@Host: root[root] @ localhost [127.0.0.1]
# Query_time: 67  Lock_time: 0  Rows_sent: 1  Rows_examined: 101199
use sqltune;
select count(*) from customers where contact_surname not in (select surname from
employees);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 19: Tuning Stored Programs and Their SQL

We could have used the MySQL command line to do our tests, but we decided to
develop this utility for a number of reasons:

• The EXPLAIN output is a bit awkward. When the output is printed one line per
row, the output can become garbled when wrapped to the column length. If the
output is printed one line per column (with the \G option), then the output
appears very verbose. Either way, the output is hard to read. There is also no
way to select which columns to display in the output.

• It’s rather difficult to obtain the changed values from the SHOW STATUS statement
that can reveal useful metrics such as logical or physical reads.

• For benchmarking purposes, we wanted to do things like averaging statistics
over a number of executions, measuring statistics only on a second or subse-
quent execution so as to avoid discrepancies caused by caching of data.

• The utility was capable of generating comma-separated output that we could
easily load into Excel to generate charts and perform analyses.

MyTrace.pl provides modified formats for EXPLAIN output and these formats are used
throughout the next few chapters. We think you’ll find this format easier to read and
understand. For instance, whereas in the MySQL command-line client you might
generate EXPLAIN output that looks like this:

mysql> EXPLAIN EXTENDED SELECT COUNT(*) FROM ta_5000
where sales_id  in (select sales_id from tb_5000)\G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: ta_5000
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 5131
        Extra: Using where
*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: tb_5000
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 4808
        Extra: Using where
2 rows in set, 1 warning (0.01 sec)

we would show the EXPLAIN in a more truncated format, as follows:

Short Explain
-------------



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

About the Upcoming Examples | 461

1       PRIMARY select(ALL) on ta_5000 using no key
                Using where
2       DEPENDENT SUBQUERY select(index_subquery) on tb_5000 using i_tb_5000
                Using index

or in a more extended format like this:

Explain plan
------------

ID=1 Table=a Select type=SIMPLE Access type=ALL Rows=5158
          Key=             (Possible=                              )
          Ref=             Extra=
ID=1 Table=b Select type=SIMPLE Access type=ref Rows=1
          Key=i_tb_5000    (Possible=i_tb_5000                     )
          Ref=sqltune.a.SALES_ID         Extra=Using index

The output also includes timings for each stage of statement execution and details of
any SHOW STATUS variables that changed during execution:

Phase     Elapsed (s)

Parse      0.0001
Exec       1.3808
Fetch      0.0001
-----------------
Total      1.3810

Statistic                                               Value
-------------------------------------------------------------
Bytes_received                                             99
Bytes_sent                                               4862
Com_select                                                  1
Handler_read_first                                          1
Handler_read_key                                         5003
Handler_read_rnd_next                                    5001
Innodb_buffer_pool_pages_data                              57
Innodb_buffer_pool_pages_misc                               7
Innodb_buffer_pool_read_requests                        15217
Innodb_buffer_pool_reads                                   57
Innodb_data_read                                       933888
Innodb_data_reads                                          57
Innodb_pages_read                                          57
Innodb_rows_read                                        10000
Questions                                                   2
Select_scan                                                 1
Table_locks_immediate                                       2
Uptime                                                      3

You may find the MyTrace.pl utility useful. You can find documentation and down-
load instructions for this utility at this book’s web site.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 19: Tuning Stored Programs and Their SQL

Conclusion
There is nothing to be gained by trying to optimize a stored program without first
optimizing the SQL statements that it contains. This chapter, therefore, intended to
make you familiar with some basic principles of tuning MySQL stored programs and
the SQL statements within those programs. With this knowledge, you will be able to
better absorb the more specific tuning advice in the following chapters.

Remember that the performance of individual SQL statements can vary substan-
tially, at least in part depending on whether the statement and/or the data it identi-
fies resides in a MySQL memory cache. For this reason, you should be wary of
basing your tuning efforts only on the elapsed time of SQL statements. Consider also
calculating the number of logical reads required by your statements, as this will only
decrease as efficiency improves. Unfortunately, at the time of writing, you can reli-
ably obtain the logical read rate only from the InnoDB storage engine.

The EXPLAIN statement reveals how MySQL will execute a SQL statement. In order to
effectively tune SQL, you need to become familiar with EXPLAIN and adept at inter-
preting its output.

Indexes exist primarily to improve query performance, so it’s not surprising that cre-
ating a good set of indexes is the single most important thing you can do to obtain
better SQL performance. In particular, you should support WHERE clause conditions
and join conditions with appropriate indexes—this often means creating a concate-
nated (“composite” or multicolumn) index.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

463

Chapter 20 CHAPTER 20

Basic SQL Tuning20

In this chapter, we will tune of simple SQL statements that may be included in MySQL
stored programs. In particular, we’ll optimize two of the most often executed SQL oper-
ations: retrieving data from a single table and joining two or more tables. Topics include:

• How to determine when the use of an index is required to optimize a query

• How to construct the best indexes to support specific queries

• How MySQL chooses between available indexes, and how to direct MySQL to
use a specific index if necessary

• How to avoid “suppressing” an index

• What to do when no index will suffice to optimize a query

• How MySQL processes joins between multiple tables

• How to create indexes that optimize table joins

• How to determine the optimal join order and how to force MySQL to use a par-
ticular join order

Chapter 21 builds on these fundamentals, optimizing more complex SQL operations.

Examples in this chapter are based on tables created using the InnoDB storage
engine. Although the same MySQL optimizer is used for all storage engines, you may
observe different behaviors in other storage engines because of differences in opti-
mizer statistics and indexing approaches.

Tuning Table Access
When retrieving data from a table, MySQL can basically follow one of two paths to
locating the relevant rows:

• Read every row in the table concerned (a full table scan), and return only those
rows that match the WHERE clause criteria.

• Use an index to find a subset of rows, and return the rows that match the WHERE
clause criteria.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 20: Basic SQL Tuning

Unless we need to retrieve a substantial proportion of the rows from a table, we
probably want to use an index. It should not come as a big surprise, therefore, that
much of this section will address creating the best indexes for our queries.

Index Lookup Versus Full Table Scan
A common mistake made by those new to SQL tuning is to assume that it is always
better to use an index to retrieve data. Typically, an index lookup requires three or
four logical reads for each row returned. If we only have to traverse the index tree a
few times, then that will be quicker than reading every row in that table. However,
traversing the index tree for a large number of rows in the table could easily turn out
to be more expensive than simply reading every row directly from the table.

For this reason, we generally want to use an index only when retrieving a small pro-
portion of the rows in the table. The exact break-even point will depend on your
data, your indexes, and maybe even your server configuration, but we have found
that a reasonable rule of thumb is to use an index when retrieving no more 5–10% of
the rows in a table.

To illustrate this point, consider a scenario in which we are trying to generate sales
totals over a particular period of time. To get sales totals for the previous week, for
example, we might execute a statement such as the following:

SELECT SUM( s.sale_value ),COUNT(*)
  FROM sales s
 WHERE sale_date>date_sub(curdate( ),INTERVAL 1 WEEK);

Since we have sales data for many years, we would guess that an index on sales_date
would be effective in optimizing this query—and we would be right.

On the other hand, suppose that we want to get the sales totals for the preceding
year. The query would look like this:

SELECT SUM( s.sale_value ),COUNT(*)
  FROM sales s
 WHERE sale_date>date_sub(curdate( ),INTERVAL 1 YEAR);

It is not immediately obvious that an index-driven retrieval would result in the best
query performance; it depends on the number of years of data in the table and the
relative volume of data for the preceding year. Luckily, MySQL will, in most situa-
tions, make a good determination in such cases, provided that you have given
MySQL a good set of indexes with which to work.

The MySQL optimizer predicts when to use an index based on the percentage of data
from the table it expects to retrieve given our WHERE clause. The optimizer chooses to
use the index for small intervals, while relying on a full table scan for large intervals.
This basic algorithm works well when the volume of data is evenly distributed for the
different indexed values. However, if the data is not evenly distributed, or if the



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 465

statistics on table sizing are inaccurate, then the MySQL optimizer may make a less
than perfect decision.

Figure 20-1 shows the elapsed time for retrieving various proportions of rows when
forcing an index scan or a full table scan, or when allowing the MySQL optimizer to
make that decision. In this example, MySQL switched from an index scan to a full
table scan when the rows returned represented approximately 7% of the total. How-
ever, in this case, the index outperformed the table scan until about 17% of the rows
were retrieved. So although MySQL made the correct decision in most cases, there
were a few cases where forcing an index lookup would have improved performance.

As a very rough rule of thumb, you should not expect an index to
improve performance unless you are retrieving less than 5–15% of the
table data.

There are a number of circumstances in which MySQL might not pick the best possi-
ble index. One of these circumstances is when the data is “skewed.” In the preced-
ing example, sales were fairly evenly distributed over a five-year period. However, in
the real world this is unlikely to be true—sales will be greater during certain periods
(Christmas, perhaps) and we might hope that sales would increase over time. This
“skewed” table data can make it harder for the MySQL optimizer to make the best
decision.

If you think that your data may be skewed and that MySQL may choose a table scan
or index inappropriately, you can use the USE INDEX, FORCE INDEX, or IGNORE INDEX
optimizer hints, as appropriate, to force or suppress the index. Take care to only use
these hints when absolutely necessary, as they can also prevent the MySQL optimizer

Figure 20-1. Full table scan versus indexed lookup

0

Percent of table accessed

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

Force index

Force table scan

My SQL choice

MySQL switched from index
retrieval to full table scan here

But the index outperforms
the table scan until this point



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 20: Basic SQL Tuning

from selecting the best plan if used inappropriately. These hints are explained in
more detail later, in the section “Manually Choosing an Index.”

It’s also worth noting that it is sometimes possible to resolve a query using an index
alone—provided that the index contains all of the columns from the table that are
referenced in both the SELECT and WHERE clauses. In this case, the index can be used in
place of the table, and can perform very efficiently, even when retrieving a very large
proportion (or all) of the rows in the table. See the section “Covering indexes” later
in this chapter for more details.

How MySQL Chooses Between Indexes
In the above examples, MySQL switched between an index and a full table scan as
the number of rows to be retrieved increased. This is a pretty neat trick—just how
did MySQL work this out?

When you send a SQL statement to the MySQL server, MySQL has to parse the
statement, which involves all of the following: verify that the SQL syntax is correct;
ensure that the user has the necessary authority to run the statement; and determine
the exact nature of the data to be retrieved. As part of this process, MySQL deter-
mines if any of the indexes defined on the table would help optimize the query.

The MySQL optimizer has a general sense of the “selectivity” of an index—how
many rows an average index lookup will return—and of the size of the table. The
optimizer examines the index to work out how many rows will have to be used given
the values in the WHERE clause and the range of values in the index. MySQL then cal-
culates the relative overhead of using the index and compares this value to the over-
head of scanning the full contents of the table.

For most queries, this simple but effective strategy allows MySQL to choose between
a full table scan and an indexed lookup, or to choose between multiple candidate
indexes.

Manually Choosing an Index
You can add hints to your SQL statement to influence how the optimizer will choose
between various indexing options. You should only do this if you have determined
that MySQL is not making the optimal decision on index utilization. These hints can
appear after the table name within the FROM clause. The three hints are:

USE INDEX(list_of_indexes)
Tells MySQL to consider only the indexes listed (i.e., to ignore all other indexes)

IGNORE INDEX(list_of_indexes)
Tells MySQL to ignore any of the listed indexes when determining the execu-
tion plan



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 467

FORCE INDEX(list_of_indexes)
Tells MySQL to use one of the listed indexes even if it has determined that a full
table scan would be more efficient

For instance, to force the use of an index named sales_i_date, we could write a
query as follows:

SELECT SUM( s.sale_value ),count(*)
  FROM sales s FORCE INDEX(sales_i_date)
 WHERE sale_date>date_sub(curdate( ),INTERVAL 1 WEEK);

Prefixed (“Partial”) Indexes
MySQL allows you to create an index based on the first few characters of a column.
For instance, the following statement creates an index based on the first four bytes of
the customer’s address:

CREATE INDEX i_cust_name_l4 on customers(address1(4));

Partial indexes generally use less storage than “full” indexes, and in some cases may
actually improve performance, since a smaller index is more likely to fit into the
MySQL memory cache. However, we encourage you to create partial indexes with
great care. A very short partial index may actually be worse than no index at all. For
very long columns, the partial index might be as good as the full index—it all
depends on how many bytes you need to read to get an exact match on the column
concerned.

For instance, consider searching for a customer by address, as follows:

SELECT *
  FROM customers
 WHERE address1 = '1000 EXCEPTIONABLE STREET';

There might be plenty of customers that have an address starting with '1000'. Many
fewer will have an address starting with '1000 E', and by the time we extend the
search to '1000 EX', we might be matching only a single customer. As we extend the
length of the partial index, it becomes more “selective” and more likely to match the
performance of a full index.

Figure 20-2 shows the results of doing the above search for various prefix lengths.
For this data, prefix lengths of 1 or 2 are worse than no index at all; a length of 3 is
slightly better than no index; while lengths greater than 3 are quite effective. Once
the length hits 6, no further increase in the length of the prefix increased the effec-
tiveness of the index. Remember that the optimum length for your prefixed index
depends entirely on the data item you are searching for—in this case, short prefixes
did not work well because most addresses started with street numbers that were not
very selective. For more selective data—surname for instance—prefixed indexes
could be much more effective.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 20: Basic SQL Tuning

Concatenated Indexes
A concatenated index—often called a composite index—is an index that is created on
multiple columns. For instance, if we frequently retrieve customers by name and date
of birth, we might create an index as follows:

CREATE INDEX i_customers_first_surname_dob ON
   customers(contact_surname, contact_firstname,date_of_birth);

There is very little chance that two customers would have the same first name, sur-
name, and date of birth, so use of this index would almost always take us to a single,
correct customer. If you find that you frequently need to query against the same set
of multiple columns’ values on a table, then a concatenated index based on those
columns should help you optimize your queries.

If a query references multiple columns from a single table in the WHERE
clause, consider creating a concatenated (composite or multicolumn)
index on those columns.

For instance, to optimize the following query, we should probably create a concate-
nated index on customer_id, product_id, and sales_rep_id:

SELECT count(*), SUM(quantity)
  FROM sales
 WHERE customer_id=77
   AND product_id=90
   AND sales_rep_id=61;

This index would be defined as follows:

CREATE INDEX I_sales_cust_prod_rep ON
    sales(customer_id,product_id,sales_rep_id);

Figure 20-2. Performance of “partial” indexes of various lengths

Logical reads

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

2

4

6

8

40

No index 3,805

29,273 79,005

3,766
371
39

10
10
10

10

10

In
de

x l
en

gt
h 

(in
 ch

ar
ac

te
rs

)

1

3

5

7

12



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 469

We can use a concatenated index to resolve queries where only some of the columns
in the index are specified, provided that at least one of the “leading” columns in the
index is included.

For instance, if we create an index on (surname,firstname,date_of_birth), we can
use that index to search on surname or on surname and firstname, but we cannot use
it to search on date_of_birth. Given this flexibility, organize the columns in the
index in an order that will support the widest range of queries. Remember that you
can rarely afford to support all possible indexes because of the overhead indexes add
to DML operations—so make sure you pick the most effective set of indexes.

A concatenated index can support queries that provide a subset of the
columns in the index, provided that none of the leading columns is
omitted. Pick the order of your columns in the concatenated index
carefully to support the widest possible range of queries.

Merging multiple indexes

While a concatenated index on all the columns in the WHERE clause will almost always
provide the best performance, sometimes the sheer number of column combinations
will prevent us from creating all of the desirable concatenated indexes.

For instance, consider the sales table in our sample database. We may want to sup-
port queries based on any combination of customer_id, product_id, and sales_rep_
id—that would only require four indexes. Add another column and we would need
at least six indexes. All of these indexes take up space in the database and—perhaps
worse—slow down inserts, updates, and deletes. Whenever we insert or delete a
row, we have to insert or delete the index entry as well. If we update an indexed col-
umn, we have to update the index as well.

If you can’t create all of the necessary indexes, do not despair. MySQL 5.0 can merge
multiple indexes quite effectively. So instead of creating a concatenated index on the
three columns, we could create indexes on each of the columns concerned. MySQL
will merge rows retrieved from each index to find only those rows matching all
conditions.

Index merges can be identified by the index_merge access type in the EXPLAIN state-
ment output. All the indexes being merged will be listed in the keys column, and the
Extra column will include a Using intersect clause with the indexes being merged
listed. Example 20-1 shows the EXPLAIN output for a query that performs an index
merge.

Example 20-1. Example of an index merge

SELECT count(*), SUM(quantity)
  FROM sales
 WHERE customer_id=77
   AND product_id=90



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 20: Basic SQL Tuning

Not all index merges are equal; just as indexes on different columns will have differ-
ent performance characteristics (due to their selectivity), different combinations of
merged indexes will yield the best result. Figure 20-3 shows the performance for the
three possible single-column indexes created to support our example query, and
shows the performance of each possible merge of two indexes. As you can see, the
best result was obtained by merging the two most selective indexes.

Covering indexes

Creating a covering index is a very powerful technique for squeezing the last drop of
performance from your indexes. If there are only a few columns in the SELECT clause
that are not also in the WHERE clause, you can consider adding these columns to the
index. MySQL will then be able to resolve the query using the index alone, avoiding
the I/Os involved in retrieving the rows from the table. Such an index is sometimes
called a covering index.

For our previous example, if we add the quantity column to the index, our query can
be resolved from the index alone. In the EXPLAIN output, the Extra column will
include the tag Using index to indicate that the step was resolved using only the
index, as in Example 20-2.

   AND sales_rep_id=61

Explain plan
------------

ID=1   Table=sales   Select type=SIMPLE  Access type=index_merge  Rows=1
       Possible keys=i_sales_customer,i_sales_product,i_sales_rep
       Key=i_sales_rep,i_sales_customer,i_sales_product Length=9
       Ref=
       Extra=Using intersect(i_sales_rep, i_sales_customer,i_sales_product);
          Using where

Figure 20-3. Comparison of various single-column indexes and index merge performance

Example 20-1. Example of an index merge (continued)

Logical reads

0 20,000 40,000

Sales rep + customer 495

60,000 80,000 100,000 120,000

Product + customer

Sales rep + product

Customer only

Sales rep only

Product only

2, 321

2, 491

4, 954

9, 652

100, 047

In
de

xe
s u

se
d



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 471

For queries that retrieve only a single row, the savings gained by covering indexes are
probably going to be hard to notice. However, when scanning multiple rows from a
table, the cost savings add up rapidly. In fact, it is often quicker to use a covering
index to return all the rows from a table than to perform a full table scan. Remember
that for normal indexed retrieval, the (very rough) rule of thumb is that the index
probably isn’t worth using unless you are accessing maybe 10% of the rows in the
table. However, a covering index might be appropriate even if all of the rows are
being read.

Covering indexes—which allow a query to be resolved from the index
alone—can be efficient even if all or most of a table is being accessed.

Comparing the Different Indexing Approaches
Figure 20-4 summarizes the performance of the various options for resolving our
sample query (retrieving sales totals for a specific sales rep, customer, and product).
Even for this simple query, there is a wide range of indexing options; in fact, we did
not try every possible indexing option. For example, we didn’t try a concatenated
index on product_id + sales_rep_id.

There are a several key lessons to be learned from these examples:

Not all index plans are equal
Novice SQL programmers are often satisfied once they see that the EXPLAIN out-
put shows that an index is being used. However, there is a huge difference
between the performance provided by the “best” and the “worst” index (in this
example, the worst index was more than 10,000 times more expensive than the
best index!).

Example 20-2. Using a covering index

SELECT count(*), SUM(quantity)
  FROM sales
 WHERE customer_id=77
   AND product_id=90
   AND sales_rep_id=61

Explain plan
------------

ID=1   Table=sales Select type=SIMPLE Access type=ref          Rows=1
    Possible keys=i_sales_cust_prod_rep_quant
    Key=i_sales_cust_prod_rep_quant    Length=27
    Ref=const,const,const
    Extra=Using index



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 20: Basic SQL Tuning

Concatenated indexes rule
The best possible index for any particular table access with more than one col-
umn in the WHERE clause will almost always be a concatenated index.

Think about over-indexing
If the SELECT list contains only a few columns beyond those in the WHERE clause, it
is probably worth adding these to the index.

Remember that indexes come at a cost
Indexes are often essential to achieve decent query performance, but they will
slow down every INSERT and DELETE and many UPDATE operations. You need to
make sure that every index is “paying its way” by significantly improving query
performance.

Rely on merge joins to avoid huge numbers of concatenated indexes
If you have to support a wide range of column combinations in the WHERE clause,
create concatenated indexes to support the most common queries, and single-
column indexes that can be merged to support less common combinations.

Avoiding Accidental Table Scans
There are a few circumstances in which MySQL might perform a full table scan even if
a suitable index exists and perhaps even after you instruct MySQL to use an index with
the FORCE INDEX hint. The three main reasons for such “accidental” table scans are:

• You modify an indexed column in the WHERE clause with a function or an operator.

• You are searching for a substring within an indexed column.

• You are using only some of the columns within a concatenated index, and the
order of columns in the index does not support searching on the columns you
have specified.

Let’s look at each situation in the following sections.

Figure 20-4. Comparison of different indexing techniques when retrieving sales total for specific
product, customer, and sales rep

Logical reads

0

Concatenate customer + product + rep + quantity 9
11
42
495
2, 321
2, 491
4, 954
9, 652

100, 047 364, 686

50, 000 100, 000 150, 000 200, 000 250, 000 300, 000 350, 000 400, 00

Concatenate customer + product + rep
Concatenate customer + product

Merge customer + rep
Merge customer + product

Merge rep + product
Customer only
Sales rep only

Product only
No ideas

In
de

xi
ng



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 473

Accidentally suppressing an index using a function

One of the most common causes for what might appear to be an inexplicable refusal
by MySQL to use an index is some kind of manipulation of the query column.

For instance, let’s suppose that we are trying to find all customers that are older than
55 (we might want to target them for a specific sales campaign). We have an index
on date_of_birth and the index is certainly selective, but MySQL does not use the
index, as shown in Example 20-3.

The problem here is that by enclosing the date_of_birth column within the DATEDIFF
function, we prevent MySQL from looking up values in the index. If we rewrite the
query so that the functions are applied to the search value rather than the search col-
umn, we see that the index can be used, as shown in Example 20-4.

Avoid modifying search columns in the WHERE clause with functions or
operators, as this could suppress an index lookup. Where possible,
modify the search value instead.

Accidentally suppressing an index using a substring

Another way to suppress an index on a column is to search on a nonleading sub-
string of the column. For instance, indexes can be used to find the leading segments
of a column, as shown in Example 20-5.

Example 20-3. Index suppressed by function on query column

SELECT *
  FROM customers
 WHERE (datediff(curdate( ),date_of_birth)/365.25) >55

Short Explain
-------------
1    SIMPLE select(ALL) on customers using no key
        Using where

Example 20-4. Applying a function to the search value does not suppress the index

SELECT *
  FROM customers
 WHERE date_of_birth < date_sub(curdate( ),interval 55 year)

Short Explain
-------------
1    SIMPLE select(range) on customers using i_customer_dob
          Using where



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 20: Basic SQL Tuning

But we can’t use the index to find text strings in the middle of the column, as dem-
onstrated in Example 20-6.

If you have text strings and need to search for words within those
strings, you could consider using the MyISAM full-text search capabil-
ity. Otherwise, be aware that you can only use indexes to find leading
substrings within character columns.

Creating concatenated indexes with a poor column order

Another time we might experience an accidental table scan is when we expect a con-
catenated index to support the query, but we are not specifying one of the leading
columns of the index. For instance, suppose that we created an index on customers
as follows:

CREATE INDEX i_customer_contact
   ON customers(contact_firstname, contact_surname)

It might seem natural to create this index with firstname before surname, but that is
usually a poor choice, since concatenated indexes can only be used if the leading col-
umns appear in the query, and it is more common to search on surname alone than
on firstname alone.

For instance, the index can support a query to find a customer by contact_firstname:

SELECT *
  FROM customers
 WHERE contact_firstname='DICK'

Short Explain
-------------
1    SIMPLE select(ref) on customers using i_customer_contact
          Using where

Example 20-5. Indexes can be used to search for a leading portion of a string

SELECT *
  FROM customers
 WHERE customer_name like 'HEALTHCARE%'

Short Explain
-------------
1    SIMPLE select(range) on customers using i_customer_name
          Using where

Example 20-6. Indexes can’t be used to find nonleading substrings

SELECT * FROM customers WHERE customer_name LIKE '%BANK%'

Short Explain
-------------
1    SIMPLE select(ALL) on customers using no key
          Using where



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 475

But MySQL cannot use the index if only contact_surname is specified:

SELECT *
  FROM customers
 WHERE contact_surname='RADFORD'

Short Explain
-------------
1    SIMPLE select(ALL) on customers using no key
          Using where

We probably should have created the index as (contact_surname,contact_firstname)
if we need to support searching by surname only. If we want to support searching
whenever either the surname or the firstname appears alone, then we will need an
additional index.

A concatenated index cannot be used to resolve a query unless the
leading (first) column in the index appears in the WHERE clause.

Optimizing Necessary Table Scans
We don’t necessarily want to avoid a full table scan at all cost. For instance, we
might choose not to create an index to support a unique query that only runs once
every month if that index would degrade UPDATE and INSERT statements that are being
executed many times a second.

Furthermore, sometimes the nature of our queries leaves no alternative to perform-
ing a full table scan. For instance, consider an online book store that maintains a
database of books in stock. One of the key tables might contain a row for each indi-
vidual book, as shown in Figure 20-5.

Figure 20-5. Single-table book catalog

Book id

isbn
title
subtitle
author
publisher
pub_date
edition
description
jacket_image
quantity_in_stock
minimum_quantity
books_on_order
wholesale_price
retail_price

INT

VARCHAR(20)
VARCHAR(80)
VARCHAR(80)
VARCHAR(80)
VARCHAR(80)
DATE
INT
TEXT
BLOB
INT
INT
INT
DECIMAL(8,2)
DECIMAL(8,2)

<pk>

Book_catalog



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 20: Basic SQL Tuning

Every day, an inventory report is run that summarizes inventory and outstanding
orders. The core of the report is the SQL shown in Example 20-7.

There is no WHERE clause to optimize with an index, so (we might think) there is no
alternative to a full table scan. Nevertheless, the person who determines whether or
not we get a raise this year strongly encourages us to improve the performance of the
query. So what are we going to do?

If we must read every row in the table, then the path to improved performance is to
decrease the size of that table. There are at least two ways of doing this:

• Move any large columns not referenced in the query to another table (provided
that this doesn’t degrade other critical queries).

• Create an index based on all of the columns referenced in the query. MySQL can
then use the index alone to satisfy the query.

Let’s consider splitting the table as a first option. We can see in Figure 20-5 that the
book_catalog table contains both a BLOB column containing a picture of the book’s
cover and a TEXT column containing the publisher’s description of the book. Both of
these columns are large and do not appear in our query. Furthermore, it turns out
that these columns are never accessed by a full table scan—the only time the descrip-
tion and cover picture are accessed is when a customer pulls up the details for a sin-
gle book on the company’s web site.

It therefore may make sense to move the BLOB and TEXT columns to a separate table.
They can be quickly retrieved via index lookup when required, while their removal
will make the main table smaller and quicker to scan. The new two-table schema is
shown in Figure 20-6.

Removing the BLOB and TEXT columns reduced the size of the table by about 60% and
more than halved the time required to perform a full table scan (see Figure 20-7).

Another option to consider when faced with a seemingly unavoidable full table scan
is to create an index on the columns concerned and resolve the query with an index

Example 20-7. SQL for inventory report example

SELECT publisher,
       SUM(quantity_in_stock) on_hand_quantity,
       SUM(quantity_in_stock*wholesale_price) on_hand_value,
       SUM(books_on_order) books_on_order,
       SUM(books_on_order*wholesale_price) order_value
  FROM book_catalog
 GROUP BY publisher

Short Explain
-------------
1    SIMPLE select(ALL) on book_catalog using no key
        Using temporary; Using filesort



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 477

scan rather than a table scan. The index is likely to be smaller than the table. For our
example report, we could create an index as follows:

CREATE INDEX i_book_inventory ON book_catalog
        (publisher,quantity_in_stock,wholesale_price,books_on_order)

The EXPLAIN output (which follows) shows that now only the index is used to resolve
the query (as shown by the Using index note in the Extra column), and, as we can see
in Figure 20-7, this results in even better performance than removing the large col-
umns from the original table.

SELECT publisher,
      SUM(quantity_in_stock) on_hand_quantity,

Figure 20-6. Two-column book schema

Figure 20-7. Optimizing a full table scan by removing long columns or using a full index scan

Book id

isbn
title
subtitle
author
publisher
pub_date
edition
description
jacket_image
quantity_in_stock
minimum_quantity
books_on_order
wholesale_price
retail_price

INT

VARCHAR(20)
VARCHAR(80)
VARCHAR(80)
VARCHAR(80)
VARCHAR(80)
DATE
INT
TEXT
BLOB
INT
INT
INT
DECIMAL(8,2)
DECIMAL(8,2)

<pk>

Book_catalog

Book id

description
jacket_image

INTEGER(11)

TEXT
BLOB

<pk,fk>

Book_details

1..1

Full index scan

Long columns removed

Original table scan

0 0.2 0.4 0.6 0.8 1 1.2
Elapsed time (seconds)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 20: Basic SQL Tuning

      SUM(quantity_in_stock*wholesale_price) on_hand_value,
      SUM(books_on_order) books_on_order,
      SUM(books_on_order*wholesale_price) order_value
  FROM book_catalog
 GROUP BY publisher

Short Explain
-------------
1    SIMPLE select(index) on book_catalog using i_book_inventory
          Using index

One of the reasons that the index performs so well in this case is that MySQL uses
the index to optimize the GROUP BY clause. Previous examples all created and sorted
temporary tables (shown by Using temporary;using filesort in the EXPLAIN output).
Because the leading column of the index was publisher, and because this column is
also the column to be sorted to support the GROUP BY clause, no sort was required.
We’ll discuss the topic of optimizing GROUP BY and ORDER BY using indexes in detail in
the next chapter.

Using Merge or Partitioned Tables
Sometimes we are faced with queries that retrieve a proportion of the table that is too
high to be optimized by an index, but that is still only a fraction of that table’s total.
For instance, we might want to optimize a query that retrieves sales data for a partic-
ular year. An index to support such a query might return too high a percentage of
rows in the table and actually take longer than a full table scan.

One possible way to optimize this scenario is to create a separate table for each year’s
sales, so that we are able to retrieve data for a particular year from the particular
table, thus avoiding the overhead of scanning all of our sales data.

Separate tables for each year would make application code fairly awkward; the pro-
grammer would need to know which table to use for a given query, and we would
have to provide some way to retrieve data for all years when necessary. To avoid this
problem, MyISAM offers merge tables. A MyISAM merge table is a logical table that
comprises multiple real tables that are UNIONed together. You can insert into a merge
table (provided that the INSERT_METHOD is not set to NO), and you can query from it as
you would a normal table.

For instance, we could create separate sales tables for each year, as shown in
Example 20-8.

Example 20-8. Creating MyISAM merge tables

CREATE TABLE SALES2000 TYPE=MYISAM AS
SELECT *
  FROM sales
 WHERE sale_date BETWEEN '2000-01-01' AND '2000-12-31';



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Table Access | 479

If we need to obtain sales data for a particular year, we can do so fairly quickly by
accessing one of the merge table’s constituents directly. For queries that span year
boundaries, we can access the merge table itself. We also have the advantage of being
able to purge old rows very quickly by rebuilding the merge table without the
unwanted years and then dropping the old table.

However, you should bear in mind that when you access the merge table directly,
you will experience an additional overhead as MySQL merges the individual tables
into a logical whole. This means that scanning the merge table will take substantially
longer than scanning a single table containing all of the necessary data.

In MySQL 5.1 (which is alpha as we finalize this chapter), we can create a parti-
tioned table to provide a similar solution to merge tables, as well as to provide other
management and performance advantages. Example 20-9 shows the syntax for creat-
ing a MySQL 5.1 partitioned table that is similar to the MyISAM merge table created
in the previous example.

CREATE TABLE SALES2001 TYPE=MYISAM AS
SELECT *
  FROM sales
 WHERE sale_date BETWEEN '2001-01-01' AND '2001-12-31';

 . . . Create other "year" tables . . .
CREATE TABLE all_sales
   (sales_id     INT(8)   NOT NULL PRIMARY KEY,
    . . . Other column definitions . . .
    Gst_flag     NUMERIC(8,0))
 TYPE=MERGE
UNION=(sales_pre_2000,sales2001,sales2002,
        sales2003,sales2004,sales2005,sales2006)
 INSERT_METHOD=LAST ;

Example 20-9. Creating MySQL 5.1 partitioned tables

CREATE TABLE sales_partitioned (
  sales_id    INTEGER NOT NULL,
  customer_id INTEGER NOT NULL,
  product_id  INTEGER NOT NULL,
  sale_date   DATE NOT NULL,
  quantity     INTEGER NOT NULL,
  sale_value   DECIMAL (8,0) NOT NULL
)  ENGINE=InnoDB
PARTITION BY RANGE (YEAR(sale_date)) (
  PARTITION p_sales_pre2000 VALUES LESS THAN (2000),
  PARTITION p_sales_2000 VALUES LESS THAN (2001),
  PARTITION p_sales_2001 VALUES LESS THAN (2002),
  PARTITION p_sales_2002 VALUES LESS THAN (2003),
  PARTITION p_sales_2003 VALUES LESS THAN (2004),
  PARTITION p_sales_2004 VALUES LESS THAN (2005),

Example 20-8. Creating MyISAM merge tables (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 20: Basic SQL Tuning

If we issue a query that requires data from only one of the partitions, MySQL will be
able to eliminate unnecessary partitions from the scan, allowing us to rapidly retrieve
information for an individual year. Partitioned tables offer a host of other perfor-
mance advantages, such as rapid purging of stale data, parallel processing of large
result sets, and easier distribution of I/O across multiple disk devices. Partitioning is
one of the major new features of MySQL 5.1.

Tuning Joins
So far we have looked at tuning SQL queries against a single table only. Let’s move
on to tuning SQL queries that join rows from two or more tables.

How MySQL Joins Tables
MySQL currently joins tables using a fairly simple technique with a complicated-
sounding name. The MySQL manual refers to the join algorithm as single-sweep
multi-join. In essence, when MySQL joins two tables, it will read the rows from the
first table and—for each row—search the second table for matching rows. Further
details can be found in the MySQL Internals Manual; see http://dev.mysql.com/doc/
internals/en/index-merge-overview.html.

Joins Without Indexes
The basic join algorithm is not very well suited to joining multiple tables unless there
are indexes to support the join.* Performance might be adequate for very small
tables, but as table sizes increase, the join overhead will increase rapidly. Even worse,
the join overhead will increase almost exponentially.

Figure 20-8 shows how response time increases for nonindexed joins as the size of each
table increases. This semi-exponential degradation is extremely undesirable: if we
extrapolate the response time curve for larger tables, we predict that it would take 20
minutes to join two tables of 100,000 rows, 20 hours to join two tables with 1 million
rows each, and 81 days to join two tables of 10 million rows each! This is definitely not
the way you want your applications to perform as your database grows in size.

  PARTITION p_sales_2005 VALUES LESS THAN (2006),
  PARTITION p_sales_2006 VALUES LESS THAN (2007)
) ;

* We are hoping to see a join algorithm that can perform adequately in the absence of indexes—the hash join
algorithm—in MySQL 5.2.

Example 20-9. Creating MySQL 5.1 partitioned tables  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Joins | 481

Joins with Indexes
To get predictable and acceptable performance for our join, we need to create
indexes to support the join. Generally, we will want to create concatenated indexes
based on any columns in a table that might be used to join that table to another
table. However, we don’t need an index on the first (or “driving”) table’s columns;
that is, if we are joining customers to sales, in that order, then our index needs to be
on sales—we don’t need an index on both tables.

Creating an index on the join column not only reduces execution time, but also pre-
vents an exponential increase in response time as the tables grow in size. Figure 20-9
shows how the response time increases as the number of rows increases when there is
an index to support the join. Not only is performance much better (about 0.1 second
compared to more than 25 seconds for two tables of 20,000 rows), but the increase in
response time is far more predictable. Extrapolating the response time for the indexed
join, we can predict that joining two tables of 10 million rows each could be achieved
in only 40 seconds—compared to 81 days for the nonindexed join.*

Unless you are sure that the tables involved will always be very small,
always create an index (concatenated, if appropriate) to support a join
of one table to another.

Figure 20-8. Table size versus elapsed time for nonindexed joins

* Joining two very large tables may involve other types of overhead, such as passing the data back to the client
and fitting the tables in memory, but the overhead of actually performing the join with the index will be mas-
sively less than that of the unindexed join.

0

5

10

15

20

25

30

0 5,000 10,000 15,000 20,000
Number of rows in each table

Re
sp

on
se

 ti
m

e 
(s

ec
on

ds
)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 20: Basic SQL Tuning

Join Order
By far, the most important factor in the optimization of MySQL joins is to ensure
that each successive join is supported by an index. Beyond that, we should:

• Ensure that any rows to be eliminated by WHERE clause conditions are done so as
early as possible in the join.

• Pick an optimal join order. A good rule of thumb is to join tables from smallest
to largest.

Generally, the MySQL optimizer can be relied upon to pick a good join order. How-
ever, if we need to change the join order, we can use the STRAIGHT_JOIN hint to ensure
that the tables are joined in the order in which they appear in the FROM clause. For
instance, the following use of STRAIGHT_JOIN ensures that the join order is from the
smallest table (ta_1000) to the largest (ta_5000):

SELECT STRAIGHT_JOIN count(*)
  FROM ta_1000 JOIN ta_2000 USING (sales_id)
  JOIN ta_3000 USING (sales_id)
  JOIN ta_4000 USING (sales_id)
  JOIN ta_5000 USING (sales_id);

Figure 20-10 shows the difference in elapsed time when joining tables in either
ascending or descending order of table size. Joining from smallest to largest is about
twice as fast as joining from largest to smallest.

When determining a join order, tables with WHERE clauses that elimi-
nate rows should be introduced to the join as early as possible. After
that, try to join tables from smallest to largest.

Figure 20-9. Response time versus table size for an indexed join

0 5,000 10,000 15,000 20,000
Number of rows in each table

Re
sp

on
se

 ti
m

e 
(s

ec
on

ds
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Joins | 483

A Simple Join Example
Based on our discussions so far, here is a summary of the most important rules for
optimizing MySQL joins:

• Ensure that every join is supported by an index.

• Eliminate rows as early as possible in the join sequence.

• Join tables from smallest to largest.

Let’s apply these rules to a simple example.

Consider the case in which we are listing all sales for a particular customer. The
query looks like this:

SELECT SUM(sale_value)
  FROM sales JOIN customers
    ON (sales.customer_id=customers.customer_id)
 WHERE customer_name='LARSCOM INC'

With just the primary key indexes in place, the EXPLAIN output looks like this:

Short Explain
-------------
1    SIMPLE select(ALL) on sales using no key
1    SIMPLE select(eq_ref) on customers using PRIMARY
          Using where

This execution plan satisfies our first rule: an index (the primary key customer_id of
customers) is used to join sales to customers.

However, our second rule—eliminating rows as early as possible in the join
sequence—is violated: all of the sales rows are read first, even though only some of
those sales (those for a particular customer) are needed. Furthermore, we are joining
the larger table sales (2.5 million rows) to the smaller table customers (100,000
rows).

Figure 20-10. Table size and join order

Smallest to largest

Largest to smallest

0 0.5 1 1.5 2 3 42.5 3.5

Elapsed time (seconds)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 20: Basic SQL Tuning

So, what we need to achieve is an efficient join from customers to sales. This means
indexing the sales.customer_id column so that we can find sales for a particular cus-
tomer. The following index should do the trick:

CREATE INDEX i_sales_customer ON sales(customer_id)

The execution plan now looks like this:

Short Explain
-------------
1    SIMPLE select(ALL) on customers using no key
          Using where
1    SIMPLE select(ref) on sales using i_sales_customer
          Using where

This is better, but we could improve matters further if we did not have to do the full
scan on customers. Adding the following index will let us obtain the desired cus-
tomer more efficiently:

CREATE INDEX i_customer_name ON customers(customer_name)

Once this is done, the execution plan looks like this:

Short Explain
-------------
1    SIMPLE select(ref) on customers using i_customer_name
        Using where; Using index
1    SIMPLE select(ref) on sales using i_sales_customer
        Using where

This is the optimal execution plan for this query. The desired customer is found
quickly by the index, and then matching sales for that customer are found using the
i_sales_customer index. Figure 20-11 shows the performance improvements gained
by our optimizations.

Figure 20-11. Optimization of a simple join

Add index on
customer.customer_name

Add index on
sales.customer_id

Primary key only

0 2 4 6 8 10 12

Elapsed time (seconds)

14

13.76
1.15

0.02



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 485

Conclusion
In this chapter we examined some of the basic principles for tuning simple SQL
statements. Tuning SQL inside of MySQL stored programs is probably the single
most important thing we can do to avoid poorly performing stored programs.

For SQL statements that retrieve a small proportion of the rows from a table (say, 5
to 15%), you will probably want to create indexes to obtain good performance. Here
are some best practice guidelines for creating indexes:

• Create concatenated indexes that include all of the columns referenced in the
WHERE clause.

• Consider adding additional columns that appear in the SELECT list to allow for an
“index only” access path.

• Create concatenated indexes to support the widest possible range of queries—
concatenated indexes can be used for queries that reference only a subset of the
columns in the index, provided that the “leading” columns are in the WHERE
clause. This means that you should put the most commonly used columns first
in the index.

• If the number of concatenated indexes needed to support all possible queries is
too large (say five or more), create single-column indexes on selective columns
that MySQL can merge.

MySQL can join large tables effectively only if an index exists on the join columns for
at least one of the tables being joined. To optimize basic joins:

• Create a concatenated index on all of the columns used to join the two tables.

• Make sure that any WHERE clause conditions are executed before the tables are
joined. That is, the “driving table” should be the table that has the most selec-
tive condition in the WHERE clause. This will create the most efficient join.

• Provided that joins are supported by indexes and that WHERE clause conditions
are processed in the first few tables to be joined, be aware that the best join order
will be from smallest table to largest table.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

486

Chapter 21CHAPTER 21

Advanced SQL Tuning 21

In the last chapter, we emphasized that high-performance stored programs require
optimized SQL statements. We then reviewed the basic elements of SQL tuning—
namely, how to optimize single-table accesses and simple joins. These operations
form the building blocks for more complex SQL operations.

In this chapter, we will look at optimizing such SQL operations as:

• Subqueries using the IN and EXISTS operators

• “Anti-joins” using NOT IN or NOT EXISTS

• “Unamed” views in FROM clauses

• Named or permanent views

• DML statements (INSERT, UPDATE, and DELETE)

Tuning Subqueries
A subquery is a SQL statement that is embedded within the WHERE clause of another
statement. For instance, Example 21-1 uses a subquery to determine the number of
customers who are also employees.

We can identify the subquery through the DEPENDENT SUBQUERY tag in the Select type
column of the EXPLAIN statement output, as shown here:

Example 21-1. SELECT statement with a subquery

SELECT COUNT(*)
  FROM customers
 WHERE (contact_surname, contact_firstname,date_of_birth)
    IN (select surname,firstname,date_of_birth
          FROM employees)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Subqueries | 487

Explain plan
------------

ID=1     Table=customers     Select type=PRIMARY              Access type=ALL
         Rows=100459
         Key=                (Possible=                              )
         Ref=                 Extra=Using where
ID=2 Table=employees Select type=DEPENDENT SUBQUERY Access type=ALL
         Rows=1889
         Key=                (Possible=                              )
         Ref=                 Extra=Using where

The same query can also be rewritten as an EXISTS subquery, as in Example 21-2.

Note that the EXPLAIN output for the EXISTS subquery is identical to that of the IN
subquery. This is because MySQL rewrites IN-based subqueries as EXISTS-based syn-
tax before execution. The performance of subqueries will, therefore, be the same,
regardless of whether you use the EXISTS or the IN operator.

Optimizing Subqueries
When MySQL executes a statement that contains a subquery in the WHERE clause, it
will execute the subquery once for every row returned by the main or “outer” SQL
statement. It therefore follows that the subquery had better execute very efficiently: it
is potentially going to be executed many times. The most obvious way to make a
subquery run fast is to ensure that it is supported by an index. Ideally, we should cre-
ate a concatenated index that includes every column referenced within the subquery.

For our example query in the previous example, we should create an index on all the
employees columns referenced in the subquery:

CREATE INDEX i_customers_name ON customers
  (contact_surname, contact_firstname, date_of_birth)

Example 21-2. SELECT statement with an EXISTS subquery

SELECT count(*)
  FROM customers
 WHERE EXISTS (SELECT 'anything'
                 FROM employees
                where surname=customers.contact_surname
                  AND firstname=customers.contact_firstname
                  AND date_of_birth=customers.date_of_birth)

Short Explain
-------------
1    PRIMARY select(ALL) on customers using no key
          Using where
2 DEPENDENT SUBQUERY select(ALL) on employees using no key



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 21: Advanced SQL Tuning

We can see from the following EXPLAIN output that MySQL makes use of the index to
resolve the subquery. The output also includes the Using index clause, indicating that
only the index is used—the most desirable execution plan for a subquery.

Short Explain
-------------
1    PRIMARY select(ALL) on employees using no key
          Using where
2    DEPENDENT SUBQUERY select(index_subquery) on customers
           using i_customers_name

  Using index; Using where

Figure 21-1 shows the relative performance of both the EXISTS and IN subqueries
with and without an index.

Not only will an indexed subquery outperform a nonindexed subquery, but the un-
indexed subquery will also degrade exponentially as the number of rows in each of
the tables increases. (The response time will actually be proportional to the number
of rows returned by the outer query times the number of rows accessed in the sub-
query.) Figure 21-2 shows this exponential degradation.

Subqueries should be optimized by creating an index on all of the col-
umns referenced in the subquery. SQL statements containing subque-
ries that are not supported by an index can show exponential
degradation as table row counts increase.

Rewriting a Subquery as a Join
Many subqueries can be rewritten as joins. For instance, our example subquery
could have been expressed as a join, as shown in Example 21-3.

Figure 21-1. Subquery performance with and without an index

IN

EXISTS

0.1 1 10 1,000

Elaspsed time (seconds)

100

Su
bq

ue
ry 103.75

0.28 No index
Index

77.10

0.28



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Subqueries | 489

Subqueries sometimes result in queries that are easier to understand, and when the
subquery is indexed, the performance of both types of subqueries and the join is vir-
tually identical, although, as described in the previous section, EXISTS has a small
advantage over IN. Figure 21-3 compares the three solutions for various sizes of
tables.

However, when no index exists to support the subquery or the join, then the join will
outperform both IN and EXISTS subqueries. It will also degrade less rapidly as the

Figure 21-2. Exponential degradation in nonindexed subqueries

Example 21-3. Subquery rewritten as a join

SELECT count(*)
  FROM customers JOIN employees
    ON (employees.surname=customers.contact_surname
        AND employees.firstname=customers.contact_firstname
        AND employees.date_of_birth=customers.date_of_birth)

Figure 21-3. IN, EXISTS, and JOIN solution scalability (indexed query)

0
0 5,000 100,00 150,00 20,000

Number of rows in each table

50

100

150

200

250

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

0

Number of of rows in table

Indexed JOIN

Indexed IN

Indexed EXISTS

5, 000 10, 000 50, 000 20, 000
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

El
ap

se
d 

tim
e 

(s
ec

on
ds

)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 21: Advanced SQL Tuning

number of rows to be processed increases. This is because of the MySQL join optimi-
zations. Figure 21-4 shows the performance characteristics of the three solutions
where no index exists.

A join will usually outperform an equivalent SQL with a subquery—
and will show superior scalability—if there is no index to support
either the join or the subquery. If there are supporting indexes, the
performance differences among the three solutions are negligible.

Using Subqueries in Complex Joins
Although a subquery, in general, will not outperform an equivalent join, there are
occasions when you can use subqueries to obtain more favorable execution plans for
complex joins—especially when index merge operations are concerned.

Let’s look at an example. You have an application that from time to time is asked to
report on the quantity of sales made to a particular customer by a particular sales
rep. The SQL might look like Example 21-4.

We already have an index on the primary key columns for customers, employees, and
products, so MySQL uses these indexes to join the appropriate rows from these

Figure 21-4. Comparison of nonindexed JOIN, IN, and EXISTS performance

Example 21-4. Complex join SQL

SELECT COUNT(*), SUM(sales.quantity), SUM(sales.sale_value)
  FROM sales
  JOIN customers ON (sales.customer_id=customers.customer_id)
  JOIN employees ON (sales.sales_rep_id=employees.employee_id)
  JOIN products  ON (sales.product_id=products.product_id)
 WHERE customers.customer_name='INVITRO INTERNATIONAL'
   AND employees.surname='GRIGSBY'
   AND employees.firstname='RAY'
   AND products.product_description='SLX';

0

Number of rows in tables

JOIN

IN

EXISTS

10, 000 20, 000 30, 000 40, 000
0

50

100

150

200

250

El
ap

se
d 

tim
e 

(s
ec

on
ds

)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Subqueries | 491

tables to the sales table. In the process, it eliminates all of the rows except those that
match the WHERE clause condition:

Short Explain
-------------
1    SIMPLE select(ALL) on sales using no key

1    SIMPLE select(eq_ref) on employees using PRIMARY
          Using where
1    SIMPLE select(eq_ref) on customers using PRIMARY
          Using where
1    SIMPLE select(eq_ref) on products using PRIMARY
          Using where

This turns out to be a fairly expensive query, because we have to perform a full scan
of the large sales table. What we probably want to do is to retrieve the appropriate
primary keys from products, customers, and employees using the WHERE clause condi-
tions, and then look up those keys (quickly) in the sales table. To allow us to
quickly find these primary keys, we would create the following indexes:

CREATE INDEX i_customer_name ON customers(customer_name);
CREATE INDEX i_product_description ON products(product_description);
CREATE INDEX i_employee_name ON employees(surname, firstname);

To enable a rapid sales table lookup, we would create the following index:

CREATE INDEX i_sales_cust_prod_rep ON sales(customer_id,product_id,sales_rep_id);

Once we do this, our execution plan looks like this:

Short Explain
-------------
1    SIMPLE select(ref) on customers using i_customer_name
          Using where; Using index
1    SIMPLE select(ref) on employees using i_employee_name
          Using where; Using index
1    SIMPLE select(ref) on products using i_product_description
          Using where; Using index
1    SIMPLE select(ref) on sales using i_sales_cust_prod_rep
          Using where

Each step is now based on an index lookup, and the sales lookup is optimized
through a fast concatenated index. The execution time reduces from about 25 sec-
onds (almost half a minute) to about 0.01 second (almost instantaneous).

To optimize a join, create indexes to support all of the conditions in
the WHERE clause and create concatenated indexes to support all of the
join conditions.

As we noted in the previous chapter, we can’t always create all of the concatenated
indexes that we might need to support all possible queries on a table. In this case, we



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 21: Advanced SQL Tuning

may want to perform an “index merge” of multiple single-column indexes. How-
ever, MySQL will not normally perform an index merge when optimizing a join.

In this case, to get an index merge join, we can try to rewrite the join using subque-
ries, as shown in Example 21-5.

The EXPLAIN output shows that an index merge will now occur, as shown in
Example 21-6.

The performance of the index merge solution is about 0.025 second—slower than
the concatenated index but still about 1,000 times faster than the initial join perfor-
mance. This is an especially useful technique if you have a STAR schema (one very
large table that contains the “facts,” with foreign keys pointing to other, smaller
“dimension” tables).

Figure 21-5 compares the performance of the three approaches. Although an index
merge is not quite as efficient as a concatenated index, you can often satisfy a wider
range of queries using an index merge, since this way you need only create indexes on
each column, not concatenated indexes on every possible combination of columns.

Rewriting a join with subqueries can improve join performance, espe-
cially if you need to perform an index merge join—consider this tech-
nique for STAR joins.

Example 21-5. Complex join SQL rewritten to support index merge

SELECT COUNT(*), SUM(sales.quantity), SUM(sales.sale_value)
  FROM sales
 WHERE product_id= (SELECT product_id
                      FROM products
                      WHERE product_description='SLX')
   AND sales_rep_id=(SELECT employee_id
                       FROM employees
                      WHERE surname='GRIGSBY'
                        AND firstname='RAY')
   AND customer_id= (SELECT customer_id
                       FROM customers
                      WHERE customer_name='INVITRO INTERNATIONAL');

Example 21-6. EXPLAIN output for an index merge SQL

Short Explain
-------------
1    PRIMARY select(index_merge) on sales using i_sales_rep,i_sales_cust

Using intersect(i_sales_rep,i_sales_cust); Using where
4    SUBQUERY select(ref) on customers using i_customer_name

3    SUBQUERY select(ref) on employees using i_employee_name

2    SUBQUERY select(ref) on products using i_product_description



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning “Anti-Joins” Using Subqueries | 493

 Tuning “Anti-Joins” Using Subqueries
With an anti-join, we retrieve all rows from one table for which there is no matching
row in another table. There are a number of ways of expressing anti-joins in MySQL.

Perhaps the most natural way of writing an anti-join is to express it as a NOT IN sub-
query. For instance, Example 21-7 returns all of the customers who are not employees.

Another way to express this query is to use a NOT EXISTS subquery. Just as MySQL
will rewrite IN subqueries to use the EXISTS clause, so too will MySQL rewrite a NOT
IN subquery as a NOT EXISTS. So, from MySQL’s perspective, Example 21-7 and
Example 21-8 are equivalent.

Figure 21-5. Optimizing a complex join with subqueries and index merge

Example 21-7. Example of an anti-join using NOT IN

SELECT count(*)
  FROM customers
 WHERE (contact_surname,contact_firstname, date_of_birth)
    NOT IN (SELECT surname,firstname, date_of_birth
              FROM employees)

Short Explain
-------------
1    PRIMARY select(ALL) on customers using no key
          Using where
2    DEPENDENT SUBQUERY select(ALL) on employees using no key
          Using where

Example 21-8. Example of an anti-join using NOT EXISTS

SELECT count(*)
  FROM customers
 WHERE NOT EXISTS (SELECT *
                     FROM employees
                    WHERE surname=customers.contact_surname
                      AND firstname=customers.contact_firstname
                      AND date_of_birth=customers.date_of_birth)

Concatenated sales index

Index merge on sales

Primary key indexes

0 5 10 15 20 25 30

Elapsed time (seconds)

0.008

0.025

25.709

Te
ch

ni
qu

e



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 21: Advanced SQL Tuning

A third but somewhat less natural way to express this query is to use a LEFT JOIN.
This is a join in which all rows from the first table are returned even if there is no
matching row in the second table. NULLs are returned for columns from the second
table that do not have a matching row.

In Example 21-9 we join customers to employees and return NULL values for all of
the employees who are not also customers. We can use this characteristic to elimi-
nate the customers who are not also employees by testing for a NULL in a normally
NOT NULL customer column.

Optimizing an Anti-Join
The guidelines for optimizing anti-joins using subqueries or left joins are identical to
the guidelines for optimizing normal subqueries or joins. Scalability and good perfor-
mance will be achieved only if we create an index to optimize the subquery or the
join. For the previous examples, this would mean creating an index on customer
names as follows:*

CREATE INDEX i_customers_name ON employees(surname,firstname,date_of_birth);

Short Explain
-------------
1    PRIMARY select(ALL) on customers using no key
          Using where
2    DEPENDENT SUBQUERY select(ALL) on employees using no key
          Using where

Example 21-9. Example of an anti-join using LEFT JOIN

SELECT count(*)
  FROM customers
       LEFT JOIN employees
         ON (customers.contact_surname=employees.surname
             and customers.contact_firstname=employees.firstname
             and customers.date_of_birth=employees.date_of_birth)
  WHERE employees.surname IS NULL

Short Explain
-------------
1    SIMPLE select(ALL) on customers using no key

1    SIMPLE select(ALL) on employees using no key
          Using where; Not exists

* It might occur to you that creating an index on customers would produce a better join than the index on
employees. However, LEFT JOINs can only be performed with the table that will return all rows as the first table
in the join—this means that the join order can only be customers to employees, and therefore the index to
support the join must be on employees.

Example 21-8. Example of an anti-join using NOT EXISTS  (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Subqueries in the FROM Clause | 495

Figure 21-6 shows the massive performance improvements that result when we cre-
ate a supporting index for an anti-join.

Figure 21-6 also shows a substantial performance advantage for the NOT IN subquery
over NOT EXISTS or LEFT JOIN when there is no index to support the anti-join. We
noted earlier that MySQL rewrites the NOT IN-based statement to a NOT EXISTS, so it is
at first surprising that there should be a performance difference. However, examina-
tion of the NOT IN rewrite reveals a number of undocumented compiler directives
within the rewritten SQL that appear to give NOT IN a substantial performance advan-
tage in the absence of an index.

Not only is the LEFT JOIN technique slower than NOT IN or NOT EXISTS, but it degrades
much faster as the quantity of data to be processed increases. Figure 21-7 shows that
the LEFT JOIN version of the anti-join degrades much more rapidly as the size of the
tables being joined increases—this is the opposite of the effect shown for normal
subqueries, where the join solution was found to be more scalable than the sub-
query solution (refer to Figure 21-3).

To optimize an anti-join, create indexes to support the subquery or
right hand table of a LEFT JOIN. If you cannot support the subquery
with an index, use NOT IN in preference to NOT EXISTS or LEFT JOIN.

Tuning Subqueries in the FROM Clause
It is possible to include subqueries within the FROM clause of a SQL statement. Such
subqueries are sometimes called unnamed views, derived tables, or inline views.

For instance, consider the query in Example 21-10, which retrieves a list of employ-
ees and department details for employees older than 55 years.

Figure 21-6. Comparison of anti-join techniques

NOT IN

NOT EXISTS

0 140

Elapsed time (seconds)

0.34

113.67 Without index
With index

0.32

74.67

LEFT JOIN
0.22

116.69

12010080604020

An
ti-

jo
in

 te
ch

ni
qu

e



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 21: Advanced SQL Tuning

This query is well optimized—an index on date of birth finds the customers, and the
primary key index is used to find the department name on the departments table.
However, we could write this query using inline views in the FROM clause, as shown in
Example 21-11.

Figure 21-7. Scalability of various anti-join techniques (no index)

Example 21-10. Example SQL suitable for rewrite with an inline view

SELECT departments.department_name,employee_id,surname,firstname
  FROM departments
       JOIN employees
       USING (department_id)
 WHERE employees.date_of_birth<date_sub(curdate( ),interval 55 year)

Short Explain

1    SIMPLE select(range) on employees using i_employee_dob
          Using where
1    SIMPLE select(eq_ref) on departments using PRIMARY
          Using where

Example 21-11. SQL rewritten with an inline view

SELECT departments.department_name,employee_id,surname,firstname
  FROM (SELECT * FROM departments ) departments
        JOIN (SELECT * FROM employees) employees
        USING (department_id)
WHERE employees.date_of_birth<DATE_SUB(curdate( ), INTERVAL 55 YEAR)

Explain plan

1    PRIMARY select(ALL) on <derived2> using no key

1    PRIMARY select(ALL) on <derived3> using no key
          Using where
3    DERIVED select(ALL) on employees using no key

2    DERIVED select(ALL) on departments using no key

0

Number of rows in table

NOT IN

NOT EXISTS

LEFT JOIN

5, 000 10, 000 15, 000 20, 000
0

500

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

50

100

150

200

250

300

350

400

450



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Subqueries in the FROM Clause | 497

This execution plan is somewhat different from those we have looked at in previous
examples, and it warrants some explanation. The first two steps indicate that a join
was performed between two “derived” tables—our subqueries inside the FROM clause.
The next two steps show how each of the derived tables was created. Note that the
name of the table—<derived2>, for instance—indicates the ID of the step that cre-
ated it. So we can see from the plan that <derived2> was created from a full table
scan of departments.

Derived tables are effectively temporary tables created by executing the SQL inside
the subquery. You can imagine that something like the following SQL is being exe-
cuted to create the <derived2> table:

CREATE TEMPORARY TABLE derived2 AS
SELECT * FROM departments

Simply by using subqueries in the FROM clause, we have substantially weakened
MySQL’s chances of implementing an efficient join. MySQL must first execute the
subqueries’ statements to create the derived tables and then join those two derived
tables. Derived tables have no indexes, so this particular rewrite could not take
advantage of the indexes that were so effective in our original query (shown in
Example 21-10). In this case, both the index to support the WHERE clause and the
index supporting the join were unusable.

We could improve the query by moving the WHERE clause condition on employees into
the subquery, as shown in Example 21-12.

This plan at least allows us to use an index to find the relevant customers, but still
prevents the use of an index to join those rows to the appropriate department.

Example 21-12. Rewritten SQL using an inline view

SELECT departments.department_name,employee_id,surname,firstname
  FROM (SELECT * FROM departments ) departments
  JOIN (SELECT * FROM employees

WHERE employees.date_of_birth
               <DATE_SUB(curdate( ),INTERVAL 55 YEAR)) employees
 USING (department_id)

Explain plan
------------

1    PRIMARY select(system) on <derived3> using no key

1    PRIMARY select(ALL) on <derived2> using no key
          Using where
3 DERIVED select(range) on employees using i_employee_dob
          Using where
4 DERIVED select(ALL) on departments using no key



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 21: Advanced SQL Tuning

In general, avoid using derived tables (subqueries in the FROM clause),
because the resulting temporary tables have no indexes and cannot be
effectively joined or searched. If you must use derived tables, try to
move all WHERE clause conditions inside of the subqueries.

Using Views
A view can be thought of as a “stored query”. A view definition essentially creates a
named definition for a SQL statement that can then be referenced as a table in other
SQL statements. For instance, we could create a view on the sales table that returns
only sales for the year 2004, as shown in Example 21-13.

The CREATE VIEW syntax includes an ALGORITHM clause, which defines how the view
will be processed at runtime:

CREATE [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}] VIEW viewname

The view algorithm may be set to one of the following:

TEMPTABLE
MySQL will process the view in very much the same way as a derived table—it
will create a temporary table using the SQL associated with the view, and then
use that temporary table wherever the view name is referenced in the original
query.

MERGE
MySQL will attempt to merge the view SQL into the original query in an effi-
cient manner.

UNDEFINED
Allows MySQL to choose the algorithm, which results in MySQL using the MERGE
technique when possible.

Because the TEMPTABLE algorithm uses temporary tables—which will not have associ-
ated indexes—its performance will often be inferior to native SQL or to SQL that
uses a view defined with the MERGE algorithm.

Consider the SQL query shown in Example 21-14; it uses the view definition from
Example 21-13 and adds some additional WHERE clause conditions. The view WHERE
clause, as well as the additional WHERE clauses in the SQL, is supported by the index

Example 21-13.  View to return sales table data for 2004

CREATE OR REPLACE VIEW v_sales_2004
       (sales_id,customer_id,product_id,sale_date,
        quantity,sale_value,department_id,sales_rep_id,gst_flag) AS
SELECT sales_id,customer_id,product_id,sale_date,
       quantity,sale_value,department_id,sales_rep_id,gst_flag
  FROM sales
 WHERE sale_date BETWEEN '2004-01-01' AND '2004-12-31'



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning Subqueries in the FROM Clause | 499

i_sales_date_prod_cust, which includes the columns customer_id, product_id, and
sale_date.

This query could have been written in standard SQL, as shown in Example 21-15.

Alternately, we could have written the SQL using a derived table approach, as shown
in Example 21-16.

We now have four ways to resolve the query—using a MERGE algorithm view, using a
TEMPTABLE view, using a derived table, and using a plain old SQL statement. So which
approach will result in the best performance?

Based on our understanding of the TEMPTABLE and MERGE algorithms, we would pre-
dict that a MERGE view would behave very similarly to the plain old SQL statement,
while the TEMPTABLE algorithm would behave similarly to the derived table approach.
Furthermore, we would predict that neither the TEMPTABLE nor the derived table
approach would be able to leverage our index on product_id, customer_id, and sale_
date, and so both will be substantially slower.

Our predictions were confirmed. The SQLs that used the TEMPTABLE and the derived
table approaches generated very similar EXPLAIN output, as shown in Example 21-17.
In each case, MySQL performed a full scan of the sales table in order to create a
temporary “derived” table containing data for 2004 only, and then performed a full
scan of that derived table to retrieve rows for the appropriate product and customer.

Example 21-14. SQL statement that references a view

SELECT  SUM(quantity),SUM(sale_value)
  FROM v_sales_2004_merge
 WHERE customer_id=1
   AND product_id=1;

Example 21-15.  Equivalent SQL statement without a view

SELECT SUM(quantity),SUM(sale_value)
  FROM sales
 WHERE sale_date BETWEEN '2004-01-01' and '2004-12-31'
   AND customer_id=1
   AND product_id=1

Example 21-16. Equivalent SQL statement using derived tables

SELECT SUM(quantity),SUM(sale_value)
  from (SELECT *
          FROM sales
         WHERE sale_date BETWEEN '2004-01-01' AND '2004-12-31') sales
 WHERE customer_id=1
   AND product_id=1;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 21: Advanced SQL Tuning

An EXPLAIN EXTENDED revealed that the MERGE view approach resulted in a rewrite
against the sales table, as shown in Example 21-18.

Figure 21-8 shows the performance of the four approaches. As expected, the MERGE
view gave equivalent performance to native SQL and was superior to both the
TEMPTABLE and the derived table approaches.

Not all views can be resolved by a MERGE algorithm. In particular, views that include
GROUP BY or other aggregate conditions (DISTINCT, SUM, etc.) must be resolved through
a temporary table. It is also possible that in some cases the “merged” SQL generated

Example 21-17. Execution plan for the derived table and TEMPTABLE view approaches

Short Explain
-------------
1    PRIMARY select(ALL) on <derived2> using no key
          Using where
2    DERIVED select(ALL) on sales using no key
          Using where

Example 21-18. How MySQL rewrote the SQL to “merge” the view definition

SELECT sum(`prod`.`sales`.`QUANTITY`) AS `SUM(quantity)`,
       sum(`prod`.`sales`.`SALE_VALUE`) AS `SUM(sale_value)`
  FROM `prod`.`sales`
 WHERE ((`prod`.`sales`.`CUSTOMER_ID` = 1)
   AND (`prod`.`sales`.`PRODUCT_ID` = 1)
   AND (`prod`.`sales`.`SALE_DATE` between 20040101000000 and 20041231000000))

Short Explain
-------------
1    PRIMARY select(range) on sales using i_sales_cust_prod_date
          Using where

Figure 21-8. Comparison of view algorithm performance

Merge view

TEMPTABLE view

Plain old SQL

0 2 4 6 8 10 12

Elapsed time (seconds)

0.24

0.18

11.40

14

Derived table

13.73



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning ORDER and GROUP BY | 501

by MySQL might be hard to optimize and that a temporary table approach might
lead to better performance.

Views created with the TEMPTABLE algorithm may be unable to take
advantage of indexes that are available to views created with the MERGE
algorithm. Avoid using views that employ the TEMPTABLE algorithm
unless you find that the “merged” SQL cannot be effectively
optimized.

Tuning ORDER and GROUP BY
GROUP BY, ORDER BY, and certain group functions (MAX, MIN, etc.) may require that data
be sorted before being returned to the user. You can detect that a sort is required
from the Using filesort tag in the Extra column of the EXPLAIN statement output, as
shown in Example 21-19.

If there is sufficient memory, the sort can be performed without having to write inter-
mediate results to disk. However, without sufficient memory, the overhead of the
disk-based sort will often dominate the overall performance of the query.

There are two ways to avoid a disk-based sort:

• Create an index on the columns to be sorted. MySQL can then use the index to
retrieve the rows in sorted order.

• Allocate more memory to the sort.

These approaches are described in the following sections.

Creating an Index to Avoid a Sort
If an index exists on the columns to be sorted, MySQL can use the index to avoid a
sort. For instance, suppose that the following index exists:

CREATE INDEX i_customer_name ON customers(contact_surname, contact_firstname)

Example 21-19. Simple SQL that performs a sort

SELECT *
  FROM customers
 ORDER BY contact_surname, contact_firstname

Explain plan
------------

ID=1     Table=customers   Select type=SIMPLE  Access type=ALL
         Rows=101999
         Key=             (Possible=                              )
         Ref=              Extra=Using filesort



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 21: Advanced SQL Tuning

MYSQL can use that index to avoid the sort operation shown in Example 21-19.
Example 21-20 shows the output when the index exists; note the absence of the
Using filesort tag and that the i_customer_name index is used, even though there are
no WHERE clause conditions that would suggest that the index was necessary.

Reducing Sort Overhead by Increasing Sort Memory
When MySQL performs a sort, it first sorts rows within an area of memory defined
by the parameter SORT_BUFFER_SIZE. If the memory is exhausted, it writes the con-
tents of the buffer to disk and reads more data into the buffer. This process is contin-
ued until all the rows are processed; then, the contents of the disk files are merged
and the sorted results are returned to the query. The larger the size of the sort buffer,
the fewer the disk files that need to be created and then merged. If the sort buffer is
large enough, then the sort can complete entirely in memory.

You can allocate more memory to the sort by issuing a SET SORT_BUFFER_SIZE state-
ment. For instance, the following allocates 10,485,760 bytes (10M) to the sort:

SET SORT_BUFFER_SIZE=10485760;

You can determine the current value of SORT_BUFFER_SIZE by issuing the following
statement:

SHOW VARIABLES LIKE 'sort_buffer_size';

As you allocate more memory to the sort, performance will initially improve up to
the point at which the sort can complete within a single “merge run.” After that
point, adding more memory appears to have no effect, until the point at which the
sort can complete entirely in memory. After this point, adding more memory will not
further improve sort performance. Figure 21-9 shows where these two plateaus of
improvement occurred for the example above. It also shows the effect of creating an
index to avoid the sort altogether.

To find out how many sort merge runs were required to process our SQL, we can
examine the value for the status variable SORT_MERGE_PASSES from the SHOW STATUS
statement before and after our SQL executes.

Example 21-20. Using an index to avoid a sort

SELECT * from customers
 ORDER BY contact_surname, contact_firstname

Explain plan
------------

ID=1    Table=customers            Select type=SIMPLE
        Access type=index          Rows=101489
        Key=i_customer_name (Possible=                              )
        Ref=                            Extra=



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning DML (INSERT, UPDATE, DELETE) | 503

To optimize SQL that must perform a sort (ORDER BY, GROUP BY), con-
sider increasing the value of SORT_BUFFER_SIZE or create an index on
the columns being sorted.

Tuning DML (INSERT, UPDATE, DELETE)
The first principle for optimizing UPDATE, DELETE, and INSERT statements is to opti-
mize any WHERE clause conditions used to find the rows to be manipulated or
inserted. The DELETE and UPDATE statements may contain WHERE clauses, and the
INSERT statement may contain SQL that defines the data to be inserted. Ensure that
these WHERE clauses are efficient—perhaps by creating appropriate concatenated
indexes.

The second principle for optimizing DML performance is to avoid creating too many
indexes. Whenever a row is inserted or deleted, updates must occur to every index
that exists against the table. These indexes exist to improve query performance, but
bear in mind that each index also results in overhead when the row is created or
deleted. For updates, only the indexes that reference the specific columns being mod-
ified need to be updated.

Batching Inserts
The MySQL language allows more than one row to be inserted in a single INSERT
operation. For instance, the statement in Example 21-21 inserts five rows into the
clickstream_log table in a single call.

Figure 21-9. Optimizing ORDER BY through increasing sort buffer size or creating an index

0

Sort buffer size (KB)

100 1, 000 10, 000 100, 000
0

2

4

6

8

10

12

14

16

El
ap

se
d 

tim
e 

(s
ec

on
ds

)
Index

No index

18

Single merge run

Multiple merge runs

No disk sort



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 21: Advanced SQL Tuning

Batching INSERT operations in this way can radically improve performance.
Figure 21-10 shows how the time taken to insert 10,000 rows into the table decreases
as we increase the number of rows included within each INSERT statement. Inserting
one row at a time, it took about 384 seconds to insert the rows. When inserting 100
rows at a time, we were able to add the same number of rows in only 7 seconds.

Whenever possible, use MySQL’s multirow insert feature to speed up
the bulk loading of records.

Optimizing DML by Reducing Commit Frequency
If we are using a transactional storage engine—for instance, if our tables are using
the InnoDB engine—we should make sure that we are committing changes to the
database only when necessary. Excessive commits will degrade performance.

Example 21-21. Batch INSERT statement

INSERT INTO clickstream_log (url,timestamp,source_ip)
values
  ('http://dev.mysql.com/downloads/mysql/5.0.html',
   '2005-02-10 11:46:23','192.168.34.87') ,
  ('http://dev.mysql.com/downloads/mysql/4.1.html',
   '2005-02-10 11:46:24','192.168.35.78'),
  ('http://dev.mysql.com',
  '2005-02-10 11:46:24','192.168.35.90'),
  ('http://www.mysql.com/bugs',
   '2005-02-10 11:46:25','192.168.36.07'),
  ('http://dev.mysql.com/downloads/mysql/5.1.html',
   '2005-02-10 11:46:25','192.168.36.12')

Figure 21-10. Performance improvement from multirow inserts

0

450

0 20 40 60 80
Number of rows in each INSERT

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

400

350

300

250

200

150

100

50

100



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tuning DML (INSERT, UPDATE, DELETE) | 505

By default, MySQL will issue an implicit commit after every SQL statement. When a
commit occurs, a storage engine like InnoDB will write a record to its transaction log
on disk to ensure that the transaction is persistent (i.e., to ensure that the transac-
tion will not be lost if MySQL or our program crashes). These transaction log writes
involve a physical I/O to the disk and therefore always add to our response time.

We can prevent this automatic commit behavior by issuing the SET AUTOCOMMIT=0
statement and/or by issuing a START TRANSACTION statement before issuing our state-
ments. We can then issue a COMMIT statement at regular intervals, reducing the num-
ber of writes to the transaction log that will be required. (Note, though, that MySQL
will occasionally write to the transaction log anyway when memory buffers require
flushing.)

Usually, the frequency with which we commit is driven by our application logic
rather than by performance. For instance, if a user clicks a Save button in our appli-
cation, he is going to expect that the information will be permanently saved to the
database, and so we will be required to issue a COMMIT as a result. However, in batch
applications, we can often choose to commit at relatively infrequent intervals. Reduc-
ing the commit frequency can have a huge effect on DML performance.

In Figure 21-11, we see how reducing the commit frequency affected the time taken
to insert 10,000 rows into the database. At the default settings, it took about 850 sec-
onds (about 14 minutes) to insert the 10,000 rows. If we commit only after every 100
rows have been inserted, the time taken is reduced to only 8 seconds.

In these tests, the InnoDB transaction log was on the same disk as the InnoDB
tablespace files, which magnified the degradation caused by transaction log writes.
Moving the transaction log to a dedicated disk can reduce—although not elimi-
nate—the transaction log overhead.

Figure 21-11. How commit frequency affects DML performance

0

900

0 50 100 150 200
Commit frequency (rows)

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

800

700

600

500

400

300

200

100



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 21: Advanced SQL Tuning

When you are using a transactional storage engine (such as InnoDB)
in situations where your application logic permits (batch applications,
for instance), reducing the frequency at which you commit work can
massively improve the performance of INSERTs, UPDATEs, and DELETEs.

We looked at how you can manipulate commit frequency in stored programs in
Chapter 8.

Triggers and DML Performance
Because trigger code will be invoked for every row affected by the relevant DML
operation, poorly performing triggers can have a very significant effect on DML per-
formance. If our DML performance is a concern and there are triggers on the tables
involved, we may want to determine the overhead of our triggers by measuring per-
formance with and without the triggers.

We provide some more advice on trigger tuning in Chapter 22.

Conclusion
In this chapter, we looked at some more advanced SQL tuning scenarios.

We first looked at simple subqueries using the IN and EXISTS operators. As with joins
and simple single-table queries, the most important factor in improving subquery
performance is to create indexes that allow the subqueries to execute quickly. We
also saw that when an appropriate index is not available, rewriting the subquery as a
join can significantly improve performance.

The anti-join is a type of SQL operation that returns all rows from a table that do not
have a matching row in a second table. These can be performed using NOT IN, NOT
EXISTS, or LEFT JOIN operations. As with other subqueries, creating an index to sup-
port the subquery is the most important optimization. If no index exists to support the
anti-join, then a NOT IN subquery will be more efficient than a NOT EXISTS or a LEFT
JOIN.

We can also place subqueries in the FROM clause—these are sometimes referred to as
inline views, unnamed views, or derived tables. Generally speaking, we should avoid
this practice because the resulting “derived” tables will have no indexes and will per-
form poorly if they are joined to another table or if there are associated selection cri-
teria in the WHERE clause. Named views are a much better option, since MySQL can
“merge” the view definition into the calling query, which will allow the use of
indexes if appropriate. However, views created with the TEMPTABLE option, or views
that cannot take advantage of the MERGE algorithm (such as GROUP BY views), will
exhibit similar performance to derived table queries.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 507

When our SQL has an ORDER BY or GROUP BY condition, MySQL might need to sort the
resulting data. We can tell if there has been a sort by the Using filesort tag in the
Extra column of the EXPLAIN statement output. Large sorts can have a diabolical
effect on our query performance, although we can improve performance by increas-
ing the amount of memory available to the sort (by increasing SORT_BUFFER_SIZE).
Alternately, we can create an index on the columns to be sorted. MySQL can then
use that index to avoid the sort and thus improve performance.

We can achieve substantial improvements in performance by inserting multiple rows
with each INSERT statement. If we are using a transactional storage engine such as
InnoDB, we can improve the performance of any DML operations by reducing the
frequency with which we commit data. However, we should never modify commit
frequency at the expense of transactional integrity.

Most of our stored programs will perform only as well as the SQL that they contain.
In the next chapter we will look at how to go the “last mile” by tuning the stored
program code itself.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

508

Chapter 22CHAPTER 22

Optimizing Stored Program Code 22

In this chapter, we look at techniques for optimizing the stored program code itself.

As we have said before, the performance of a typical stored program will primarily
depend on the performance of the SQL in that stored program. This is why we have
devoted several chapters to showing how to tune MySQL SQL statements.

As with any language, however, it is possible to write inefficient code in the MySQL
stored program language itself. So in this chapter, we’re going to assume that we
have tuned our stored program’s SQL statements and are now ready to tune the
stored program code.

Before we dig into tuning stored program code we will briefly review the perfor-
mance characteristics of stored programs and look at the circumstances under which
stored programs can improve application performance. For example, under certain
circumstances, we can use a stored program in place of SQL statements that are diffi-
cult to optimize. Stored programs can also improve the performance of network-
intensive operations. However, note that stored programs are not, in general, a good
solution when we want to do mathematically intensive computation.

Performance Characteristics of Stored Programs
MySQL stored programs can often add to application functionality and developer
efficiency, and there are certainly many cases where the use of a procedural language
such as the MySQL stored program language can do things that a nonprocedural lan-
guage like SQL cannot. There are also a number of reasons why a MySQL stored
program approach may offer performance improvements over a traditional SQL
approach:

It provides a procedural approach
SQL is a declarative, nonprocedural language: this means that in SQL you don’t
specify how to retrieve data—you only specify the data that you want to retrieve
(or change). It’s up to MySQL itself—specifically, the MySQL query optimizer—
to determine how to go about identifying the result set.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

How Fast Is the Stored Program Language? | 509

From time to time, we might have a very good idea about the most efficient way
to retrieve the data, but find that the MySQL optimizer chooses another—less
efficient—path.

When we think we know how the data should be retrieved but can’t get the opti-
mizer to play ball, we can sometimes use MySQL stored programs to force the
desired approach.

It reduces client-server traffic
In a traditional SQL-based application, SQL statements and data flow back and
forth between the client and the server. This traffic can cause delays even when
both the client and the server programs are on the same machine. If the client
and server are on different machines, then the overhead is even higher.

We can use MySQL stored programs to eliminate much of this overhead, partic-
ularly when we need to execute a series of related SQL statements. A succinct
message is sent from the client to the server (the stored program execution
request) and a minimal response is sent from the server to the client (perhaps
only a return code). Furthermore, we can take advantage of database triggers to
automatically execute statements in the database without any network interac-
tion at all.

The resulting reduction in network traffic can significantly enhance
performance.

It allows us to divide and conquer complex statements
As SQL statements become more complex, they also get harder and harder to
fully optimize, both for the MySQL optimizer and for the programmer. We have
all seen (and some of us have written) massive SQL statements with multiple
subqueries, UNION operations, and complex joins. Tuning these “monster” SQL
statements can be next to impossible for both humans and software optimizers.

It’s often a winning strategy to break these massive SQL statements into smaller
individual statements and optimize each individually. For instance, subqueries
could be run outside of the SQL statement and the results forwarded to subse-
quent steps as query parameters or through temporary tables.

Having said that, we don’t want to give you the impression that we think you should
rewrite all of your non-trivial SQL statements in MySQL stored programs. In fact, it
is usually the case that if you can express your needs in “straight” SQL, that will be
the most efficient approach. And do remember that complex arithmetic computa-
tions will usually be slower in a stored program than in an equivalent SQL statement.

How Fast Is the Stored Program Language?
It would be terribly unfair of us to expect the first release of the MySQL stored pro-
gram language to be blisteringly fast. After all, languages such as Perl and PHP have
been the subject of tweaking and optimization for about a decade, while the latest



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 22: Optimizing Stored Program Code

generation of programming languages—.NET and Java—have been the subject of a
shorter but more intensive optimization process by some of the biggest software
companies in the world. So right from the start, we expected that the MySQL stored
program language would lag in comparison with the other languages commonly used
in the MySQL world.

Still, we felt it was important to get a sense of the raw performance of the language. So
we put together a number of test scripts. First off, we wanted to see how quickly the
stored program language could crunch numbers. Stored programs generally do not
perform computationally expensive operations, but—given that you sometimes have
a choice between various application tiers when performing some computationally
intensive task—it’s worth knowing if the stored program language is up to the job.

To test basic compute performance, we wrote a stored program that determines the
number of prime numbers less than a given input number. (We’re sure that some of
you will know better algorithms, but remember that the point is to compare lan-
guages, not to calculate prime numbers in the most efficient manner possible.) The
stored program is shown in Example 22-1.

Example 22-1. Stored program to find prime numbers

CREATE PROCEDURE sp_nprimes(p_num int)
BEGIN
    DECLARE i INT;
    DECLARE j INT;
    DECLARE nprimes INT;
    DECLARE  isprime INT;

    SET i=2;
    SET nprimes=0;

    main_loop:
    WHILE (i<p_num) do
        SET isprime=1;
        SET j=2;
        divisor_loop:
        WHILE (j<i) DO
            IF (MOD(i,j)=0) THEN
                 SET isprime=0;
                 LEAVE divisor_loop;
            END IF;
            SET j=j+1;
        END WHILE ;
        IF (isprime=1) THEN
             SET nprimes=nprimes+1;
         END IF;
         SET i=i+1;
    END WHILE;
    SELECT CONCAT(nprimes,' prime numbers less than ',p_num);
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

How Fast Is the Stored Program Language? | 511

We implemented this algorithm in a variety of languages—C, Java, VB.NET, Perl,
PHP, and PL/SQL (the Oracle stored program language). For instance, the Oracle
implementation of the procedure is shown in Example 22-2; as you can see, while
some of the language constructs differ, the algorithms are identical.

We executed each program multiple times to seek the number of prime numbers less
than 8000. The results are shown in Figure 22-1. We ran these tests on the same
machine and did our best to minimize any interference from other running programs
and, in every other way, to keep the playing field level. Nevertheless, for this compu-
tationally intensive trial, MySQL performed poorly compared with other lan-
guages—twice as slow as an Oracle stored procedure, five times slower than PHP or
Perl, and dozens of times slower than Java, .NET, or C. Remember that Oracle in
particular has been optimizing its stored procedure language for over a decade now;
in comparison with the initial releases of PL/SQL, the MySQL stored program lan-
guage is a speed demon!

Example 22-2. Oracle implementation of the prime number procedure

PROCEDURE N_PRIMES
   ( p_num NUMBER)
   IS

    i INT;
    j INT;
    nprimes INT;
    isprime INT;

BEGIN

    i:=2;
    nprimes:=0;

    <<main_loop>>
    WHILE (i<p_num) LOOP
         isprime:=1;
         j:=2;
         <<divisor_loop>>
         WHILE (j<i) LOOP
              IF (MOD(i,j)=0) THEN
                   isprime:=0;
                   EXIT divisor_loop;
              END IF;
              j:=j+1;
         END LOOP ;
         IF (isprime=1) THEN
              nprimes:=nprimes+1;
         END IF;
         i:=i+1;
    END LOOP;
    dbms_output.put_line(nprimes||' prime numbers less than '||p_num);
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 22: Optimizing Stored Program Code

We are confident that the MySQL stored program language will become more effi-
cient in future releases, but for now we recommend that you avoid using this lan-
guage for mathematically intensive operations.

The MySQL stored program language is relatively slow when it comes
to performing arithmetic calculations. Avoid using stored programs to
perform number crunching.

Reducing Network Traffic with Stored Programs
If the previous section left you feeling less than enthusiastic about stored program
performance, this section should cheer you right up. Although stored programs
aren’t particularly zippy when it comes to number crunching, you don’t normally
write stored programs that simply perform math—stored programs almost always
process data from the database. In these circumstances, the difference between
stored program and (for instance) Java performance is usually minimal—unless net-
work overhead is a big factor. When a program is required to process large numbers
of rows from the database, a stored program can substantially outperform programs
written in client languages, because it does not have to wait for rows to be trans-
ferred across the network—the stored program runs inside the database.

Consider the stored program shown in Example 22-3; this stored program retrieves
all sales rows for the past five months and generates some statistical measurements
(mean and standard deviation) against those rows.

Figure 22-1. Finding prime numbers in various languages

Example 22-3. Stored program to generate statistics

CREATE PROCEDURE sales_summary( )
    READS SQL DATA
BEGIN

Elapsed time (seconds)

0

C (gcc) 0.23

VB.NET

Java

Perl

PHP

Oracle stored procedure

0.36

0.34

1.78

4.36

9.07

MySQL stored procedure
19.5

2 4 6 8 10 12 14 16 18 20



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Reducing Network Traffic with Stored Programs | 513

Example 22-4 shows the same logic implemented in a Java program.

        DECLARE SumSales    FLOAT DEFAULT 0;
        DECLARE SumSquares  FLOAT DEFAULT 0;
        DECLARE NValues     INT   DEFAULT 0;
        DECLARE SaleValue   FLOAT DEFAULT 0;
        DECLARE Mean        FLOAT;
        DECLARE StdDev      FLOAT;

        DECLARE last_sale INT DEFAULT 0;

        DECLARE sale_csr CURSOR FOR
         SELECT sale_value FROM SALES s
          WHERE sale_date >date_sub(curdate( ),INTERVAL 6 MONTH);

        DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_sale=1;

        OPEN sale_csr;
        sale_loop: LOOP
            FETCH sale_csr INTO SaleValue;
            IF last_sale=1 THEN LEAVE sale_loop; END IF;

            SET NValues=NValues+1;
            SET SumSales=SumSales+SaleValue;
                   SET SumSquares=SumSquares+POWER(SaleValue,2);

        END LOOP sale_loop;
        CLOSE sale_csr;

        SET StdDev = SQRT((SumSquares - (POWER(SumSales,2) / NValues)) / NValues);
        SET Mean = SumSales / NValues;

        SELECT CONCAT('Mean=',Mean,' StdDev=',StdDev);

END

Example 22-4. Java program to generate sales statistics

import java.sql.*;
import java.math.*;

public class SalesSummary {

    public static void main(String[] args)
        throws ClassNotFoundException, InstantiationException,
                  IllegalAccessException  {
        String Username=args[0];
        String Password=args[1];
        String Hostname=args[2];
        String Database=args[3];
        String Port=args[4];

Example 22-3. Stored program to generate statistics (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 22: Optimizing Stored Program Code

As we saw earlier in this chapter, Java is much, much faster than the MySQL stored
program language when it comes to performing calculations. Therefore, we expect
that the Java program would be faster in this case as well. In fact, when we run the
Java program on the same host as the relevant MySQL server, the Java program is
faster—though not by much: the Java program completed in about 22 seconds while
the stored program took about 26 seconds (see Figure 22-2). Although Java is faster
than the stored program when it comes to performing the arithmetic calculations
needed, the bulk of the time is spent retrieving rows from the database, and so the
difference is not very noticeable.

        float SumSales,SumSquares,SaleValue,StdDev,Mean;
        int   NValues=0;

        SumSales=SumSquares=0;

        try
        {
            Class.forName("com.mysql.jdbc.Driver").newInstance( );
            String ConnString=
              "jdbc:mysql://"+Hostname+":"+Port+
                     "/"+Database+"?user="+Username+"&password="+Password;
            Connection MyConnect = DriverManager.getConnection(ConnString);

            String sql="select sale_value from SALES s" +
                       " where sale_date >date_sub(curdate( ),interval 6 month)";

            Statement s1=MyConnect.createStatement( );
            ResultSet rs1=s1.executeQuery(sql);
            while (rs1.next( ))
            {
                SaleValue = rs1.getFloat(1);
                NValues = NValues + 1;
                SumSales = SumSales + SaleValue;
                SumSquares = SumSquares + SaleValue*SaleValue;
            }
            rs1.close( );

            Mean=SumSales/NValues;
            StdDev = (float) Math.sqrt(((SumSquares –
                      ((SumSales*SumSales) / NValues)) / NValues));

            System.out.println("Mean="+Mean+" StdDev="+StdDev+" N="+NValues);

        }
        catch(SQLException Ex)         {
             System.out.println(Ex.getErrorCode()+" "+Ex.getMessage( ));
             Ex.printStackTrace( );}

    }
}

Example 22-4. Java program to generate sales statistics (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs as an Alternative to Expensive SQL | 515

However, when we invoke each program from a remote host across a network with
relatively high latency, we see that while the stored program execution time stays the
same, the Java program takes much longer to execute (increasing from 22 seconds to
5 minutes). The Java program has to fetch each row from the database across the
network, and these network round-trips dominate the overall execution time. The
lesson is clear: if your program causes a large amount of network traffic, such as
those that fetch or change a large number of rows across the network, a stored pro-
gram can outperform a program written in a client language such as Java or PHP.

Stored programs do not incur the network overhead of languages such
as PHP or Java. If network overhead is an issue, then using a stored
program can be an effective optimization.

Stored Programs as an Alternative to Expensive SQL
Sometimes we can use a stored program to perform query or DML operations that
perform badly in standard SQL. This usually happens when the “pure” SQL state-
ment becomes overly complex because of limitations in the SQL syntax or when the
MySQL optimizer isn’t able to come up with a sensible plan for your SQL query. In
this section we offer two scenarios in which a stored program can be expected to out-
perform a SQL statement that executes the same logical steps.

Avoid Self-Joins with Procedural Logic
One situation in which a stored program might offer a better solution is where you
are forced to construct a query that joins a table to itself in order to filter for the
required rows. For instance, in Example 22-5, we issue a SQL statement that
retrieves the most valuable order for each customer over the past few months.

Figure 22-2. Java versus stored program performance across the network

Local host

Remote host

0

Elapsed time (seconds)

316.15

25.66

Stored procedure
Java22.02

25.84

50 100 150 200 250 300 350



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 22: Optimizing Stored Program Code

This is an expensive SQL statement, partially because we first need to create a tem-
porary table to hold the customer ID and maximum sale value and then join that
back to the sales table to find the full details for each of those rows.

MySQL doesn’t provide SQL syntax that would allow us to return this data without
an expensive self-join. However, we can use a stored program to retrieve the data in a
single pass through the sales table. Example 22-6 shows a stored program that
stores maximum sales for each customer into a temporary table (max_sales_by_
customer) from which we can later select the results.

Example 22-5. Finding the maximum sale for each customer

SELECT s.customer_id,s.product_id,s.quantity, s.sale_value
  FROM sales s, (SELECT customer_id,max(sale_value) max_sale_value
                   FROM sales
                  GROUP BY customer_id) t
 WHERE t.customer_id=s.customer_id
   AND t.max_sale_value=s.sale_value
   AND s.sale_date>date_sub(currdate( ),interval 6 month);

Example 22-6. Stored program to return maximum sales for each customer
over the last 6 months

  1 CREATE PROCEDURE sp_max_sale_by_cust( )
  2     MODIFIES SQL DATA
  3 BEGIN
  4     DECLARE last_sale INT DEFAULT 0;
  5     DECLARE l_last_customer_id INT DEFAULT -1;
  6     DECLARE l_customer_id INT;
  7     DECLARE l_product_id INT;
  8     DECLARE l_quantity INT;
  9     DECLARE l_sale_value DECIMAL(8,2);
  10     DECLARE counter INT DEFAULT 0;
  11
  12     DECLARE sales_csr CURSOR FOR
  13          SELECT customer_id,product_id,quantity, sale_value
  14            FROM sales
  15           WHERE sale_date>date_sub(currdate( ),interval 6 month)
  16           ORDER BY customer_id,sale_value DESC;
  17
  18     DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_sale=1;
  19
  20     OPEN sales_csr;
  21     sales_loop: LOOP
  22          FETCH sales_csr INTO l_customer_id,l_product_id,l_quantity,l_sale_value;
  23          IF (last_sale=1) THEN
  24              LEAVE sales_loop;
  25          END IF;
  26
  27          IF l_customer_id <> l_last_customer_id THEN
  28             /* This is a new customer so first row will be max sale*/
  29                INSERT INTO max_sales_by_customer
  30                   (customer_id,product_id,quantity,sale_value)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Stored Programs as an Alternative to Expensive SQL | 517

Let’s look at the most significant lines in this program:

The stored program is significantly faster than the standard SQL solution.
Figure 22-3 shows the elapsed time for the two solutions.

Optimize Correlated Updates
A correlated update is an UPDATE statement that contains a correlated subquery in the
SET clause and/or WHERE clause. Correlated updates are often good candidates for
optimization through procedural execution. In Example 22-7 we have an UPDATE
statement that updates all customers who are also employees, and assigns the
employee’s manager as their sales representative.

  31                    VALUES(l_customer_id,l_product_id,l_quantity,l_sale_value);
  32         END IF;
  33
  34         SET l_last_customer_id=l_customer_id;
  35
  36  END LOOP;
  37
  38 END;

Line(s) Explanation

12 Declare a cursor that will return sales for the past 6 months ordered by customer_id and then by
descending sale_value.

27-32 Check to see whether we have encountered a new customer_id. The first row for any given customer will
be the maximum sale for that customer, so we insert that row into a temporary table (line 30).

Figure 22-3. Using a stored program to optimize a complex self-join

Example 22-7. Correlated UPDATE statement

UPDATE customers c
   SET sales_rep_id =
       (SELECT manager_id
          FROM employees
                WHERE surname = c.contact_surname

Example 22-6. Stored program to return maximum sales for each customer
over the last 6 months (continued)

Stored procedure

SQL

0 50 100 150 200

Elapsed time (seconds)

250

206.22

20.44



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 22: Optimizing Stored Program Code

Note that the UPDATE statement needs to access the employees table twice: once to
identify customers who are employees and again to find the manager’s identifier for
those employees.

Example 22-8 offers a stored program that provides an alternative to the correlated
update. The stored program identifies those customers who are also employees using
a cursor. For each of the customers retrieved by the cursor, an UPDATE is issued.

Because the stored program does not have to do two separate accesses of the
customers table, it is significantly faster than the standard SQL. Figure 22-4 com-
pares the performance of the two approaches.

           AND firstname = c.contact_firstname
           AND date_of_birth = c.date_of_birth)
 WHERE (contact_surname,
        contact_firstname,
        date_of_birth) IN
   (SELECT surname, firstname, date_of_birth
      FROM employees and );

Example 22-8. Stored program alternative to the correlated update

CREATE PROCEDURE sp_correlated_update( )
    MODIFIES SQL DATA
BEGIN
    DECLARE last_customer INT DEFAULT 0;
    DECLARE l_customer_id INT ;
    DECLARE l_manager_id  INT;

    DECLARE cust_csr CURSOR FOR
          select c.customer_id,e.manager_id
            from customers c,
                 employees e
           where e.surname=c.contact_surname
             and e.firstname=c.contact_firstname
             and e.date_of_birth=c.date_of_birth;

    DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_customer=1;

    OPEN cust_csr;
    cust_loop: LOOP
            FETCH cust_csr INTO l_customer_id,l_manager_id;
            IF (last_customer=1) THEN
                LEAVE cust_loop;
            END IF;
            UPDATE customers
         SET sales_rep_id=l_manager_id
       WHERE customer_id=l_customer_id;
    END LOOP;

END;

Example 22-7. Correlated UPDATE statement (continued)



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Optimizing Loops | 519

Optimizing Loops
In the remainder of this chapter we will look at techniques for the optimization of
stored program code that does not involve SQL statements, starting with the optimi-
zation of loops.

Because the statements executed within a loop can be executed many times, optimiz-
ing loop processing is a basic step when optimizing the performance of a program
written in any language. The MySQL stored program language is no exception.

Move Unnecessary Statements Out of a Loop
The first principle of optimizing a loop is to move calculations out of the loop that
don’t belong inside the loop (these are known as loop-invariant statements, since they
do not vary with each execution of the loop body). Although such a step might seem
obvious, it’s surprising how often a program will perform calculations over and over
within a loop that could have been performed just once before the start of loop exe-
cution.

For instance, consider the stored program in Example 22-9. This loop is actually
fairly inefficient, but at first glance it’s not easy to spot where the problem is. Funda-
mentally, the problem with this stored program is that it calculates the square root of
the i variable for every value of the j variable. Although there are only 1,000 differ-
ent values of i, the stored program calculates this square root five million times.

Figure 22-4. Performance of a correlated update and stored program alternative

Example 22-9. A poorly constructed loop

    WHILE (i<=1000) DO
        SET j=1;
        WHILE (j<=5000) DO
            SET rooti=sqrt(i);
            SET rootj=sqrt(j);
            SET sumroot=sumroot+rooti+rootj;
            SET j=j+1;

Update

0 10 20 30 40

Elapsed time (seconds)

50

22.75

36.27

Stored procedure



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 22: Optimizing Stored Program Code

By moving the calculation of the square root of i outside of the loop—as shown in
Example 22-10—we substantially reduce the overhead of this loop.

Figure 22-5 shows the performance improvements achieved from moving the calcula-
tion of the square root of the i variable outside of the inner loop.

Ensure that all statements within a loop truly belong within the loop.
Move any loop-invariant statements outside of the loop.

Use LEAVE or CONTINUE to Avoid Needless Processing
Just as it is important to remove all unnecessary processing from a loop, it is equally
important to leave the loop when you are finished. Again, this seems obvious, but it
is easy to write a fully functional loop that performs unnecessary iterations. When
you look at your code, it’s not always that obvious that the loop is inefficient.

        END WHILE;
        SET i=i+1;
    END WHILE;

Example 22-10. Moving unnecessary calculations out of a loop

    WHILE (i<=1000) DO
         SET rooti=sqrt(i);
         SET j=1;
         WHILE (j<=5000) DO
              SET rootj=sqrt(j);
              SET sumroot=sumroot+rootj+rooti;
              SET j=j+1;
         END WHILE;
         SET i=i+1;
    END WHILE;

Figure 22-5. Performance improvements gained from removing unnecessary calculations within a
loop

Example 22-9. A poorly constructed loop (continued)

Calculation inside loop

0 5

Elapsed time (seconds)

32.59

42.5

Calculation outside loop

10 15 20 25 30 35 40 45



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Optimizing Loops | 521

Consider the loop shown in Example 22-11: this is a variation on the loop used in
Example 22-1 to count prime numbers. This loop is functionally correct, but ineffi-
cient. On line 2 we cycle through all numbers less than the given number looking for
divisors. If we find a divisor (line 4), we know that the number is not a prime num-
ber. However, in Example 22-11, we continue to check each number even though we
have already found the first divisor. This is unnecessary, since once we find even a
single divisor, we know that the number is not prime—there is no need to look for
further divisors.

Example 22-12 shows the same loop, but with a LEAVE statement added that termi-
nates the loop once a divisor is found.

Although the LEAVE statement terminates the loop and reduces the elapsed time for
the stored procedure, it may decrease readability of the code because the loop now
has two sections that determine if the loop continues—the WHILE clause condition
and the LEAVE statement. Constructing a loop with multiple exit points makes the
code harder to understand and maintain.

It would be equally valid in this case to modify the WHILE clause so that the loop
ceases its repetitions once it has determined that the number is not a prime, as
shown in Example 22-13.

Example 22-11. Loop that iterates unnecessarily

1        divisor_loop:
2        WHILE (j<i) do  /* Look for a divisor */
3
4             IF (MOD(i,j)=0) THEN
5                  SET isprime=0;   /* This number is not prime*/
6             END IF;
7             SET j=j+1;
8        END WHILE ;

Example 22-12. Loop with a LEAVE statement to avoid unnecessary iterations

        divisor_loop:
        WHILE (j<i) do  /* Look for a divisor */

             IF (MOD(i,j)=0) THEN
                SET isprime=0;   /* This number is not prime*/

LEAVE divisor_loop; /* No need to keep checking*/
           END IF;
            SET j=j+1;
        END WHILE ;

Example 22-13. Modifying the WHILE condition to avoid unnecessary iterations

    divisor_loop:
    WHILE (j<i AND isprime=1) do  /* Look for a divisor */

         IF (MOD(i,j)=0) then



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 22: Optimizing Stored Program Code

Figure 22-6 shows the improvements gained in our prime number search when we
add the LEAVE statement or modify the WHILE clause. Modifying the WHILE clause leads
to a comparable performance increase without reducing the readability of the loop.

Make sure that your loops terminate when all of the work has been
done, either by ensuring that the loop continuation expression is com-
prehensive or—if necessary—by using a LEAVE statement to terminate
when appropriate.

IF and CASE Statements
Another category of statement that is highly amenable to code optimization is the
conditional statement category—IF and CASE statements. This is especially true if
these statements are called repetitively within a loop. The essence of optimizing con-
ditional statements like IF and CASE is to reduce the number of comparisons that are
performed. You can do this by:

• Testing for the more likely matches earlier in the IF or CASE statement

• Stopping the comparison process as early as possible

Test for the Most Likely Conditions First
When constructing IF and CASE statements, try to minimize the number of compari-
sons that these statements are likely to make by testing for the most likely scenarios
first. For instance, consider the IF statement shown in Example 22-14. This state-
ment maintains counts of various percentages. Assuming that the input data is evenly

              SET isprime=0;   /* This number is not prime*/
        END IF;
        SET j=j+1;
    END WHILE ;

Figure 22-6. Effect of using LEAVE or modifying WHILE clause to avoid unnecessary iterations

Example 22-13. Modifying the WHILE condition to avoid unnecessary iterations  (continued)

Modified WHILE
condition

With LEAVE

Without LEAVE

0 50 100 150

Elapsed time (seconds)

21.63

162.15

19.3

200



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IF and CASE Statements | 523

distributed, the first IF condition (percentage>95) will match about once in every 20
executions. On the other hand, the final condition will match in three out of four
executions. So this means that for 75% of the cases, all four comparisons will need to
be evaluated.

Example 22-15 shows a more efficiently formed IF statement. In this variation, the
first condition will evaluate as true in the majority of executions and no further com-
parisons will be necessary.

Figure 22-7 shows the performance improvement gained by reordering the IF state-
ment so that the most commonly satisfied condition is evaluated first.

Example 22-14. Poorly constructed IF statement

        IF (percentage>95) THEN
             SET Above95=Above95+1;
        ELSEIF (percentage >=90) THEN
             SET Range90to95=Range90to95+1;
        ELSEIF (percentage >=75) THEN
             SET Range75to89=Range75to89+1;
        ELSE
             SET LessThan75=LessThan75+1;
        END IF;

Example 22-15. Optimized IF statement

        IF (percentage<75) THEN
             SET LessThan75=LessThan75+1;
        ELSEIF (percentage >=75 AND percentage<90) THEN
             SET Range75to89=Range75to89+1;
        ELSEIF (percentage >=90 and percentage <=95) THEN
             SET Range90to95=Range90to95+1;
        ELSE
             SET Above95=Above95+1;
        END IF;

Figure 22-7. Effect of optimizing an IF statement by reordering comparisons

Optimized IF

0 2 4 6 8

Elapsed time (seconds)

10

8.15

5.55

Unoptimized IF



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 22: Optimizing Stored Program Code

If an IF statement is to be executed repeatedly, placing the most com-
monly satisfied condition earlier in the IF structure may optimize
performance.

Avoid Unnecessary Comparisons
Sometimes an IF or CASE statement will be constructed that has some kind of com-
mon condition in each comparison clause. For instance, in Example 22-16, each of
the expressions in the IF statement includes an employee_status='U' condition. Even
if the employee_status is not equal to "U", each of these comparisons will need to be
evaluated—adding some processing overhead.

Example 22-17 shows a more optimized IF structure. In this example, the employee_
status is checked first and then—only if employee_status='U'—are the additional
comparisons are evaluated. Figure 22-8 demonstrates the optimization.

To be honest, under most circumstances, tuning IF statements will not greatly
improve the performance of your code. The overhead of SQL processing will usually
dominate overall execution time. Consequently, we suggest that when it comes to
conditional statements, you should prioritize writing readable and maintainable
code. If a particular IF statement becomes a bottleneck, then you should consider a
rewrite that will improve performance even at the expense of maintainability.

Example 22-16. IF statement with common condition in each expression

IF (employee_status='U' AND employee_salary>150000) THEN
    SET categoryA=categoryA+1;
ELSEIF (employee_status='U' AND employee_salary>100000) THEN
    SET categoryB=categoryB+1;
ELSEIF (employee_status='U' AND employee_salary<50000) THEN
    SET categoryC=categoryC+1;
ELSEIF (employee_status='U') THEN
    SET categoryD=categoryD+1;
END IF;

Example 22-17. Nested IF statement to avoid redundant comparisons

IF (employee_status='U') THEN
    IF (employee_salary>150000) THEN
        SET categoryA=categoryA+1;
    ELSEIF (employee_salary>100000) THEN
        SET categoryB=categoryB+1;
    ELSEIF (employee_salary<50000) THEN
        SET categoryC=categoryC+1;
    ELSE
        SET categoryD=categoryD+1;
    END IF;
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IF and CASE Statements | 525

If your IF or CASE statement contains compound expressions with
redundant comparisons, consider nesting multiple IF or CASE state-
ments to avoid redundant processing.

CASE Versus IF
We wondered if there was any performance difference between a CASE statement and
an equivalent IF statement. We thought that CASE might be more optimal for com-
paring a variable against a range of set values, so we speculated that this statement:

CASE customer_code
    WHEN 1 THEN
         SET process_flag=7;
    WHEN 2 THEN
         SET process_flag=9;
    WHEN 3 THEN
         SET process_flag=2;
    ELSE
         SET process_flag=0;
END CASE;

might be more efficient than the equivalent IF statement:

IF customer_code= 1 THEN
    SET process_flag=7;
ELSEIF customer_code= 2 THEN
    SET process_flag=9;
ELSEIF customer_code=3 THEN
    SET process_flag=2;
ELSE
    SET process_flag=0;
END IF;

In fact, the opposite turned out to be true. The IF statement is roughly 15% faster
than the equivalent CASE statement—presumably this is the result of a more efficient
internal algorithm for IF in the MySQL code.

Figure 22-8. Effect of nesting an IF statement to eliminate redundant comparisons

Nested IF
statements

0 10 20 30 40

Elapsed time (seconds)

33.71

10.2

Single IF
statements



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 22: Optimizing Stored Program Code

As noted earlier, we advise you to structure your stored program’s statements prima-
rily for readability and maintainability, since it is almost always the elapsed time of
SQL statements that dominates performance. However, if performance is critical,
you may want to make a habit of using IF statements rather than CASE statements in
your code.

Recursion
A recursive routine is one that invokes itself. Recursive routines often offer elegant
solutions to complex programming problems, but they also tend to consume large
amounts of memory. They are also likely to be less efficient and less scalable than
implementations based on iterative execution.

Most recursive algorithms can be reformulated using nonrecursive techniques involv-
ing iteration. Where possible, we should give preference to the more efficient itera-
tive algorithm.

For example, in Example 22-18, the stored procedure uses recursion to calculate the
Nth element of the Fibonacci sequence, in which each element in the sequence is the
sum of the previous two numbers.

Example 22-19 shows a nonrecursive implementation that returns the Nth element
of the Fibonacci sequence.

Example 22-18. Recursive implementation of the Fibonacci algorithm

CREATE PROCEDURE rec_fib(n INT,OUT out_fib INT)
BEGIN
  DECLARE n_1 INT;
  DECLARE n_2 INT;

  IF (n=0) THEN
    SET out_fib=0;
  ELSEIF (n=1) then
    SET out_fib=1;
  ELSE
    CALL rec_fib(n-1,n_1);
    CALL rec_fib(n-2,n_2);
    SET out_fib=(n_1 + n_2);
  END IF;
END

Example 22-19. Nonrecursive implementation of the Fibonacci sequence

CREATE PROCEDURE nonrec_fib(n INT,OUT out_fib INT)
BEGIN
  DECLARE m INT default 0;
  DECLARE k INT DEFAULT 1;
  DECLARE i INT;
  DECLARE tmp INT;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Recursion | 527

Figure 22-9 compares the relative performance of the recursive and nonrecursive
implementations. Not only is the recursive algorithm less efficient for almost any
given input value, it also degrades rapidly as the number of recursions increases
(which is, in turn, dependent on which element of the Fibonacci sequence is
requested). As well as being inherently a less efficient algorithm, each recursion
requires MySQL to create the context for a new stored program (or function) invoca-
tion. As a result, recursive algorithms tend to waste memory as well as being slower
than their iterative alternatives.

  SET m=0;
  SET k=1;
  SET i=1;

  WHILE (i<=n) DO
    SET tmp=m+k;
    SET m=k;
    SET k=tmp;
    SET i=i+1;
  END WHILE;
  SET out_fib=m;
 END

Figure 22-9. Performance of recursive and nonrecursive calculations of Fibonacci numbers (note
logarithmic scale)

Example 22-19. Nonrecursive implementation of the Fibonacci sequence (continued)

0

Fibonacci number

25
0.0001

El
ap

se
d 

tim
e 

(s
ec

on
ds

)

1

5 10 15 20

0.001

0.01

0.1

Recursive

Nonrecursive

30

10



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 22: Optimizing Stored Program Code

The maximum recursion depth—the number of times a procedure can call itself—is
controlled by the MySQL configuration parameter max_sp_recursion_depth. The
default value of 0 disables all recursive procedures. A procedure that attempts to
recurse beyond the value of max_sp_recursion_depth will encounter a runtime error:

mysql> CALL rec_fib(10,@x);
ERROR 1456 (HY000): Recursive limit 0 (as set by the max_sp_recursion_depth variable)
was exceeded for routine rec_fib

Recursion in stored functions is not allowed. An attempt to recurse in a function will
always generate a runtime error:

mysql> SELECT rec_fib(10);
ERROR 1424 (HY000): Recursive stored functions and triggers are not allowed.

Recursive solutions rarely perform as efficiently as their nonrecursive
alternatives.

Cursors
When you need to retrieve only a single row from a SELECT statement, using the INTO
clause is far easier than declaring, opening, fetching from, and closing a cursor. But
does the INTO clause generate some additional work for MySQL or could the INTO
clause be more efficient than a cursor? In other words, which of the two stored pro-
grams shown in Example 22-20 is more efficient?

Example 22-20. Two equivalent stored programs, one using INTO and the other
using a cursor

CREATE PROCEDURE using_into
       ( p_customer_id INT,OUT p_customer_name VARCHAR(30))
    READS SQL DATA
BEGIN
        SELECT customer_name
          INTO p_customer_name
          FROM customers
         WHERE customer_id=p_customer_id;
END;

CREATE PROCEDURE using_cursor
    (p_customer_id INT,OUT  p_customer_name VARCHAR(30))
    READS SQL DATA
BEGIN

    DECLARE cust_csr CURSOR FOR
         SELECT customer_name
           FROM customers
          WHERE customer_id=p_customer_id;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Trigger Overhead | 529

Certainly, it is simpler to code an INTO statement than to code DECLARE, OPEN, FETCH,
and CLOSE statements, and we will probably only bother to do this—when we know
that the SQL returns only one row—if there is a specific performance advantage. As
it turns out, there is actually a slight performance penalty for using an explicit cur-
sor. Figure 22-10 shows the relative performance of each of the stored programs in
Example 22-20—over 11,000 executions, the INTO-based stored program was
approximately 15% faster than the stored program that used an explicit cursor.

If you know that a SQL statement will return only one row, then a
SELECT ... INTO statement will be slightly faster than declaring, open-
ing, and fetching from a cursor.

Trigger Overhead
Every database trigger is associated with a specific DML operation (INSERT, UPDATE,
or DELETE) on a specific table—the trigger code will execute whenever that DML
operation occurs on that table. Furthermore, all MySQL 5.0 triggers are of the FOR
EACH ROW type, which means that the trigger code will execute once for each row
affected by the DML operation. Given that a single DML operation might poten-
tially affect thousands of rows, should we be concerned that our triggers might have
a negative effect on DML performance? Absolutely!

For all of the reasons outlined previously, triggers can significantly increase the
amount of time taken to execute DML operations and can have a detrimental effect
on overall application performance if trigger overhead is not carefully managed.

        OPEN cust_csr;
        FETCH cust_csr INTO p_customer_name;
        CLOSE cust_csr;

END;

Figure 22-10. Relative performance of INTO versus CURSOR fetch

Example 22-20. Two equivalent stored programs, one using INTO and the other
using a cursor (continued)

Using INTO

0 0.1

Elapsed time (seconds)

0.575

0.49

Using CURSOR

0.2 0.3 0.4 0.5 0.6 0.7



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 22: Optimizing Stored Program Code

The overhead of a trigger itself is significant, though not unmanageable. For
instance, consider the trigger shown in Example 22-21; this trivial trigger serves no
purpose, but it allows us to measure the overhead of a trigger that does virtually
nothing.

When we implemented this trivial trigger, the time taken to insert 100,000 sales rows
increased from 8.84 seconds to 12.9 seconds—an increase of about 45%. So even the
simplest of triggers adds a significant—though bearable—overhead.

But what about a complex trigger? In Chapter 11, we created a set of triggers to
maintain a sales summary table. One of the triggers we created is the BEFORE INSERT
trigger, shown in Example 22-22.

This trigger checks to see if there is an existing row for the customer in the summary
table and, if there is, updates that row; otherwise, it adds a new row. Since we are
performing a single additional update or insert for every row inserted, we do expect
an increase in our INSERT overhead. However, we might not expect that the time

Example 22-21. “Trivial” trigger

CREATE TRIGGER sales_bi_trg
  BEFORE INSERT ON sales
  FOR EACH ROW
  SET @x=NEW.sale_value;

Example 22-22. A more complex trigger

CREATE TRIGGER sales_bi_trg
  BEFORE INSERT ON sales
  FOR EACH ROW
BEGIN
  DECLARE row_count INTEGER;

  SELECT COUNT(*)
    INTO row_count
    FROM customer_sales_totals
   WHERE customer_id=NEW.customer_id;

  IF row_count > 0 THEN
    UPDATE customer_sales_totals
       SET sale_value=sale_value+NEW.sale_value
     WHERE customer_id=NEW.customer_id;
  ELSE
    INSERT INTO customer_sales_totals
       (customer_id,sale_value)
      VALUES(NEW.customer_id,NEW.sale_value);
  END IF;

END



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Trigger Overhead | 531

taken to insert 10,000 rows increases from 0.722 second to 64.36 seconds—almost
100 times more!

The problem with our trigger is obvious on reflection. The SQL that checks for a
matching row is not supported by an index, so for every row inserted into sales, we
are performing a full scan of customer_sales_totals. This is not a huge table, but
these scans are performed for every row inserted, so the overhead adds up rapidly.
Furthermore, the UPDATE statement is also not supported by an index, so a second
scan of the customer_sales_totals table is performed to support the UPDATE.

The solution is to create an index on customer_sales_totals.customer_id, as shown
in Example 22-23.

Once the index is created, the performance improves: time to insert 10,000 rows is
reduced to about 4.26 seconds, which—although much slower than the perfor-
mance we achieved without a trigger—is certainly more acceptable than 64 seconds.
Performance variations are shown in Figure 22-11.

The lesson here is this: since the trigger code will execute once for every row affected
by a DML statement, the trigger can easily become the most significant factor in
DML performance. Code inside the trigger body needs to be as lightweight as possi-
ble and—in particular—any SQL statements in the trigger should be supported by
indexes whenever possible.

Example 22-23. Index to support our trigger

CREATE UNIQUE INDEX customer_sales_totals_cust_id
    ON customer_sales_totals(customer_id)

Figure 22-11. Trigger performance variations

No trigger

Trivial trigger

Complex trigger
without index

0 10 20 30 40 50 60

Elapsed time (seconds)

0.72

64.37

70

Complex trigger with
supporting index

0.98

4.27



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 22: Optimizing Stored Program Code

Conclusion
In this chapter we looked at the particular performance characteristics of stored pro-
grams and offered advice about when to use stored program logic in place of
“straight” SQL and how to optimize the algorithms we write in the MySQL stored
program language.

As we have emphasized repeatedly, the performance of most stored programs will
depend primarily on the performance of the SQL statements found within the stored
program. Before optimizing stored program statements, make sure that all of the
SQL statements are fully optimized.

The MySQL stored program language is currently slower than most alternative pro-
cedural languages—such as Java and PHP—when it comes to number crunching. In
general, we are better off implementing computationally expensive code in one of
these other languages.

Stored programs can, however, really shine from a performance standpoint when a
relatively small output is calculated from a large number of database rows. This is
because other languages must transfer these rows across the network, while stored
program execution occurs inside the database, minimizing network traffic.

Sometimes stored programs can also be used as an alternative to hard-to-optimize
SQL. This will typically be true when the SQL language forces we to repetitively
fetch the same data, or when the SQL logic is enormously complex and we need to
“divide and conquer.” However, a stored program solution will typically take more
programming investment than a SQL equivalent, so we must be sure that we are
obtaining the improvements we expect.

The optimization of stored program code follows the same general principles that are
true for other languages. In particular:

• Optimize loop processing: ensure that no unnecessary statements occur within a
loop; exit the loop as soon as you are logically able to do so.

• Reduce the number of comparisons by testing for the most likely match first,
and nest IF or CASE statements when necessary to eliminate unnecessary compar-
isons.

• Avoid recursive procedures.

Because MySQL triggers execute once for each row affected by a DML statement, the
effect of any unoptimized statements in a trigger will be magnified during bulk DML
operations. Trigger code needs to be very carefully optimized—expensive SQL state-
ments have no place in triggers.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

533

Chapter 23 CHAPTER 23

Best Practices in MySQL Stored
Program Development23

The objective of this chapter is to provide concrete, immediately applicable, quickly
located advice that will assist you in writing code that is readable, maintainable, and
efficient.

It might seem odd that we have written a “best practices” chapter for a language that
is still in its first major release. Aren’t “best practices” supposed to be determined
and documented after years of trial and error, sweat, and heartache? Absolutely.
Those are, in fact, precisely the kinds of best practices you will find in this chapter.

We spent more than a year between the first alpha release of MySQL 5.0 in late 2004
and the most recent production release in early 2006, learning the hard way about
what works and does not work in MySQL stored programs. Beyond that, while
stored programs might be new to MySQL, they have been around in other databases
for years—and both of us have plenty of experience (altogether over two decades’
worth) to draw from—with MySQL, Oracle, and SQL Server. Most of the lessons
learned in developing stored programs in other languages apply directly to MySQL.

We will start off with some general-purpose guidance that is intended to assist with
software development in any language, then move on to guidelines specifically
crafted for the MySQL stored program language. If you find yourself reading these
and saying “Well, sure, of course that is what you are supposed to do!” then we con-
gratulate you and hope that you not only know about these best practices, but also
apply them as you write your code!

The Development Process
To do your job well, you need to be aware of, and to follow, both “little” best prac-
tices—tips focused on particular coding techniques—and “big” best practices. This
section offers some suggestions on the big picture: how to write your code as part of
a high-quality development process.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 23: Best Practices in MySQL Stored Program Development

In other words, if you (or your methodology) don’t follow some form of the best prac-
tices in this section, you are less likely to produce high-quality, successful software.

DEV-01: Set standards and guidelines before writing any code
These standards and guidelines might include many or all of the best practices described in
this book. Of course, you need to make your own decisions about what is most important
and practical in your own particular environment.

Key areas of development for which you should proactively set standards are:

• Selection of development tools: You should avoid relying on the MySQL command-line
client to compile, execute, and test code, and avoid relying on a basic editor like Note-
pad or vi to write the code. MySQL AB and other software companies offer a multi-
tude of tools (with a wide range of functionality and price) that will help you to
dramatically improve your development environment. Decide on the tools to be used
by all members of the development group.

• How SQL is written in stored programs: The SQL in your application can be the Achil-
les’ heel of your code base. If you aren’t careful about how you place SQL statements
in your stored program code, you’ll end up with applications that are difficult to opti-
mize, debug, and manage over time.

• An exception-handling architecture: Users have a hard time understanding how to use
an application correctly, and developers have an even harder time debugging and fix-
ing an application if errors are handled inconsistently (or not at all). Use a consistent
approach to handling runtime errors using exceptions.

• Processes for code review and testing: There are some basic tenets of programming that
must not be ignored. You should never put code into production without first having
it reviewed by one or more other developers, and performing tests on both the individ-
ual programs in your application and the overall application.

Benefits

By setting clear standards and guidelines for at least the areas we listed above (tools, SQL,
error handling, and code review and testing), you ensure a foundation that will allow you
to be productive and to produce code of reasonable quality. We offer detailed advice on
most of these areas later in the chapter.

Challenges

The deadline pressures of most applications mitigate against taking the time up front to
establish standards, even though we all know that such standards are likely to save time
down the line.

DEV-02: Ask for help after 30 minutes on a problem
Following this simple piece of advice might have more impact on the quality of your code
(and your productivity) than anything else in this book!



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

DEV-02: Ask for help after 30 minutes on a problem | 535

How many times have you stared at the screen for hours, trying this and that in a vain
attempt to fix a problem in your code? Finally, exhausted and desperate, you call over your
cubicle wall: “Hey, Melinda (or Jose or Farik or Lakshmi), could you come over here and
look at this?” When Melinda reaches your cube she sees in an instant what you, after
hours, still could not see (and she doesn’t even know MySQL all that well!). Gosh, it’s like
magic!

Except it’s not magic and it’s not mysterious at all. Remember: humans write software, so
an understanding of human psychology is crucial to setting up processes that encourage
quality software. We humans like to get things right, like to solve our own problems, and
do not like to admit that we don’t know what is going on. Consequently, we tend to want
to hide our ignorance and difficulties. This tendency leads to many wasted hours, high
levels of frustration, and, usually, nasty, spaghetti code.

Team leaders and development managers need to cultivate an environment in which we are
encouraged to admit what we do not know, and ask for help earlier rather than later. Igno-
rance isn’t a problem unless it is hidden from view. And by asking for help, you validate the
knowledge and experience of others, building the overall self-esteem and confidence of the
team.

There is a good chance that if you have already spent 30 minutes fruitlessly analyzing your
code, two more hours will not get you any further along to a solution. So get in the habit of
sharing your difficulty with a coworker (preferably an assigned “buddy,” so the line of
communication between the two of you is officially acknowledged and doesn’t represent in
any way an acknowledgement of some sort of failure).

Example

Programmers are a proud and noble people. We don’t like to ask for help; we like to bury
our nose in our screen and create. So the biggest challenge to getting people to ask for help
is to change behaviors. Here are some suggestions:

• The team leader must set the example. When we have the privilege to manage a team
of developers, we go out of our way to ask each and every person on that team for help
on one issue or another. If you are a coach to other teams of developers, identify the
programmer who is respected by all others for her expertise. Then convince her to seek
out the advice of others. Once the leader (formal or informal) shows that it is OK to
admit ignorance, everyone else will gladly join in.

• Post reminders in work areas, perhaps even individual cubicles, such as “STUCK? ASK
FOR HELP” and “IT’S OK NOT TO KNOW EVERYTHING.” We need to be
reminded about things that don’t come naturally to us.

Benefits

Problems in code are identified and solved more rapidly. Fewer hours are wasted in a futile
hunt for bugs.

Knowledge about the application and about the underlying software technology is shared
more evenly across the development team.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 23: Best Practices in MySQL Stored Program Development

Challenges

The main challenge to successful implementation of this best practice is psychological:
don’t be afraid to admit you don’t know something or are having trouble figuring some-
thing out.

Resources

Peopleware: Productive Projects and Teams, by Tom DeMarco and Timothy Lister (Dorset
House). This is a fantastic book that combines deep experience in project management
with humor and common sense.

DEV-03: Walk through each other’s code
Software is written to be executed by a machine. These machines are very, very fast, but
they aren’t terribly smart. They simply do what they are told, following the instructions of
the software we write, as well as the many other layers of software that control the CPU,
storage, memory, etc.

It is extremely important, therefore, that we make sure the code we write does the right
thing. Our computers can’t tell us if we missed the mark (“garbage in, garbage out” or,
unfortunately, “garbage in, gospel out”). The usual way we validate code is by running that
code and checking the outcomes (well, actually, in most cases we have our users run the
code and let us know about failures). Such tests are, of course, crucial and must be made.
But they aren’t enough.

It is certainly possible that our tests aren’t comprehensive and leave errors undetected. It is
also conceivable that the way in which our code was written produces the correct results in
very undesirable ways. For instance, the code might work “by accident” (two errors cancel
themselves out).

A crucial complement to formal testing of code is a formalized process of code review or
walk-through. Code review involves having other developers actually read and review your
source code. This review process can take many different forms, including:

• The buddy system: Each programmer is assigned another programmer to be ready at
any time to look at his buddy’s code and to offer feedback.

• Formal code walk-throughs: On a regular basis (and certainly as a “gate” before any
program moves to production status), a developer presents or “walks through” her
code before a group of programmers.

• Pair programming: No one codes alone! Whenever you write software, you do it in
pairs, where one person handles the tactical work (thinks about the specific code to be
written and does the typing), while the second person takes the strategic role (keeps an
eye on the overall architecture, looks out for possible bugs, and generally critiques—
always constructively). Pair programming is an integral part of Extreme Programming.
However, note that reports from the field are mixed with regard to pair program-
ming—there are some indications that it relies too heavily on an intimate relationship
between members of a pair that is rarely achieved.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

DEV-04: Use independent testers for functional sign-off | 537

Benefits

Overall quality of code increases dramatically. The architecture of the application tends to
be sounder, and the number of bugs in production code goes way down. A further advan-
tage is that of staff education—not just awareness of the project, but also an increase in
technological proficiency due to the synergistic effect of working together.

Challenges

The development manager or team leader must take the initiative to set up the code review
process and must give developers the time (and training) to do it right. Also, code review
seems to be the first casualty of deadline crunch. Further, a new project involving MySQL
stored programs might not have the language expertise available on the team to do
complete, meaningful walk-throughs.

Resources

• Handbook of Walkthroughs, Inspections, and Technical Reviews, by Daniel Freedman
and Gerald M. Weinberg (Dorset House). Now in its third edition, this book uses a
question-and-answer format to show you exactly how to implement reviews for all
sorts of product and software development.

• Extreme Programming Explained, by Kent Beck (Addison Wesley). The first book on
Extreme Programming offers many insights into pair programming.

• Extreme Programming Refactored, by Matt Stephens and Doug Rosenberg (APress). An
often funny critical examination of Extreme Programming that argues against (in par-
ticular) pair programming.

DEV-04: Use independent testers for functional sign-off
Individual developers should and must be responsible for defining and executing unit tests
on the programs they write. Developers should not, on the other hand, be responsible for
overall functional testing of their applications. There are several reasons for this:

• We don’t own the requirements. We don’t decide when and if the system works prop-
erly. Our users or customers have this responsibility. They need to be intimately con-
nected with, and drive, the functional tests.

• Whenever we test our code, we follow the “pathways to success” without ever know-
ing it. In other words, the mindset we had when we wrote the code is the same mind-
set we have when testing the code. Other people, other eyes, need to run the software
in complete ignorance of those pathways. It is no wonder that unit testing was so suc-
cessful and yet integration testing has such problems.

To improve the quality of code that is handed over to customers for testing, your team
leader or development manager should:

• Work with the customer to define the set of tests that must be run successfully before
an application is considered to be ready for production.

• Establish a distinct testing group—either a devoted Quality Assurance organization or
simply a bunch of developers who haven’t written any of the software to be tested.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 23: Best Practices in MySQL Stored Program Development

This extra layer of testing, based on the customer’s own requirements and performed
before the handoff to customers for their “sign off” test, will greatly improve code quality
and customer confidence in the development team.

Example

We spend several days building a really slick application in PHP (or VB.NET or Java or...).
It allows users to manage data in a few different tables, request reports, and so on. We then
devote most of a day to running the application through its paces. We click here, click
there, enter good data, enter bad data, find a bunch of bugs, fix them, and finally hand it
over to our main customer, Johanna. We feel confident in our application. We can no
longer break it.

Imagine how crushed we feel (and we bet you can imagine it, because undoubtedly the
same thing has happened to you) when Johanna sits down in front of the computer, starts
up the application, and in no more than three clicks of the mouse causes an error window
to pop up on the screen. The look she sends our way (“Why are you wasting my time?”) is
not rewarding.

There is no way for us to convince Johanna that we really, truly did spend hours testing the
application. Why should she believe such a thing?

Benefits

Quality of code handed to users for testing is higher, which means the end result moved to
production is of correspondingly higher quality.

Customer confidence in the development organization remains high. This confidence—and
the respect that comes with it—makes it easier for developers to negotiate with customers
over the time-versus-quality dilemma so many of us face in software development.

Challenges

Many small development groups can’t afford (i.e., can’t convince management to spend the
money) to staff a separate QA organization. At a minimum, you must make sure that
customers have defined a clear set of tests. Then distribute the functional testing load to
the developers so that they do not test their own code.

Resources

http://www.well.com/~vision/sqa.html: A gathering place for references related to the theory
and practice of Software Quality Assurance. This site is growing to include information on
Standards and Development Procedures, Product Evaluation and Process Monitoring,
Configuration Management Monitoring, the role of SQA in the Product Development
Cycle, and Automated Testing Tools.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Coding Style and Conventions | 539

DEV-05: Use source controlled files to maintain the “reference” copy of your
stored routines
Source code control systems (SCCSs) allow us to keep copies of major revisions of our
program source code, allowing us to roll back an application’s source code to an earlier
point in time or to examine the source code in use with an earlier version of the applica-
tion (which might still be in use somewhere). Virtually all professional software developers
could—or at least should—employ an SCCS to store their application code.

Unfortunately, developers often fail to source control the DDL code to create database
objects and often neglect to include stored program code in the SCCS. To some extent, the
ability to extract the source code for a stored program from the database encourages us to
edit a stored program “in place”—even when we would never dream of editing PHP code
“in place” (e.g., directly editing the .php files in the Apache document directory).

If your stored programs are part of an application, then the source program code is just as
much a part of the application source code as code written in other languages such as PHP
or Java. You should therefore keep the “reference” copy of your stored program code in
your version control system (such as CVS, ClearCase, BitKeeper, etc.). This means saving
your stored program code as a text file and performing explicit check-in and check-out
from your version control system.

Think of that text file as the original source code for your procedure. Applying the source
code to the MySQL server is analogous to compiling that source as a binary. Extracting it
from a server for editing is equivalent to decompiling a binary and is usually not how you
obtain a copy of the source for editing. Instead, you should perform an explicit check-out
of the source code from the SCCS, edit it in the MySQL Query Browser or other tool, and
then apply it to a test database for unit testing. Later you can deploy the source code for the
stored program to a production database by running a script that executes it inside of the
MySQL command-line client.

Coding Style and Conventions
Software developers are a very privileged bunch. We don’t have to work in danger-
ous environments, and our jobs aren’t physically taxing (though carpal tunnel syn-
drome is always a threat). We are paid to think about things, and then to write down
our thoughts in the form of code. This code is then used and maintained by others,
sometimes for decades. Now just think of your code as a form of poetry and rejoice
in your fortunate circumstances!

Given this situation, we all have a responsibility to write code that can be easily
understood and maintained (and, c’mon, let’s admit our secret desires, admired) by
developers who follow in our footsteps.

Steve McConnell’s http://www.construx.com site, along with his book,
Code Complete (Microsoft Press), offers checklists on coding style,
naming conventions and rules, and module definitions.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 23: Best Practices in MySQL Stored Program Development

STYL-01: Adopt a consistent, readable format that is easy to maintain
Your code should have a “signature,” a style that is consistent (all your programs look the
same), readable (anyone can pick up your code and make sense of it), and maintainable (a
minor change in the code shouldn’t require 15 minutes of reformatting).

Ideally, everyone in your organization would adopt a similar style, so that everyone can
easily understand everyone else’s code. This can be tricky, as programmers sometimes take
a dogmatic approach to such issues as size of indentation and use of whitespace. However,
research and experience confirm that the benefit of adopting a similar style is not so much
that any one standard confers a significant benefit over another, but rather that the use of a
consistent standard throughout an organization improves efficiency and reduces mainte-
nance costs.

STYL-02: Adopt logical, consistent naming conventions for modules and data
structures
Adopt and promote standard ways to define names of program elements. Choose a level of
“formality” of naming conventions based on your needs. If, for example, you have a team
of two developers working on a small code base, you can probably get away with naming
conventions that don’t go far beyond “use meaningful names.” If you are building a
massive application involving dozens of developers, you probably need to define more
comprehensive rules.

Here are some general recommendations for conventions:

• Identify the scope of a variable in its name: A global variable can be prefaced with v_ ,
for example.

• Use a prefix or suffix to identify the types of structures being defined: Consider, for
example, declarations of cursors. A standard approach to declaring such a structure is
<name>_csr. Cursors are quite different from variables; you should be able to identify
the difference with a glance.

• Use a readable format for your names: Since the stored program language isn’t case
sensitive, the “camel notation” (as in minBalanceRequired), for example, is probably
not a good choice for constructing names. Instead, use separators such as _ (under-
score) to improve readability (as in min_balance_required). While MySQL allows
names to be extremely long (compared with other databases and/or languages), keep
them short, as well as readable.

• Consider portability: If you ever want to port your code to an alternate RDBMS (perish
the thought!) you should consider adopting a naming convention that will work across
RDBMS types. You can find a summary of the conventions for the “other” databases at
http://www.dbazine.com/db2/db2-disarticles/gulutzan5.

It isn’t possible to provide a comprehensive list of naming conventions in this book. The
particular conventions you choose, furthermore, aren’t nearly as important as the fact that
you set some standard for naming conventions.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

STYL-03: Self-document using block and loop labels | 541

STYL-03: Self-document using block and loop labels
While block and loop labels are often necessary to allow for variable scoping or as targets
for LEAVE or ITERATE statements, they can also be a big help in improving the readability of
code.

Use a label directly in front of loops and nested blocks:

• To name that portion of code and thereby self-document what it’s doing

• So that you can repeat that name with the END statement of that block or loop

• To provide a target for a LEAVE or ITERATE statement

This recommendation is especially important when you have multiple nestings of loops
(and possibly inconsistent indentation), as in the following:

WHILE condition DO
some code

   WHILE condition DO
some code

   END WHILE;
some code

END WHILE;

Example

In this example we use labels for a block and two nested loops, and then apply them in the
appropriate END statements. We can now easily see which loop and block are ending, no
matter how badly the code is indented!

CREATE PROCEDURE display_book_usage( )
  READS SQL DATA
BEGIN
   DECLARE v_month INT;
   DECLARE v_x  INT;
   DECLARE yearly_analysis_csr CURSOR FOR SELECT ...;
   DECLARE monthly_analysis_csr CURSOR FOR SELECT ...;

   OPEN yearly_analysis_csr;
   yearly_analysis:
   LOOP
     FETCH yearly_analysis_csr INTO v_month;
     OPEN monthly_analysis_csr;
     monthly_analysis:
     LOOP
       FETCH monthly_analysis_csr INTO v_x;
... Lots of monthly analysis code ...
END LOOP monthly_analysis;
...Lots of yearly analysis code
END LOOP yearly_analysis;

Benefits

If you use labels, it’s much easier to read your code, especially if it contains loops and
nested blocks that have long bodies (i.e., the loop starts on page 2 and ends on page 7, with
three other loops inside that outer loop—not that we recommend this!).



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 23: Best Practices in MySQL Stored Program Development

STYL-04: Express complex expressions unambiguously using parentheses
The rules of operator precedence in the MySQL stored program language follow the
commonly accepted precedence of algebraic operators. The rules of precedence often make
many parentheses unnecessary. When an uncommon combination of operators occurs,
however, it may be helpful to add parentheses even when the precedence rules apply.

The rules of evaluation do specify left-to-right evaluation for operators that have the same
precedence level. However, this is the most commonly overlooked rule of evaluation when
checking expressions for correctness.

Many developers apply a consistent rule for improved readability in this area: always use
parentheses around every Boolean expression, including IF, ELSEIF, and WHILE statements,
as well as variable assignments, regardless of the simplicity of the expressions. So, rather
than:

IF min_balance < 1000 THEN ...

you instead write:

IF ( min_balance < 1000 ) THEN ...

Example

You might not want a standard that requires you to always use parentheses, but in some
situations, parentheses are all but required for readability. Consider the following
expression:

5 + Y**3 MOD 10

MySQL will not be the least bit confused by this statement; it will apply its unambiguous
rules and come up with an answer. Developers, however, may not have such an easy time
of it. You are better off writing that same line of code as follows:

5 + ((Y ** 3) MOD 10)

Benefits

Everyone, including the author of the code, can more easily understand the logic and intent
(which is crucial for maintenance) of complex expressions.

STYL-05: Use vertical code alignment to emphasize vertical relationships
A common code formatting technique is vertical alignment. Here is an example in a SQL
WHERE clause:

WHERE  COM.company_id      = SAL.company_id
   AND COM.company_type_cd = TYP.company_type_cd
   AND TYP.company_type_cd = CFG.company_type_cd
   AND COM.region_cd       = REG.region_cd
   AND REG.status          = RST.status;

You should use vertical alignment only when the elements that are lined up vertically have
a relationship with each other that you want to express. In the WHERE clause shown here,
however, there is no relationship between the right sides of the various expressions. The



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

STYL-06: Comment tersely with value-added information | 543

relationship is between the left and right sides of each individual expression. This is, there-
fore, a misuse of vertical alignment.

Example

Developers often (and justifiably) use vertical alignment with program parameter lists, as
in:

CREATE PROCEDURE maximize_profits
 (
   IN     advertising_budget    NUMERIC(12,2),
   INOUT  bribery_budget        NUMERIC(12,2),
   IN     merge_and_purge_on    DATE ,
   OUT    obscene_bonus         NUMERIC(12,2))

Vertical alignment allows you to easily see the different parameter modes and data types.

Vertical alignment is also handy when declaring many variables, as in:

CREATE PROCEDURE genAPI( )
    DETERMINISTIC
BEGIN
   DECLARE c_table       CHAR(5)  DEFAULT 'TABLE';
   DECLARE c_column      CHAR(6)  DEFAULT 'COLUMN';
   DECLARE c_genpky      CHAR(6)  DEFAULT 'GENPKY';
   DECLARE c_genpkyonly  CHAR(10) DEFAULT 'GENPKYONLY';
   DECLARE c_sequence    CHAR(7)  DEFAULT 'SEQNAME';
   DECLARE c_pkygenproc  CHAR(10) DEFAULT 'PKYGENPROC';
   DECLARE c_pkygenfunc  CHAR(10) DEFAULT 'PKYGENFUNC';
   DECLARE c_usingxmn    CHAR(8)  DEFAULT 'USINGXMN';
   DECLARE c_fromod2k    CHAR(8)  DEFAULT 'FROMOD2K';

In this case, we want to be able to scan the list of values to make sure they are unique. I can
also easily compare lengths of strings with the CHAR declarations, avoiding nuisance trunca-
tion exceptions on initialization.

Benefits

Careful and appropriate use of vertical alignment enhances readability. Used inappropri-
ately, however, vertical alignment actually makes it harder to see what is really going on in
your code.

Challenges

Vertical alignment is a “high maintenance” format. Add a new, long variable name, and
you find yourself reformatting 20 other lines of code to match.

STYL-06: Comment tersely with value-added information
The best way to explain what your code is doing is to let that code speak for itself. You can
take advantage of many self-documentation techniques, including:

• Use meaningful variable, procedure, and function names.

• Use the language construct that best reflects the code you are writing (choose the right
kind of loop for your logic, label loops and BEGIN-END blocks, etc.).



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 23: Best Practices in MySQL Stored Program Development

Whenever you find yourself adding a comment to your code, first consider whether it is
possible to modify the code itself to express your comment. Good reasons to add
comments include:

• Program headers, explanations of workarounds, patches, operating-system dependen-
cies, and other “exceptional” circumstances

• Complex or opaque logic

Example

Let’s follow a trail of unnecessarily commented code to self-documenting code. We start
with:

-- If the first properties element is N...
IF properties1 = 'N'

Yikes! Our line of code was incomprehensible and our comment simply repeated the code
using the English language, rather than the stored program language. No added value, no
real assistance, yet not at all uncommon. The least we can do is use the comment to “trans-
late” from computer-talk to business requirement:

-- If the customer is not eligible for a discount...
IF properties1 = 'N'

That’s better, but we have created a redundancy: if our requirement ever changes, We have
to change the comment and the code. Why not change the names of our variables and
literals so that the code explains itself?

IF customer_discount_flag = const_ineligible

Much better! Now we no longer need a comment. Our remaining concern with this line of
code is that it “exposes” a business rule; it shows how (at this moment in time) we deter-
mine whether a customer is eligible for a discount. Business rules are notorious for
changing over time—and for being referenced in multiple places throughout our applica-
tion. So our best bet is to hide the rule behind a self-documenting function call:

IF NOT eligible_for_discount (customer_id)

Variables
The MySQL stored program language is technically a strongly typed language in the
sense that before you can work with a variable, you must first declare it. And when
you declare it, you specify its type and, optionally, an initial or default value. Be
aware, however, when not in “strict” mode (sql_mode contains neither STRICT_TRANS_
TABLES nor STRICT_ALL_TABLES), MySQL will generate warnings only when you vio-
late a variable’s type or storage limits.

We strongly urge you, therefore, to take special care with declaring your variables.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

DAT-01: Use a consistent and meaningful variable naming style | 545

DAT-01: Use a consistent and meaningful variable naming style
All of us have a distinct variable naming style, often based on the conventions of our first
programming language. In the very early days of programming, programmers were required
to keep variable names short so as to reduce memory overhead. Various programming
languages impose additional restrictions on the programmer: case-sensitivity, maximum
lengths, and allowable characters, for instance.

However programmers might differ as regards the “one true style” that is optimal for a
particular language, almost every programmer would agree that, above all, variable names
should be meaningful, and whatever style might be employed, it should be employed
consistently throughout your programs.

Meaningful variable names are those that clearly articulate the data that the variable holds.
It’s as simple as that. Avoid variable names that contain confusing or ambiguous abbrevia-
tions, and certainly avoid meaningless variable names such as v1, v2, etc.

Beyond being meaningful, conventions can help us understand the scope, data type, or
some other property of our variables. In MySQL stored programs, we could use a conven-
tion that allows us to:

• Determine the data type of a variable from its name.

• Distinguish table column names from local variables or parameters.

• Identify the type of data held in the variables: data from a cursor, intermediate data,
bits of SQL for a dynamic SQL, etc.

We believe that most of the above items are matters of personal preference and that, while
arguments can be made for and against any or all of these styles, you can write high-quality
code regardless of the style you adopt. We feel that the following recommendations,
however, should be followed:

• You should generally identify local variables with a prefix or a suffix, especially if they
are used to receive values from cursors. Creating local variables with the same name as
a column returned by a cursor is dangerous.

• Because variable names are case insensitive, “camel” notation—in which capitaliza-
tion is used to separate “words” within a variable name—is possibly inappropriate
since isNull and isnull will reference the same variable.

Example

If you’re not sold on the value of meaningful variable names, try to work out what this
assignment statement is doing:

SET ns=gs-tx+bn-fd;

Now try one with meaningful variable names:

SET net_salary=gross_salary-tax+bonus-fund401k;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 23: Best Practices in MySQL Stored Program Development

DAT-02: Avoid overriding variable declarations within “inner” blocks
It is possible to declare a variable inside an inner block that has the same name as a vari-
able in the enclosing block. Nevertheless—though legal—this practice can be extremely
confusing.

For instance, in the following example the v_counter variable is declared both within the
inner block and within the outer block:

DECLARE  v_counter INT DEFAULT 1;

  . . . Lots of code . . .

  inr_blk: BEGIN
    DECLARE v_counter INT DEFAULT 2;

    . . . Lots of code . . .

    SET v_counter=v_counter+1;

  END inr_blk;

There are two undesirable consequences to this practice:

• Someone reading the code might be confused as to which variable is being updated.

• It is not possible in the inner block to modify the value of a variable in the outer block.
The SQL:2003 specification allows us to prefix a variable name with its block label,
but this isn’t supported in MySQL yet.

It’s much better to ensure that every variable declared in a stored program has a unique
name, regardless of its block scope.

DAT-03: Replace complex expressions with functions
A Boolean function evaluates to one of three values: TRUE (1), FALSE (0), or NULL. You
can use Boolean functions to hide complex expressions; the result is code that is virtually as
readable as “straight” English—or whatever language you use to communicate with other
human beings.

Example

Consider this code:

  SELECT salary, status, hire_date
    INTO v_total_sal, v_emp_status,  v_hire_date
    FROM employees
   WHERE employee_id=in_employee_id;

  IF (v_total_sal BETWEEN 10000 AND 50000)
     AND  v_emp_status  = 'N'
     AND DATEDIFF(NOW( ), v_hire_date)>  365
  THEN
     CALL give_raise (in_employee_id);
  END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

DAT-04: Remove unused variables and code | 547

Wow, that’s hard to understand! It would be much easier if the code looked like this:

  IF eligible_for_raise(in_employee_id) THEN
     CALL give_raise(in_employee_id);
  END IF;

Benefits

It will be much easier for anyone to read your code; you can literally read it. If you then
need to understand how the Boolean expression is computed, you can look “under the
covers.”

This is a technique that can be applied (with care) to existing “spaghetti code.” As you go
into a program to fix or enhance it, look for opportunities to simplify and shorten execut-
able sections by shifting complexity to other functions or procedures.

Challenges

Before you modify existing code, make sure you have solid unit test scripts in place so you
can quickly verify that your changes haven’t introduced bugs into the program.

DAT-04: Remove unused variables and code
You should go through your programs and remove any part of your code that is no longer
used. This is a relatively straightforward process for variables and named constants. Simply
execute searches for a variable’s name in that variable’s scope. If you find that the only
place it appears is in its declaration, delete the declaration and, by doing so, delete one
more potential question mark from your code.

There is never a better time to review all the steps you took, and to understand the reasons
you took them, than immediately upon completion of your program. If you wait, you will
find it particularly difficult to remember those parts of the program that were needed at
one point but were rendered unnecessary in the end. “Dead zones” in your code become
sources of deep insecurity for maintenance programmers.

Example

The following block of code has several dead zones that could cause a variety of problems.
Can you find them all?

CREATE PROCEDURE weekly_check (
   in_isbn   VARCHAR(20),
   in_author VARCHAR(60)
)

BEGIN
   DECLARE  v_count INT;
   DECLARE  v_counter INT;
   DECLARE  v_available INT;
   DECLARE  v_new_location INT DEFAULT 1056;
   DECLARE  v_published_date DATE DEFAULT NOW( );

   SET  v_published_date=book_published_date(in_isbn);



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 23: Best Practices in MySQL Stored Program Development

   IF DATE_SUB(NOW( ), INTERVAL 60 DAY) >  v_published_date THEN
      CALL review_usage( );
   ELSEIF DATE_SUB(NOW( ), INTERVAL 24 DAY) >  v_published_date
   THEN
      CALL check_availability (in_isbn,  v_available,  v_count);
       IF  v_available
         AND /* Turn off due to Req A12.6 */ FALSE
      THEN
         CALL transfer_book (in_isbn,  v_count - 1,  v_new_location);
      END IF;
   -- Check for reserves
   -- CALL analyze_requests (isbn_in);
   END IF;
END$$

Here are a few potential dead spots:

• The in_author parameter is declared but never used. It doesn’t even have a default
value, so you have to pass in an ignored value.

• v_counter is declared but not used.

• v_published_date is assigned a default value of NOW( ), which is immediately overrid-
den by the call to book_published_date.

• The call to transfer_book has been turned off with the addition of AND FALSE.

• The call to analyze_requests has been commented out.

Benefits

It’s much easier to maintain, debug, and enhance code that doesn’t have “dead zones.”

Challenges

There are sometimes valid reasons for keeping dead code in place. You may want to turn
off code temporarily. Also, you may need to comment out some logic but still show that
this action was done and explain why. In such cases, make sure that you include the neces-
sary documentation in the code. Even better, use problem-tracking or bug-reporting
software to keep a comprehensive history of any changes made to code.

DAT-05: Don’t assume that the result of an expression is TRUE or FALSE; it
could be NULL
Three-valued logic—the logic that includes NULLs—is an essential part of the relational
database model. However, the tendency of humans to think in terms of two-valued logic—
an expression is either TRUE or FALSE—can lead to serious logic bugs.

For instance, consider the following logic, which is intended to retire employees older than
65 years and older, and keep those younger than 65 years:

  IF  v_date_of_birth > DATE_SUB(NOW( ), INTERVAL 65 YEAR)  THEN
     CALL keep_employee( v_employee_id);
  ELSE
     CALL retire_employee( v_employee_id);
  END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

DAT-06: Employ “user” variables for global data sparingly | 549

This logic seems valid from a two-valued logic perspective, but what if v_date_of_birth is
NULL? If the date of birth is NULL, then the date comparison will return NULL, rather
than TRUE or FALSE. Consequently, the ELSE condition will be executed and we will retire
an employee, although in fact we have no idea how old the employee is.

NULL values can be handled in a couple of ways:

• Explicitly check that a value is NOT NULL before attempting a comparison.

• Explicitly check each condition: don’t assume that an expression that is not TRUE, is
necessarily FALSE.

If we are worried about the date of birth being NULL in the above example, we might
recode it as follows:

  SET  v_age_in_years=DATEDIFF(NOW( ), v_date_of_birth)/365.25;

  IF  v_age_in_years > 65 THEN
     CALL retire_employee( v_employee_id);
  ELSEIF  v_age_in_years <= 65 THEN
     CALL keep_employee( v_employee_id);
  ELSE
     CALL invalid_dob_error( v_employee_id);
  END IF;

DAT-06: Employ “user” variables for global data sparingly
A global variable is a data structure that can be referenced outside the scope or block in
which it’s declared. In MySQL, we can use “user” variables—which can be recognized by
being prefixed with @—to set values that are available to any program within the current
session.

In the following procedure, for example, we store the number of customers into the user
variable @customer_count:

CREATE PROCEDURE sp_customer_count( )

  SELECT COUNT(*)
    INTO @customer_count
    FROM customers;

Other procedures can examine the @customer_count and make decisions without having to
recalculate the value. For instance, in this procedure we use the session variable in our
setup logic:

CREATE PROCEDURE sp_crm_setup ( )

BEGIN
   IF @customer_count IS NULL THEN
     CALL sp_customer_count( );
   END IF;

   IF @customer_count > 1000 THEN
         . . . Logic for larger enterprises . . ..

There is no doubt that the use of global variables can create easy solutions for difficult
problems. However, the modern consensus is that global variables create their own



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 23: Best Practices in MySQL Stored Program Development

problems and that these problems generally overwhelm any of the advantages they might
confer.

Global variables defeat modularity and hinder code reuse, because any module that uses a
global variable becomes dependent on some other module that creates or initializes the
global variable. In the case of MySQL user variables—which don’t require a formal declara-
tion—there is also the chance that two programmers might create identical “global”
variables of the same name, thus causing subtle bugs that might occur only when modules
are called in a certain order.

References

Code Complete, by Steve McConnell (Microsoft Press) contains an excellent discussion on
the pros and cons of global variables.

DAT-07: Create stored programs in strict mode to avoid invalid data
assignments
Stored program type checking is very dependent on the setting of the sql_mode configura-
tion variable. If a program is created when the sql_mode variable includes one of the “strict”
settings (STRICT_TRANS_TABLES or STRICT_ALL_TABLES), then the program will reject invalid
variable assignments with an error. If neither of the strict modes is in effect, then the stored
program will generate a warning when invalid data assignments occur, but will continue
execution.

For instance, in the following program, we accidentally declared a variable as CHAR(1)
instead of INT:

CREATE PROCEDURE TenPlusTen( )
BEGIN
  DECLARE a INTEGER DEFAULT 10;
  DECLARE b CHAR(1) DEFAULT 10;
  DECLARE c INTEGER;
  SET  c=a+b;
  SELECT c ;
END;

If created in “non-strict” mode, this program generates a warning, but continues execution
and returns the wrong result (10+10=11?):

mysql> CALL TenPlusTen( );
+------+
| C    |
+------+
|   11 |
+------+
1 row in set (0.00 sec)

Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level   | Code | Message                                |



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IF-01: Use ELSEIF with mutually exclusive clauses | 551

+---------+------+----------------------------------------+
| Warning | 1265 | Data truncated for column 'B' at row 1 |
+---------+------+----------------------------------------+
1 row in set (0.00 sec)

If created in strict mode, the program generates an error during execution, which is clearly
better than returning the wrong result:

mysql> CALL TenPlusTen( );
ERROR 1406 (22001): Data too long for column 'b' at row 1

Non-strict stored program behavior can lead to unexpected and subtle bugs, and we
recommend that you use strict mode when creating your stored programs. To enable strict
mode, assign one of STRICT_TRANS_TABLES or STRICT_ALL_TABLES to your sql_mode variable:

SET sql_mode='STRICT_TRANS_TABLES';

Remember, it is the sql_mode that was in effect when the program is created that determines
program behavior.

Conditional Logic
Follow the best practices in this section when you are using IF or CASE statements in
stored programs.

IF-01: Use ELSEIF with mutually exclusive clauses
When you need to write conditional logic that has several mutually exclusive clauses (in
other words, if one clause is TRUE, no other clause evaluates to TRUE), use the ELSEIF
construct:

IF condA THEN
   ...
ELSEIF condB THEN
   ...
ELSEIF condN THEN
   ...
ELSE
   ...
END IF;

Example

At first glance, the following statement makes sense, but on closer examination, it’s a mess:

CREATE PROCEDURE process_lineitem(line_in INT)
BEGIN

   IF line_in = 1 THEN
      CALL process_line1( );
   END IF;
   IF line_in = 2 THEN
      CALL process_line2( );
   END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 23: Best Practices in MySQL Stored Program Development

   ...
   IF line_in = 2045 THEN
      CALL process_line2045( );
   END IF;

END$$

Every IF statement is executed and each condition is evaluated. You should rewrite such
logic as follows:

CREATE PROCEDURE process_lineitem(line_in INT)
BEGIN

   IF line_in = 1 THEN
      CALL process_line1( );
   ELSEIF line_in = 2 THEN
      CALL process_line2( );
   /*... */
   ELSEIF line_in = 2045 THEN
      CALL process_line2045( );
   END IF;

END$$

Benefits

This structure clearly expresses the underlying “reality” of your business logic: if one condi-
tion is TRUE, no others can be TRUE.

ELSEIF offers the most efficient implementation for processing mutually exclusive clauses.
When one clause evaluates to TRUE, all subsequent clauses are ignored.

IF-02: Use IF...ELSEIF only to test a single,  simple condition
The real world is very complicated; the software we write is supposed to map those
complexities into applications. The result is that we often end up needing to deal with
convoluted logical expressions.

You should write your IF statements in such a way as to keep them as straightforward and
understandable as possible. For example, expressions are often more readable and under-
standable when they are stated in a positive form. Consequently, you are probably better
off avoiding the NOT operator in conditional expressions.

Example

It’s not at all uncommon to write or maintain code that is structured like this:

IF condA AND NOT (condB OR condC) THEN
   CALL proc1;
ELSEIF condA AND (condB OR condC) THEN
   CALL proc2;
ELSEIF NOT condA AND condD THEN
   CALL proc3;
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IF-03: Make sure that a CASE statement is inclusive, or construct a handler to catch any unmatched cases | 553

It’s also fairly common to get a headache trying to make sense of all of that. You can often
reduce the trauma by trading off the simplicity of the IF statement itself (one level of IF and
ELSEIF conditions) for the simplicity of clauses within multiple levels:

IF condA THEN
   IF (condB OR condC)    THEN
     CALL  proc2;
   ELSE
     CALL  proc1;
   END IF;
ELSEIF condD THEN
   CALL proc3
END IF;

Don’t forget, by the way, to take into account the possibility of your expressions evalu-
ating to NULL. This can throw a monkey wrench into your conditional processing.

Benefits

Following this best practice will make your code easier to read and maintain.

Breaking an expression into smaller pieces can aid maintainability; if and when the logic
changes, you can change one IF clause without affecting the logic of others.

Challenges

Multiple levels of nested IF statements can also decrease readability. You need to strive for
a workable balance.

IF-03: Make sure that a CASE statement is inclusive, or construct a handler to
catch any unmatched cases
If none of the CASE statements match as the input condition, CASE will raise MySQL error
1339 (Case not found for CASE statement). You should either construct an error handler to
ignore this error, or ensure that the exception never occurs by including an ELSE clause in
every CASE statement (the easier solution).

Example

In the following example, the CASE statement will fail if the customer status is not one of
'PLATINUM', 'GOLD', 'SILVER', or 'BRONZE':

CASE customer_status
    WHEN 'PLATINUM' THEN
         CALL apply_discount(sale_id,20); /* 20% discount */

    WHEN 'GOLD' THEN
         CALL apply_discount(sale_id,15); /* 15% discount */

    WHEN 'SILVER' THEN
         CALL apply_discount(sale_id,10); /* 10% discount */



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 23: Best Practices in MySQL Stored Program Development

    WHEN 'BRONZE' THEN
         CALL apply_discount(sale_id,5); /* 5% discount*/
END CASE;

Here we add an ELSE clause to avoid the error. Since we don’t have anything for the ELSE
clause to do, we use a dummy SET statement.

CASE customer_status
    WHEN 'PLATINUM' THEN
          CALL apply_discount(sale_id,20); /* 20% discount */
    WHEN 'GOLD' THEN
          CALL apply_discount(sale_id,15); /* 15% discount */
    WHEN 'SILVER' THEN
          CALL apply_discount(sale_id,10); /* 10% discount */
    WHEN 'BRONZE' THEN
          CALL apply_discount(sale_id,5); /* 5% discount */
    ELSE
           SET dummy=dummy;
END CASE;

In this alternative solution, we construct a handler to allow the error to be ignored:

    DECLARE not_found INT DEFAULT 0;
    DECLARE no_matching_case CONDITION  FOR 1339;
    DECLARE CONTINUE HANDLER FOR no_matching_case SET not_found=1
    CASE
      WHEN (sale_value>200) THEN
        CALL free_shipping(sale_id);
        CASE customer_status
          WHEN 'PLATINUM' THEN
            CALL apply_discount(sale_id,20);
          WHEN 'GOLD' THEN
            CALL apply_discount(sale_id,15);
          WHEN 'SILVER' THEN
            CALL apply_discount(sale_id,10);
          WHEN 'BRONZE' THEN
            CALL apply_discount(sale_id,5);
        END CASE;
    END CASE;

See Chapter 5 for more details.

IF-04: Use CASE and IF consistently
Any conditional statement that can be expressed as an IF statement can also be expressed
as a CASE statement—and vice versa. While you might heatedly debate the relative benefits
of each over a few beers after work, it’s fairly clear that you can write high-quality code no
matter which statement you employ.

However, randomly alternating between the two statements does not lead to high-quality
code. It’s harder to compare the logic of two routines if—for instance—one expresses its
branching logic with the CASE statement while the other uses IF. So try not to mix IF and
CASE arbitrarily within your programs.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

LOOP-01: Make sure the loop will terminate | 555

Loop Processing
Follow the best practices in this section when you are performing iterative process-
ing in stored programs using the various looping controls: LOOP, WHILE, and REPEAT.

LOOP-01: Make sure the loop will terminate
One of the most annoying and potentially disruptive bugs that can be created in any
language is the inadvertent infinite loop.

Making sure that a loop will terminate requires that you simulate all possible paths through
the loop and assure yourself that the loop will always encounter an exit condition. If the
loop does not terminate, it will likely consume excessive CPU and/or memory resources
until it is manually terminated by the system administrator. In a worst-case scenario, the
MySQL server itself may be terminated.

Example

The following stored procedure calculates the number of prime numbers less than the
supplied input parameter. It’s part of a larger routine that we plan to put in action when
we’re next contacted by extraterrestrial intelligences that announce their presence by
broadcasting prime numbers at planet Earth.

CREATE PROCEDURE check_for_primes(in_limit INT)
BEGIN
  DECLARE i INT DEFAULT 2;
  DECLARE j INT DEFAULT 1;
  DECLARE n_primes INT DEFAULT 0;
  DECLARE is_prime INT DEFAULT 0;

  REPEAT

     -- See if i is a prime number
    SET j=2;
    SET is_prime=1;
    divisors: WHILE(j< i) DO
      IF MOD(i,j)=0 THEN
         SET is_prime=0;
         LEAVE divisors;
      END IF;
      SET j=j+1;
    END WHILE;

    IF is_prime THEN
      SET n_primes=n_primes+1;
    END IF;

    -- Move onto the next number
    IF (MOD(i,2)=0) THEN
      SET i=i+1;
    ELSE
      -- Next number is even, no need



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 23: Best Practices in MySQL Stored Program Development

      -- to check for it as a prime
      SET i=i+2;
    END IF;

  UNTIL (i=in_limit) END REPEAT;

  SELECT CONCAT(n_primes,' prime numbers <= ',in_limit);

END$$

Unfortunately, this routine has a bug that will lead to an infinite loop if the input number is
even. A clever programmer altered the loop increment value so that even numbers—which
can never be prime—were skipped as the loop incremented. Unfortunately, the UNTIL loop
contains an equality check, i=in_limit, that will never be satisfied if the input parameter is
even, and hence the loop will never terminate.

This bug could have been detected or averted in a number of ways:

• Walk-through of the program’s algorithm

• Testing of the routine with a variety of inputs (including, of course, even numbers)

• Adoption of a defensive programming philosophy that could have led to the inclusion
of a more robust i>in_limit condition in the UNTIL clause

LOOP-02: Make the termination conditions of a loop obvious
Loop logic is easier to determine if all the control logic is in one place, either in the WHILE or
UNTIL clauses or in a LEAVE statement within the loop. It’s particularly confusing to include
a RETURN statement within a loop.

To that end, we suggest that you avoid LEAVE or RETURN statements within WHILE or REPEAT
UNTIL loops.

Example

In the following example, borrowed from the prime number routine in the preceding
section, a WHILE loop contains a LEAVE clause—there are two ways for the loop to termi-
nate, and this makes the code harder to analyze and trace:

SET j=2;
SET is_prime=1;
divisors: WHILE(j< i) DO
  IF MOD(i,j)=0 THEN
    SET is_prime=0;
    LEAVE divisors;
  END IF;
  SET j=j+1;
END WHILE;

One way to improve the readability of the loop would be to move all of the termination
logic into the WHILE clause:

SET j=2;
SET is_prime=1;
divisors: WHILE(j< i AND is_prime=1) DO



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

LOOP-03: Use a single LEAVE in simple loops | 557

  IF MOD(i,j)=0 THEN
    SET is_prime=0;
  END IF;
  SET j=j+1;
END WHILE;

Alternatively, we could employ a simple loop and place all termination logic within the
loop.

LOOP-03: Use a single LEAVE in simple loops
This best practice is another variation on “one way in, one way out.” It suggests that,
whenever possible, you consolidate all exit logic in your simple loop to a single LEAVE
statement.

Example

Here is another variant on our prime counting loop. It contains some new logic to handle
the special cases of 1 and 2 (1 is not prime; 2 is prime).

SET j=2;
SET is_prime=1;
divisors: LOOP
  IF (j=1) THEN
    SET is_prime=0;

LEAVE divisors;
  END IF;

  IF (j=2) THEN
    SET is_prime=1;

LEAVE divisors;
  END IF;

  IF MOD(i,j)=0 THEN
    SET is_prime=0;
  END IF;

  SET j=j+1;
  IF (is_prime=0 OR j>=i ) THEN

LEAVE divisors;
  END IF;

END LOOP divisors;

The multiple LEAVE statements make it difficult for us to work out which segments of the
code are actually executed for any given number. A rewrite that relies on a single LEAVE
looks like this:

SET j=2;
SET is_prime=1;
divisors: LOOP

  IF (i=1) THEN
    SET is_prime=0;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 23: Best Practices in MySQL Stored Program Development

  ELSEIF (i=2) THEN
    SET is_prime=1;

  ELSEIF MOD(i,j)=0 THEN
    SET is_prime=0;
    SELECT i,'is divisible by',j;

  END IF;

  IF (i=2 OR is_prime=0 OR j+1>=i ) THEN
    LEAVE divisors;
  END IF;

  SET j=j+1;

END LOOP divisors;

Now we have a single place in the code where we make the decision to leave the loop, and,
consequently, our code is more readable and robust.

LOOP-04: Use a simple loop to avoid redundant code required by a WHILE or
REPEAT UNTIL loop
This guideline is particularly relevant when you are writing cursor loops.

The structure of MySQL cursors, and the necessity of setting an indicator variable to detect
the end of the cursor, means that you usually want to execute the cursor loop at least once.
You will then continue executing the loop until the indicator variable changes.

This sounds like a perfect opportunity to apply the REPEAT UNTIL loop. So as you start to
create the program, you create a structure that looks like this:

DECLARE dept_csr CURSOR FOR
     SELECT department_name
       FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

OPEN dept_csr;
REPEAT
    FETCH dept_csr INTO  v_department_name;
UNTIL (no_more_departments) END REPEAT;

CLOSE dept_csr;
SET no_more_departments=0;

Of course, you always want to do something with the data fetched from a cursor, but you
need to make sure that you don’t try to process data after the last row has been returned.
So in order to keep the REPEAT loop, you create an IF structure to enclose your processing:

DECLARE dept_csr CURSOR FOR
 SELECT department_name
   FROM departments;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

EXC-01: Handle exceptions that cannot be avoided but can be anticipated | 559

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

   OPEN dept_csr;
   REPEAT
        FETCH dept_csr INTO  v_department_name;
             IF (no_more_departments=0) THEN
            SET v_count= v_count+1;
             END IF;
   UNTIL (no_more_departments) END REPEAT;

       CLOSE dept_csr;
    SET no_more_departments=0;

The problem with this solution is that you now have redundant tests to determine if you
have reached the end of the cursor. If you change the CONTINUE handler, you will have to
change your code in two places.

The code would be simpler and more maintainable if the test were conducted only once:

    DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

    OPEN dept_csr;
    dept_loop: LOOP
         FETCH dept_csr INTO  v_department_name;
         IF (no_more_departments)  THEN
            LEAVE dept_loop;
         END IF;
         SET  v_count= v_count+1;

     END LOOP;
     CLOSE dept_csr;
     SET no_more_departments=0;

Exception Handling
Even if you write such amazing code that it contains no errors and never acts inap-
propriately, your users might still use your program incorrectly. The result? Situa-
tions that cause programs to fail. MySQL provides exceptions to help you catch and
handle error conditions.

EXC-01: Handle exceptions that cannot be avoided but can be anticipated
If you are writing a program in which you can predict that a certain error will occur, you
should include a handler in your code for that error, allowing for a graceful and informa-
tive failure.

Example

This recommendation is easily demonstrated with a simple, single-row lookup cursor. An
error that often occurs is No data to FETCH, which indicates that the cursor didn’t identify
any rows. Consider the following function that returns the name of a department for its ID:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 23: Best Practices in MySQL Stored Program Development

CREATE FUNCTION department_name(in_dept_id INT) RETURNS VARCHAR(30)
  READS SQL DATA
BEGIN
  DECLARE  v_dept_name VARCHAR(30);

  DECLARE dept_csr CURSOR FOR
  SELECT department_name
    FROM departments
   WHERE department_id=in_dept_id;

   OPEN dept_csr;
   FETCH dept_csr INTO  v_dept_name;
   CLOSE dept_csr;

  RETURN  v_dept_name;
END;

As currently coded, this function will raise the No data to FETCH error if an invalid depart-
ment ID is passed in.

mysql> SELECT department_name(1);
+--------------------+
| department_name(1) |
+--------------------+
| DUPLIN             |
+--------------------+
1 row in set (0.00 sec)

mysql> SELECT department_name(60);
ERROR 1329 (02000): No data to FETCH

That may be fine for some scenarios, but in this particular case, we simply want to return a
special string (No such Department). The program that calls department_name can then
decide for itself if it wants or needs to raise an error or simply proceed. In this case, the
solution is to add a simple CONTINUE handler:

CREATE FUNCTION department_name(in_dept_id INT) RETURNS VARCHAR(30)
  READS SQL DATA
BEGIN
  DECLARE  v_dept_name VARCHAR(30);

  DECLARE dept_csr CURSOR FOR
  SELECT department_name
    FROM departments
   WHERE department_id=in_dept_id;

  DECLARE CONTINUE HANDLER FOR NOT FOUND
          SET  v_dept_name='No such Department';

  OPEN dept_csr;
  FETCH dept_csr INTO  v_dept_name;
  CLOSE dept_csr;

  RETURN  v_dept_name;
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

EXC-04: Avoid global SQLEXCEPTION handlers until MySQL implements SIGNAL and SQLCODE features | 561

EXC-02: Use named conditions to improve code readability
Any MySQL programmer worth her salt knows all the MySQL error codes by heart, right?
Wrong!

Exception handlers defined against MySQL error codes might work, but they will almost
never be easy to read.

The best way to improve the readability of your exception handling routines is to define a
named condition for every MySQL error code that you might be anticipating. So instead of
the following declaration:

DECLARE CONTINUE HANDLER FOR 1216 mysql_statements;

you should use the following, more readable pair of declarations:

DECLARE foreign_key_error CONDITION FOR 1216;

DECLARE CONTINUE HANDLER FOR foreign_key_error mysql_statements;

EXC-03: Be consistent in your use of SQLSTATE and MySQL error codes in
exception handlers
You often have the choice between a MySQL error code and an ANSI-standard SQLSTATE
code when creating your exception handler. Be as consistent as possible in your choice
between the two. In some cases, an explicit SQLSTATE code might not be available for the
error you are trying to catch, and you will want to use a MySQL error code. Unless porta-
bility is your primary concern—and in reality, this will rarely be the case—we recommend
that you use MySQL error codes exclusively in your stored programs.

EXC-04: Avoid global SQLEXCEPTION handlers until MySQL implements
SIGNAL and SQLCODE features
In the initial 5.0 release of MySQL, it is not possible to access the MySQL error code or
SQLSTATE code that caused a handler to be invoked. You also can’t raise your own excep-
tions (the SIGNAL/RESIGNAL statements are not yet supported). What this means is that
unless your handler is very specific, you won’t know exactly why it was raised. Further-
more, you won’t have a reliable mechanism for propagating the exception to the calling
program.

Under normal circumstances, it can be very helpful to implement a general-purpose excep-
tion handler. This handler would acquire all kinds of handy information about the current
state. If, however, you are unable to determine the error that was raised, this kind of
general-purpose handler is of little use, and it can even cause a loss of useful information.
For instance, in the following example, a general-purpose hander is invoked but cannot
report accurately the reason it fired:

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
    SET  v_status=-1;
    SET  v_message='Some sort of error detected somewhere in the application';
END;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 23: Best Practices in MySQL Stored Program Development

Given these restrictions, it is best not to create general SQLEXCEPTION handlers. Rather, you
should handle only specific, foreseeable errors, and let the calling program handle any
unexpected errors.

SQL in Stored Programs
One area in which the MySQL stored program language really shines is the ease with
which you can include SQL inside of stored program code (this was, after all, one of
the key motivations for the introduction of this functionality in MySQL). While you
might occasionally write stored programs without any SQL, it would be almost com-
pletely pointless to use stored programs if it weren’t for their ability to issue SQL.

Best practices related to SQL inside of MySQL stored programs are, therefore,
among the most important in this chapter.

SQL-01: Start a transaction explicitly with the START TRANSACTION
statement
Although MySQL will automatically initiate a transaction on your behalf when you issue
DML statements, you should issue an explicit START TRANSACTION statement in your
program to mark the beginning of your transaction.

It’s possible that your stored program might be run within a server in which autocommit is
set to TRUE, and by issuing an explicit START TRANSACTION statement you ensure that
autocommit does not remain enabled during your transaction. START TRANSACTION also aids
readability by clearly delineating the scope of your transactional code.

SQL-02: Don’t leave transactions “dangling”
Once you start a transaction, you should take responsibility for completing the transac-
tion. Since transactions lock rows and potentially block other transactions, you need to
ensure that transactions do not persist indefinitely. Generally, you should place the START
TRANSACTION and COMMIT or ROLLBACK statements in the same stored program. This program
may also call other programs, and you need to make sure that these called programs do not
contain transactional code.

There are some exceptions to this recommendation. In particular, modular design might
prompt you to break down a transaction into separate modules and control the overall
transaction state from a master procedure.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL-05: Keep transactions small | 563

SQL-03: Avoid use of savepoints—they can obscure program logic and
reduce program efficiency
Savepoints allow you to define a point within a transaction to which you can roll back
without losing all of the changes made by the transaction. In essence, a savepoint facili-
tates the “partial rollback” of a transaction.

Indiscriminate use of savepoints can lead to inefficient and hard-to-maintain code. This is
because when you roll back to a savepoint, your program flow is harder to follow, and you
have almost by definition wasted system resources by issuing DML that you later aborted.

Quite often, you will find that instead of rolling back to a savepoint, you can simply issue a
SELECT statement to validate an operation prior to actually issuing the DML. This tech-
nique was demonstrated in Chapter 8.

A valid use of a savepoint is within a stored program that you are using to execute a
“nested” transaction without affecting the status of a transaction that may be in progress in
the calling program. The “nested” program creates a savepoint and rolls back to that save-
point if any errors occur. In this way the procedure could be safely called by a program that
has an open transaction, since any rollback issued in the nested program would affect only
statements issued in that program.

SQL-04: Use an appropriate locking strategy
There are two major patterns in transaction management: the optimistic locking strategy
and the pessimistic locking strategy.

The pessimistic locking strategy assumes that concurrent updates are quite likely. To
prevent this, the transaction locks rows as they are read. Other transactions that want to
update the row must wait until the pessimistic transaction ends.

The optimistic locking strategy assumes that in the period of time between a user reading
and then updating a row, it is unlikely that another user will attempt to update that same
row. Of course, optimism in and of itself is not sufficient; when following this locking
strategy, the program should check to ensure that the row has not been updated, immedi-
ately prior to the update. If the row has been updated, then the transaction is aborted.

Each locking strategy is based on assumptions regarding the behavior of other transactions
or application users. Each has different implications for the duration of any locks acquired
during the transaction and the possibility that a transaction will be aborted. Make sure that
you weigh carefully the implications of the two strategies and pick the approach that best
suits your application.

SQL-05: Keep transactions small
The larger the transaction, the more likely it is that the transaction will lock rows needed
by another transaction, and the greater the chance that a deadlock might occur. Transac-
tions should therefore usually be no larger than is absolutely necessary.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 23: Best Practices in MySQL Stored Program Development

SQL-06: Always reset the NOT FOUND variable after completing a cursor loop
You should usually terminate a cursor loop when a CONTINUE handler for the NOT FOUND
condition fires and modifies the value of a status variable. For instance, in the following
fragment, the CONTINUE handler sets the v_last_row_fetched variable to 1, and we test this
value after each FETCH call:

DECLARE CONTINUE HANDLER FOR NOT FOUND SET  v_last_row_fetched=1;

OPEN cursor1;
cursor_loop:LOOP
    FETCH cursor1 INTO  v_customer_name, v_contact_surname, v_contact_firstname;
    IF  v_last_row_fetched=1 THEN
        LEAVE cursor_loop;
    END IF;
    -- Do something with the row fetched.
END LOOP cursor_loop;
CLOSE cursor1;
SET  v_last_row_fetched=0;

It is important to reset this status value to 0 after the cursor loop terminates; otherwise,
subsequent or nested cursor loops may terminate prematurely.

The following code incorrectly fetches employees for only a single department, because
after the first cursor loop, the status variable continues to indicate that the last row has
been fetched:

  DECLARE CONTINUE HANDLER FOR NOT FOUND
      SET  v_not_found=1;

  SET  v_dept_id=1;
  WHILE( v_dept_id<=10) DO
    OPEN dept_emp_csr;
    emp_loop:LOOP
      FETCH dept_emp_csr INTO  v_employee_id;
      IF  v_not_found THEN
        LEAVE emp_loop;
      END IF;
      CALL process_employee( v_employee_id);
    END LOOP;
    CLOSE dept_emp_csr;

    SET  v_dept_id= v_dept_id+1;
  END WHILE;

SQL-07: Use SELECT FOR UPDATE when retrieving rows for later update
Use the SELECT FOR UPDATE statement to request that locks be placed on all rows identified
by the query. You should do this whenever you expect to change some or all of those rows,
and you don’t want another session to change them out from under you. Any other session
trying to update the rows, or lock the rows (perhaps using FOR UPDATE), will have to wait.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SQL-08: Avoid including SQL in functions that may be used in SQL | 565

Example

Here we are processing a special bonus payment for needy employees. We issue the FOR
UPDATE clause so that the rows concerned are locked until our transaction completes:

CREATE PROCEDURE needy_bonus( )
BEGIN
  DECLARE  v_employee_id INT;
  DECLARE  v_salary      NUMERIC(8,2);
  DECLARE  v_last_emp    INT DEFAULT 0;

  DECLARE emp_csr CURSOR FOR
   SELECT employee_id,salary
     FROM employees
    WHERE salary <45000

FOR UPDATE;

  DECLARE CONTINUE HANDLER FOR NOT FOUND SET  v_last_emp=1;

  START TRANSACTION;
    OPEN emp_csr;
    emp_loop:LOOP
      FETCH emp_csr INTO  v_employee_id, v_salary;
      IF  v_last_emp THEN
        LEAVE emp_loop;
      END IF;
      CALL grant_raise( v_employee_id, v_salary);
    END LOOP emp_loop;
    CLOSE emp_csr;
    SET  v_last_emp=0;

  COMMIT;

END;

You can also use the LOCK IN SHARE MODE clause to lock the rows against update but continue
to allow reads.

SQL-08: Avoid including SQL in functions that may be used in SQL
You are free to include SQL statements within stored functions (with the exception of SQL
statements that return result sets to the calling program). You should, however, be very
wary of doing so if you think that your stored function might itself be called inside a SQL
statement.

When you use a function that contains SQL in a SQL statement, you are effectively
“nesting” two SQL statements. For every row returned by the “outer” SQL, you will have
to execute the “inner” SQL. Such nested SQL statements can exhibit extremely unpredict-
able or undesirable performance.

For instance, consider the simple stored function below:

CREATE FUNCTION cust_contact_name (in_customer_id INT)
  RETURNS VARCHAR(100)
  READS SQL DATA



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 23: Best Practices in MySQL Stored Program Development

BEGIN
  DECLARE  v_contact_name VARCHAR(100);

  SELECT CONCAT(contact_firstname,' ',contact_surname)
    INTO  v_contact_name
    FROM customers
   WHERE customer_id=in_customer_id ;

  RETURN( v_contact_name);

END$

It contains an efficient query, but nevertheless, if we include it in a query against the
customers table as follows:

SELECT cust_contact_name(customer_id) FROM customers

our execution time is about five times greater than if we performed the same operation
within the SQL itself:

SELECT CONCAT(contact_firstname,' ', contact_surname) FROM customers

The situation becomes even worse if the SQL inside the function is not completely opti-
mized. In Chapter 10 we provide an example in which the use of a stored function inside a
SQL statement lengthens execution time by a factor of 300!

Dynamic SQL
“Dynamic” means that the SQL statement that you execute is constructed, parsed,
and compiled at runtime, not at the time the code is compiled. Dynamic SQL offers a
tremendous amount of flexibility—but also complexity and more than a little risk.

In the MySQL stored program language, you can process dynamic SQL by using the
MySQL prepared statement feature. You can create a prepared statement with the
PREPARE statement, supplying the SQL text in a session variable. The SQL can then be
executed with the EXECUTE statement.

DYN-01: Bind, do not concatenate, variable values into dynamic SQL strings
When you bind a variable value into a dynamic SQL string, you can insert a “placeholder”
into the string. This allows MySQL to parse a “generic” version of that SQL statement,
which can be used over and over again, regardless of the actual value of the variable,
without repeated parsing.

This technique also makes your code more resistant to SQL injection attacks (see
Chapter 18), since the value supplied to placeholders cannot include SQL fragments.

Example

Here’s an example of binding with the PREPARE and EXECUTE statements. This program
updates any numeric column in the specified table, based on the supplied name:



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

DYN-02: Carefully validate any parameter values that might be used to construct dynamic SQL | 567

CREATE PROCEDURE update_anything
  (in_table     VARCHAR(60),
   in_where_col VARCHAR(60),
   in_set_col   VARCHAR(60),
   in_where_val VARCHAR(60),
   in_set_val   VARCHAR(60))
BEGIN

  SET @dyn_sql=CONCAT(
      'UPDATE ' , in_table ,
        ' SET ' , in_set_col, ' = ?
        WHERE ' , in_where_col, ' = ?');

 PREPARE s1 FROM @dyn_sql;
 SET @where_val=in_where_val;
 SET @set_val=in_set_val;
 EXECUTE s1 USING @where_val,@set_val;
 DEALLOCATE PREPARE s1;

END$$

If you want to update the salary of employee #1 to $100,000, you might call this stored
procedure as follows:

CALL update_anything_g('employees','employee_id','salary',100000,1)

The dynamic SQL generated will look like this:

'UPDATE employees SET salary = ? WHERE employee_id = ?'

The ? characters indicate placeholders that will be replaced with the values for salary and
employee_id. Those values are provided in the USING clause of the EXECUTE statement.
Attempts to “inject” SQL into these values will fail (although injection into the table or
column name parameters is still possible—we’ll address that in the next best practice).

DYN-02: Carefully validate any parameter values that might be used to
construct dynamic SQL
Whenever you create a dynamic SQL statement based on parameters to a procedure or user
inputs, you should always guard carefully against SQL injection (see Chapter 18). SQL
injection allows the user to provide fragments of SQL as parameters to your stored
programs, potentially subverting the resulting dynamic SQL.

Therefore, you should always carefully validate the inputs to your stored programs if they
contribute to your dynamic SQL.

In the previous example, we prevented SQL injection through the careful use of place-
holders. Variable binding could not, however, address the potential vulnerability of
concatenating in the names of tables and columns.

In the modified version below, we perform a SQL query to confirm that the parameter
inputs do, in fact, represent valid table and column names. Once we validate the inputs, we
then construct and execute the dynamic SQL:

CREATE PROCEDURE update_anything_2
  (in_table     VARCHAR(60),



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 23: Best Practices in MySQL Stored Program Development

   in_where_col VARCHAR(60),
   in_set_col   VARCHAR(60),
   in_where_val VARCHAR(60),
   in_set_val   VARCHAR(60))
BEGIN

  DECLARE  v_count INT;

  SELECT COUNT(*)
    INTO  v_count
    FROM information_schema.columns
   WHERE table_name=in_table
     AND column_name IN (in_set_col,in_where_col);

  IF ( v_count <2 ) THEN
    SELECT 'Invalid table or column names provided';
  ELSE
    SET @dyn_sql=CONCAT(
      'UPDATE ' , in_table ,
        ' SET ' ,in_set_col, ' = ?
        WHERE ' , in_where_col, ' = ?');

   SELECT @dyn_sql;
   PREPARE s1 FROM @dyn_sql;
   SET @where_val=in_where_val;
   SET @set_val=in_set_val;
   EXECUTE s1 USING @where_val,@set_val;
   DEALLOCATE PREPARE s1;
 END IF;

END;

DYN-03: Consider the invoker rights method for stored code that executes
dynamic SQL
The definer rights model—in which stored programs execute with the permissions of the
creator rather than the invoker—generally confers significant security advantages, since
you can allow access to database objects only under the controlled conditions imple-
mented in your stored programs.

However, in the case of stored programs that contain dynamic SQL, the definer rights
model can create security concerns, since these programs can conceivably be vulnerable to
SQL injection, as described in Chapter 18. Since the creator of the stored program is almost
always a highly privileged user, the implications of SQL injection into a definer rights
procedure is potentially very serious indeed.

Whenever you create a stored program that processes a dynamic SQL statement, you
should consider defining the program with the invoker rights model. Do this by adding the
following clause to the program header:

SQL SECURITY INVOKER



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PRG-01: Encapsulate business rules and formulas behind accurately named functions | 569

This clause ensures that the dynamic SQL string is parsed under the authority of the
account currently running the program.

Without the SQL SECURITY INVOKER clause, the stored program will execute with the privi-
leges of the user that created the stored program. Since—by definition—you don’t know
exactly the full text of the dynamic SQL to be executed, you almost always want the SQL
to be rejected if the user does not have sufficient privileges.

Using the alternative definer rights model also magnifies the potential vulnerabilities created
should your stored program be susceptible to SQL injection.

Example

In the previous examples, we created a stored program that would update the value of any
column in any table. Since we omitted the SQL SECURITY clause, a user can use the stored
program to update tables to which she wouldn’t normally have access. We didn’t intend
that!

So we should have defined the stored program with invoker rights, as follows:

CREATE PROCEDURE update_anything_2
  (in_table     VARCHAR(60),
   in_where_col VARCHAR(60),
   in_set_col   VARCHAR(60),
   in_where_val VARCHAR(60),
   in_set_val   VARCHAR(60))
   SQL SECURITY INVOKER
BEGIN
. . . .

Program Construction
There are as many ways to write and structure a program as there are program-
mers—or so it sometimes seems. We offer suggestions on how to structure your pro-
grams and how best to design parameter lists that we have found effective.

PRG-01: Encapsulate business rules and formulas behind accurately named
functions
This might be one of the most important best practices you will ever read—and, we hope,
follow. There is only one aspect of every software project that never changes: the fact that
everything always changes. Business requirements, data structures, user interfaces: all of
these things change and change frequently. Your job as a programmer is to write code that
adapts easily to these changes.

So whenever you need to express a business rule (such as, “Is this string a valid ISBN?”),
put it inside a subroutine that hides the individual steps (which might change) and returns
the results (if any).

And whenever you need a formula (such as, “the total fine for an overdue book is the
number of days overdue times $.50”), express that formula inside its own function.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 23: Best Practices in MySQL Stored Program Development

Example

Suppose that you must be at least 10 years old to borrow books from the library. This is a
simple formula and very unlikely to change. We set about building the application by
creating the following logic:

  IF  v_dob > DATE_SUB(now( ), INTERVAL 10 YEAR) THEN
    SELECT 'Borrower must be at least 10 yrs old';
  ELSE
    INSERT INTO borrower
      (firstname,surname,date_of_birth)
    VALUES( v_firstname, v_surname, v_dob);
  END IF;

Later, while building a batch-processing script that checks and loads over 10,000 borrower
applications, we include the following check in the program:

  load_data:BEGIN
    IF DATEDIFF(now( ), v_dob)/365 < 10 THEN
      select ('Borrower  is not ten years old.');
    ELSE
       . . . load data . . .
    END IF;
  END load_data;

And so on from there. We are left, unfortunately, with a real job on our hands when we get
a memo that says: “In order to support a new city-wide initiative to increase literacy, the
minimum age for a library card has been changed from 10 to 8.” And then, of course and
by the way, there is the minor bug we introduced into our second construction of the rule
(we forgot about leap years).

If only we had created a simple function the first time we needed to calculate minimum
valid age! It would be something like this:

CREATE FUNCTION borrower_old_enough (in_dob DATE)
  RETURNS INT
  NO SQL
BEGIN
  DECLARE  v_retval INT DEFAULT 0;
  IF (in_dob < DATE_SUB(NOW( ), INTERVAL 10 YEAR)) THEN
    SET  v_retval=1;
  ELSE
    SET  v_retval=0;
  END IF;
  RETURN( v_retval);
END;

And this function copes correctly with a NULL input, for which we forgot to check in those
other programs. We can correct the age calculation logic in one place and easily change the
minimum age from 10 to 8:

Benefits

You can update business rules and formulas in your code about as quickly and as often as
users change that which was supposedly “cast in stone.” Developers apply those rules
consistently throughout the application base, since they are simply calling a program.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PRG-02: Standardize module structure using function and procedure templates | 571

Your code is much easier to understand, since developers don’t have to wade through
complex logic to understand which business rule is being implemented.

Challenges

It’s mostly a matter of discipline and advance planning. Before you start building your
application, create a set of programs to hold business rules and formulas for distinct areas
of functionality. Make sure that the names of the programs clearly identify their purpose.
Then promote and use them rigorously throughout the development organization.

PRG-02: Standardize module structure using function and procedure
templates
Once you adopt a set of guidelines for how developers should write procedures and func-
tions, you need to help those developers follow their best practices. The bottom line is that
guidelines will be followed if you make it easier to follow them than to ignore them.

For module standards, you can use either of the following approaches:

• Create a static template file that contains the generic logical structure for a procedure
and/or function. Developers then copy that file to their own file, “de-genericize” the
template by performing search-and-replace operations on placeholder strings with
their own specific values (such as table names), and modify it from there.

• Use a program (one that you’ve written or a commercially available tool) that gener-
ates the code you want. This approach can be more flexible and can save you time,
depending on how sophisticated a generator you use/create.

Example

Here’s a simple function template that reinforces the single RETURN recommendation and
encourages a standard header.

CREATE FUNCTION f_<name>
  (IN in_<parm> <datatype>)
     RETURNS <datatype>
     DETERMINISTIC
BEGIN
   /*
    || STANDARD COPYRIGHT STATEMENT HERE
    || Author:
    ||   File:
    ||
    || Modification history:
    */

   DECLARE retval <datatype> DEFAULT <value>
   -- Put your code here

   RETURN retval;

END



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 23: Best Practices in MySQL Stored Program Development

Some third-party products (Toad for MySQL, for instance) allow you to define such a
template and have it automatically applied to new stored programs.

Benefits

The quality of each individual program is higher, since it’s more likely to conform to best
practices.

Programs are more consistent across the team and therefore easier to maintain and
enhance.

PRG-03: Limit execution section sizes to a single page (50-60 lines) using
modularization
Sure, you’re laughing out loud. You write code for the real world. It’s really complicated.
Only 50 or 60 lines? You’re lucky if your programs are less than 500 lines! Well, it’s not a
matter of complexity; it’s more an issue of how you handle that complexity.

If your executable sections go on for hundreds of lines, with a loop starting on page 2 and
ending on page 6, and so on, you will have a hard time “grasping the whole” and following
the logic of the program.

An alternative is to use step-wise refinement (a.k.a. “top down decomposition”): don’t dive
into all the details immediately. Instead, start with a general description (written in actual
code, mind you) of what your program is supposed to do. Then implement all subprogram
calls in that description following the same method.

The result is that at any given level of refinement, you can take in and easily comprehend
the full underlying logic at that level. This technique is also referred to as “divide and
conquer.”

Example

Consider the following procedure. The entire program might be hundreds of lines long, but
the main body of assign_workload (starting with BEGIN /*main*/) is only 24 lines long. Not
only that, you can read it pretty much as an exciting novel: “For every telesales rep, if that
person’s case load is less than his department’s average, assign the next open case to that
person and schedule the next appointment for that case” (well, maybe not that exciting).

CREATE PROCEDURE assign_workload( )
BEGIN /*main*/
  DECLARE  v_last_row INT DEFAULT 0;
  DECLARE  v_case_id, v_telesales_id, v_department_id  INT;

  DECLARE telesales_cur CURSOR FOR
    SELECT telesales_id,department_id FROM telesales;

  DECLARE CONTINUE HANDLER FOR NOT FOUND SET  v_last_row=1;

  OPEN telesales_cur;
  ts_loop:LOOP
    FETCH telesales_cur INTO  v_telesales_id, v_department_id;
    IF  v_last_row THEN LEAVE ts_loop; END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PRG-04: Avoid side-effects in your programs | 573

    IF analysis_caseload( v_telesales_id)<
       analysis_avg_cases( v_department_id) THEN

       SET  v_case_id=assign_next_open_case( v_telesales_id);
       CALL schedule_case( v_case_id);
    END IF;
  END LOOP;
  CLOSE telesales_cur;
  SET  v_last_row=0;

END$$

Benefits

You can implement complicated functionality with a minimum number of bugs by using
step-wise refinement. A developer can understand and maintain a program with confi-
dence if he can read and grasp the logic of the code.

Challenges

You have to be disciplined about holding off writing the low-level implementation of func-
tionality. Instead, come up with accurate, descriptive names for procedures and functions
that contain the implementations themselves.

Resources

http://www.construx.com: Contains lots of good advice on writing modular code.

PRG-04: Avoid side-effects in your programs
Build lots of individual programs. Design each program so that it has a single, clearly
defined purpose. That purpose should, of course, be expressed in the program’s name, as
well as in the program header.

Avoid throwing extraneous functionality inside a program. Such statements are called side-
effects and can cause lots of problems for people using your code—which means your code
won’t get used, except perhaps as source for a cut-and-paste session (or—in hardcopy
form—for kindling).

Example

Here’s a program that by name and “core” functionality displays information about all
books published within a certain date range:

CREATE PROCEDURE book_details (
  in_start_date DATE,
  in_end_date   DATE)
BEGIN
  DECLARE  v_title, v_author VARCHAR(60);
  DECLARE  v_last_book,  v_book_id INT DEFAULT 0;

  DECLARE book_cur CURSOR FOR



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 23: Best Practices in MySQL Stored Program Development

      SELECT book_id,title,author
        FROM books
       WHERE date_published BETWEEN in_start_date
                 AND in_end_date;

  OPEN book_cur;
  book_loop:LOOP
    FETCH book_cur INTO  v_book_id, v_title, v_author;
    IF  v_last_book THEN LEAVE book_loop; END IF;

    CALL details_show( v_title, v_author);
    CALL update_borrow_history ( v_book_id);
  END LOOP;
END$$

Notice, however, that it also updates the borrowing history for that book. Now, it might
well be that at this point in time the display_book_info procedure is called only when the
borrowing history also needs to be updated, justifying to some extent the way this program
is written.

However, regardless of current requirements, the name of the program is clearly
misleading; there is no way to know that display_book_info also updates borrowing
history. This is a hidden side-effect, and one that can cause serious problems over time.

Benefits

Your code can be used with greater confidence, since it does only what it says (via its name,
for the most part) it’s going to do. Developers will call and combine single-purpose
programs as needed to get their jobs done.

PRG-05: Avoid deep nesting of conditionals and loops
Many studies have confirmed that excessive nesting of IF, CASE, or LOOP structures leads to
code that is difficult to understand. More than two or three levels of nesting is probably
undesirable.

Consider the following logic:

IF  v_state='CA' THEN
    IF  v_quantity > 100 THEN
      IF  v_customer_status='A' THEN
        IF  v_product_code='X' THEN
            SET  v_discount=.04;
        ELSEIF  v_product_code='Y' THEN
            SET  v_discount=.04;
        ELSE

SET  v_discount=.01;
        END IF;
      ELSE
        SET  v_discount=0;
      END IF;
    ELSEIF  v_quantity > 50 THEN
      SET  v_discount=.1;
    . . . More logic . . .
  END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PRG-06: Limit functions to a single RETURN statement in the executable section | 575

It’s fairly difficult to determine which set of conditions is applied to any particular
discount. For instance, consider the highlighted line above—it takes a bit of puzzling to
work out which states, quantities, and so on are associated with this discount: and that is
with the vast majority of the logic removed. There are a few possible solutions to this deep
nesting:

• Including multiple conditions in each IF or ELSEIF clause: For instance, we might test
for a specific combination of state, quantity, and status on the one line.

• Removing parts of the logic to separate subroutines: For instance, we might create sepa-
rate subroutines that calculate discounts for each state.

• Creating a data-driven solution: For instance, in the above example it would probably
be preferable to create a table that includes the discount for each combination of
values.

PRG-06: Limit functions to a single RETURN statement in the executable
section
A good general rule to follow as you write your stored programs is: “one way in and one
way out.” In other words, there should be just one way to enter or call a program (there is;
you don’t have any choice in this matter). And there should be one way out, one exit path
from a program (or loop) on successful termination. By following this rule, you end up
with code that is much easier to trace, debug, and maintain.

For a function, this means you should think of the executable section as a funnel; all the
lines of code narrow down to the last executable statement:

RETURN return value;

Example

Here’s a simple function that relies on multiple RETURNs:

CREATE FUNCTION status_desc (in_cd CHAR(1))
  RETURNS VARCHAR(20)

    DETERMINISTIC
BEGIN

   IF in_cd = 'C' THEN
      RETURN 'CLOSED';
   ELSEIF in_cd = 'O' THEN
      RETURN 'OPEN';
   ELSEIF in_cd = 'I' THEN
      RETURN 'INACTIVE';
   END IF;
END;

At first glance, this function looks very reasonable. Yet this function has a deep flaw, due to
the reliance upon separate RETURNs: if you don’t pass in "C", "O", or "I" for the cd_in argu-
ment, the function raises:

mysql> SELECT status_desc('A');
ERROR 1321 (2F005): FUNCTION status_desc ended without RETURN



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 23: Best Practices in MySQL Stored Program Development

Here’s a rewrite that relies upon a single RETURN at the end of the function:

CREATE FUNCTION status_desc (in_cd CHAR(1))
  RETURNS VARCHAR(20)

    DETERMINISTIC
BEGIN
   DECLARE  v_status VARCHAR(20) ;
   IF in_cd = 'C' THEN
      SET  v_status='CLOSED';
   ELSEIF in_cd = 'O' THEN
      SET  v_status='OPEN';
   ELSEIF in_cd = 'I' THEN
      SET  v_status='INACTIVE';
   END IF;
   RETURN  v_status;
END$$

This program also safely and correctly returns NULL if the program doesn’t receive a value
of "C", "O", or "I", unlike the first implementation.

Benefits

You’re less likely to write a function that raises the exception ERROR 1321 (2F005): FUNCTION
%s ended without RETURN—a nasty and embarrassing error.

A single RETURN function is easier to trace and debug, since you don’t have to worry about
multiple exit pathways from the function.

PRG-07: Use stored programs to implement code common to multiple
triggers
Because you often need to create both an UPDATE and an INSERT trigger to maintain a derived
or denormalized column, you might find yourself replicating the same logic in each trigger.
For instance, in a previous example we created BEFORE UPDATE and BEFORE INSERT triggers to
calculate free shipping and discount rate. If the logic is nontrivial, you should implement
the logic in a stored procedure or function and call that routine from your trigger.

Example

Imagine that we are trying to automate the maintenance of a superannuation (18K plan) for
our employees. We might create a trigger as follows to automate this processing upon
insertion of a new employee row:

CREATE TRIGGER employees_bu
     BEFORE UPDATE
     ON employees
      FOR EACH ROW
  BEGIN
    DECLARE  v_18k_contrib NUMERIC(4,2);

    IF NEW.salary <20000 THEN
      SET NEW.contrib_18k=0;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Performance | 577

    ELSEIF NEW.salary <40000 THEN
      SET NEW.contrib_18k=NEW.salary*.015;
    ELSEIF NEW.salary<55000 THEN
      SET NEW.contrib_18k=NEW.salary*.02;
    ELSE
      SET NEW.contrib_18k=NEW.salary*.025;
    END IF;
  END$$

But we need to ensure that this column is maintained when we create a new employee row.
Instead of performing a copy-and-paste into a BEFORE INSERT trigger, we should locate this
logic in a stored function as follows:

CREATE FUNCTION emp18k_contrib(in_salary NUMERIC(10,2))
  RETURNS INT
    DETERMINISTIC
BEGIN
  DECLARE  v_contrib NUMERIC(10,2);
  IF in_salary <20000 THEN
    SET  v_contrib=0;
  ELSEIF in_salary <40000 THEN
    SET  v_contrib=in_salary*.015;
  ELSEIF in_salary<55000 THEN
     SET  v_contrib=in_salary*.02;
  ELSE
     SET  v_contrib=in_salary*.025;
  END IF;

  RETURN( v_contrib);
END;

Now we can use that function in both the INSERT and the UPDATE triggers. If the logic
changes, we can modify the logic in one place and can therefore eliminate the risk of any
inconsistency between inserted and updated rows.

DROP TRIGGER employees_bu$$

CREATE TRIGGER employees_bu
     BEFORE UPDATE
     ON employees
      FOR EACH ROW
  BEGIN
    SET NEW.contrib_18k=emp18k_contrib(NEW.salary);
  END;

Performance
Most of the best practices outlined so far concentrate on the maintainability and cor-
rectness of our stored programs. The following practices concentrate on the perfor-
mance of stored programs.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 23: Best Practices in MySQL Stored Program Development

PER-01: Concentrate on tuning SQL to improve stored program performance
There are many ways to improve stored program performance, but none of these are likely
to have much effect if the SQL within the stored program is inefficient.

Most stored programs contain SQL, and for almost all of those stored programs, the SQL
makes up the vast majority of stored program elapsed time. Attempts to tune the stored
program by other means (loop tuning, for instance) should only be attempted once the
SQL in the stored program has been tuned.

PER-02: Carefully create the best set of indexes for your application
The primary purpose of indexes is to allow MySQL to rapidly retrieve the information you
need. Just as the index in this book allows you to find some information without having to
read the entire book, an index allows MySQL to get rows from the table without reading
the entire table.

Determining the optimal set of indexes for your application is, therefore, probably the
single most important step you can take to optimize MySQL stored program performance.
In general, you should create indexes that support WHERE clause conditions and joins. You
should also create multicolumn (concatenated) indexes, so that a single index can support
all of the columns in the WHERE clause or all of the columns required to join two tables.

You should create indexes to support joins, since without an appropriate index, joins will
degrade rapidly as the row counts in the involved tables increase.

PER-03: Avoid accidental table scans
One of the most common causes of poor application performance is the “accidental” full
table scan. An accidental table scan occurs when the nature of the query, or the expecta-
tions of the programmer, suggests that the query will be satisfied using an index, but
instead a full table scan is performed.

Accidental table scans can occur under the following circumstances:

• The index that you believe supports the query does not exist.

• You have an index that includes the columns in the query, but you don’t include the
foremost, “leading” columns in your query.

• You suppress an index by enclosing the column concerned with a function or an
expression.

• You specify a nonleading substring as the search condition. For instance, you try to
find all employees whose name ends in "STONE" (WHERE name LIKE '%STONE').

Most accidental table scans can be resolved by creating a new index or rewording the SQL
so that the index is not suppressed. See Chapters 20 and 21 for more details.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

PER-06: Move loop invariant expressions outside of loops | 579

PER-04: Optimize necessary table scans
Using an index to retrieve rows from a table is worthwhile only when you are retrieving a
relatively small subset of rows from the table. Over a certain proportion of the table (say 5-
20%), it is more efficient to read every row from the table. However, it is still possible to
optimize these “necessary” table scans. For instance:

• You can move long, infrequently accessed columns to a secondary table.

• You can create an index on all of the columns required for the query. MySQL can then
scan the entire index to resolve the query. Since the index will normally be smaller
than the table, it ought to be quicker to scan the index.

These techniques are discussed in detail in Chapter 21.

PER-05: Avoid using stored programs for computationally expensive routines
Like most stored program implementations, MySQL stored programs are optimized for
database access, not computational speed. If you have a choice, place your most computa-
tionally expensive routines in client or middle-tier code. For instance, you might want to
implement your most expensive calculations in PHP or Java rather than in stored
programs.

PER-06: Move loop invariant expressions outside of loops
Whenever you set out to tune your stored programs (having completed your SQL optimiza-
tion), you should first take a look at your loops. Any inefficiency inside a loop’s body will
be magnified by the multiple executions of that code.

A common mistake is to put execute code within the body of a loop that has the same
result with each iteration of the loop. When you identify such a scenario, extract the static
code, assign the outcomes of that code to one or more variables in advance of the loop, and
then reference those variables inside the loop.

Example

At first glance, this loop block seems sensible enough, but in reality it is quite inefficient:

  WHILE (i<=1000) do
      SET j=1;
      WHILE (j<=1000) do
        SET counter=counter+1;
        SET sumroot=sumroot+sqrt(i)+sqrt(j);
        SET j=j+1;
      END WHILE;
      SET i=i+1;
  END WHILE;

This code contains two loops: we calculate the square root of i inside of the inner loop,
even though it only changes for each iteration of the outer loop. Consequently, we calcu-
late the square root 1,000,000 times, even though we have only 1,000 distinct values.



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 23: Best Practices in MySQL Stored Program Development

Here’s the optimized version of that same code:

WHILE (i<=@i) do
      SET rooti=sqrt(i);
      SET counter=counter+1;
      SET j=1;
      WHILE (j<=@j) do
        SET sumroot=sumroot+rooti+sqrt(j);
        SET j=j+1;
      END WHILE;
      SET i=i+1;
  END WHILE;

A small change, but one that will have a massive effect on performance.

PER-07: Optimize conditional structures
The performance of IF and CASE statements is highly dependent on the number of compari-
sons that the statement must execute. The number of comparisons can be optimized in two
ways:

• By placing the comparisons that are most frequently true earliest in the set of compari-
sons, you reduce the number of comparisons that must be executed.

• If any comparison is repeated in multiple expressions within the CASE or IF statement,
you can extract that comparison and “nest” multiple CASE or IF statements. The inner
comparisons need only be executed when the outer comparison evaluates to TRUE.

PER-08: Structure IF and CASE statements so more likely expressions appear
earliest in the list
When MySQL processes a CASE or an IF statement, it works through every ELSEIF or WHEN
condition in the statement until if finds a condition that returns TRUE. If you place the
condition that is most likely to evaluate to TRUE at the beginning of your conditional
statement, you will improve the overall efficiency of your program.

Your primary concern, however, should be the readability of your IF and CASE statement.
Don’t worry about reorganizing the clauses of your IF and CASE statements unless you have
identified them as a bottleneck in application performance.

Example

In this example the most likely condition is tested last:

IF (percentage>95) THEN
    SET Above95=Above95+1;
ELSEIF (percentage >=90) THEN
    SET Range90to95=Range90to95+1;
ELSEIF (percentage >=75) THEN
    SET Range75to89=Range75to89+1;
ELSE
    SET LessThan75=LessThan75+1;
END IF;



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 581

To optimize the statement, we can reword it so that in most cases, only one comparison is
necessary:

IF (percentage<75) THEN
    SET LessThan75=LessThan75+1;
ELSEIF (percentage >=75 AND percentage<90) THEN
    SET Range75to89=Range75to89+1;
ELSEIF (percentage >=90 and percentage <=95) THEN
    SET Range90to95=Range90to95+1;
ELSE
    SET Above95=Above95+1;
END IF;

Conclusion
In this final chapter, we’ve attempted to enumerate coding practices that will result
in efficient, robust, and easily maintainable stored programs. These practices are
based on lessons learned in various development environments—including Oracle
and SQL Server stored procedures—as well as from our experiences with the MySQL
stored program language. We hope that you find these practices worthy of consider-
ation. We do not, however, hope or expect that you will automatically adopt every
recommendation. As always, you should exercise your judgment, tempered by your
unique understanding of your own specific requirements, before adopting any stan-
dard, recommendation, or practice.





This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

583

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
/* */ (multi-line comments), 60
( ) (parentheses), applying to

expressions, 542
- - (single-line comments), 60
+ (addition) operator, 61
& (AND) operator, 62, 64
/ (division) operator, 61
= (is equal to) operator, 62
> (is greater than) operator, 62
< (is less than) operator, 62
<– (is less than or equal to) operator, 62
<>,!= (is not equal to) operator, 62
% (modulus) operator, 61
* (multiplication) operator, 61
<=> (null safe equal) operator, 62
| (OR) operator, 63, 64
; (semicolons) in code, 165
<< (shifts bits to left) operator, 64
>> (shifts bits to right) operator, 64
- (subtraction) operator, 61
˜ (NOT or invert bits) operator, 64

A
ABS function, 218
abstraction, stored programs, 265
access, 140

column values, 369
DataReader metadata, 394
locks

deadlocks, 193
timeouts, 196

restricting, 430

result sets, DataSets, 395–397
SQLSTATE code, 140
tables

direct, 430
SQL tuning, 463–480

ACID (atomic, consistent, isolated,
durable), 179

ACOS function, 223
actions, triggering, 250
ADDDATE function, 232
adding dummy ELSE clauses, 91
addition (+) operator, 61
ADDTIME function, 223
ADO.NET

applying, 401–412
calling, 391
dynamic result sets, 405–408
error handling, 154, 397
input parameters, 402
multiple result sets, 404
output parameters, retrieving, 410–412
overview of, 386–401
stored functions, calling, 412
stored programs

calling, 401
DataReader, 403
DataSets, 408–410
input parameters, 402

transaction management, 398–401
(see also .NET)

AFTER clause triggers, 251
algorithms

Fibonacci, 526
MERGE, 498
TEMPFILE, 498



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

584 | Index

aligning code, 542
ALTER PROCEDURE/FUNCTION

statement, 173
ALTER ROUTINE privilege, 422
ANALYZE TABLE statements, 449
AND (&) operator, 62, 64
anti-joins, 493

(see also subqueries)
applications

J2EE, 323–332
PEAR, 150, 276
stored programs, 261–264

advantages of, 264–268
calling, 270–273
disadvantages of, 268–269

applying
ADO.NET, 401–412
ASCII string function, 206
ASP.NET, 413–418
cursors, 34, 101–112
DataReader, 393
error handling, 145–150
mysqli extension, 276–289
nondefault delimiters, 166
parameters

ADO.NET, 391
C#, 392
VB.NET, 391

prepared statements, PDOs, 293
Python, configuring interfaces, 380–385
SELECT-INTO statements, 101
stored functions, 244–248
stored programs

best practices, 539–544
blocks, 77–82
built-in functions, 64–68
comments, 60
EJBs, 329–331
MySQLdb, 373–379
servlets, 324–328

triggers, 251–256
views, 498

appropriate use of stored programs, xv
architecture exceptions, 534
Ascher, David, 372
ASCII functions, 206
ASIN function, 223
ASP.NET

applying, 413–418
forms, 414

assigning values to variables, 52
ATAN function, 223

atomic, consistent, isolated, durable
(ACID), 179

attributes
connections, 346
IN, 53
INOUT, 53
OUT, 53
Perl, 346

audit logging, implementing, 253
authorization, stored procedures, 430
autocommit( ) method, 280, 370
AutoCommit attribute, 346, 353
avoiding, 563

accidental table scans, 472–475
deadlock conditions, 195
invalid data assignments, 550
nesting, 574
redundant code, 558
redundant evaluations, 88
rollbacks, 202
savepoints, 202, 563
self-joins, 515
side-effects (in programs), 573
sorts, creating indexes to, 501
table scans, 578

Axmark, David, 5

B
Balling, Derek, 14
batching inserts, 503
BDB (Berkeley-DB) database, 6
Bean Managed Persistence (BMP), 342
Bean-Managed Persistence (BMP), 330
Beaulieu, Alan, 14
BEFORE clause triggers, 251
BEGIN statement, 77
BEGIN-END blocks, 93, 137
BENCHMARK function, 233
Berkeley DB transaction support, 17, 180
Berkeley-DB (BDB) database, 6
best practices

coding style and conventions, 539–544
conditional logic, 551–554
development process, 533–539
dynamic SQL, 566–569
exception handling, 559–562
loop processing, 555–559
performance, 577–581
program construction, 569–577
SQL, 562–566
variables, 544–551

BETWEEN operator, 62



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 585

BIN function, 218
BINARY function, 216
bind variables, Perl, 348
binding

input parameters to stored programs, 299
parameters to prepared statements, 294
variable values, 566

bindParam( ) method, 294
bind_param( ) method, 280, 348
BIT_LENGTH function, 216
bitwise operators, 63
BLOB data types, 71
blocks, 77

BEGIN-END, 93
condition handler scope, 137

else, 370
except, 370
IF statements, 87
inner, overloading variables, 80
labels, 541

exiting, 81
naming, 79
nested, 79
stored programs, 77–82
try, 370
variables, overriding, 546

BMP (Bean Managed Persistence), 342
BMP (Bean-Managed Persistence), 330
books (as resources for developers), 13
browsers

Query Browser, 20–25
(see also interfaces)

buffer pools, 446
built-in functions (see functions, built-in)

C
C#, 386

DataSets, 409
populating, 395

error handling, 154
exception handling, 398
output parameters, ADO.NET, 410
parameters, applying, 392
stored functions, 412
stored procedures

calling input parameters, 402
DataReader, 403

transaction management, 398
cached result sets, 447

caching
queries, 446
SQL, 446
tables, 446

CALL statement, 38–39
CallableStatement interface, 317
calling

stored functions, 242–244, 273
ADO.NET, 412

stored programs, 38–39
ADO.NET, 386, 401
from application code, 270–273
error handlers, 127
Java, 309
mysqli extension, 284
PDO, 297
Perl, 343
PHP, 45, 275
Python, 364

cardinality, 449
CASE statements, 8, 88–92

formatting, 580
IF statements, comparing, 92
inclusive, 553
optimizing, 522–526
stored functions, 245

catching
errors, PDO, 291
SQLExceptions, 316

CEILING function, 218
CHAR function, 207
CHARACTER_LENGTH function, 216
CHAR_LENGTH function, 216
CHARSET function, 208
check constraint triggers, 254
checking types (in Java), 73
Christensen, Clayton, xiii
classes, StoredProcedure, 341
Class.forName( ) method, 310
clauses

AFTER triggers, 251
BEFORE triggers, 251
DETERMINISTIC, 43, 170, 171, 240
ELSE, 89

adding dummy, 91
END IF, 84
FROM, subqueries, 495–500
GROUP BY, 501–502
INTO, SELECT statements, 100
ON FUNCTION, 423



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

586 | Index

clauses (continued)
ON PROCEDURE, 423
ORDER, 501–502
SQL, 240
THEN, 84

clients
applications, 261
traffic, reducing, 509

CLOSE statements, cursors, 102
closing stored programs, 273
CMP (Container-Managed Persistence), 330,

342
COALESCE function, 234
code

aligning, 542
conditional control statements, 82–93
conventions, 539–544
injection (stored programs), 434–440
readability, 561
redundant, avoiding, 558
reviewing, 534
segments, grouping, 78
semicolons in, 165
SQLCODE, accessing, 140
SQLSTATE, 133

accessing, 140
error handling, 134
named conditions, 139

stored programs
CASE statements, 522–526
cursors, 528
IF statements, 522–526
loops, 519–522
optimizing, 508
recursion, 526–527
reducing traffic, 512–515
speed, 509–512
SQL statements, 515–519
trigger overhead, 529–531

styles, 539–544
testing, 534
walkthroughs, 536

columns
Extra, in Explain statement, 453
id, in EXPLAIN statement, 451
key, 453
key, in EXPAIN statement, 453
key_len, in EXPLAIN statement, 453
maintaining, 45
possible_keys, 453
possible_keys, in EXPLAIN

statement, 453

ref, in EXPLAIN statement, 453
rows in EXPLAIN statement, 453
select_type, in EXPLAIN statement, 451
tables, in EXPLAIN statement, 452
types, in EXPLAIN statement, 452
updating, 120
values

accessing, 369
triggers, 250

(see also tables)
COMMENT comment_string, 171
comments, 60, 447, 543

adding, 544
multi-line (/* */), 60
single-line (- -), 60

commit( ) method, 280, 370
COMMIT statement, 182, 292, 353
common routines, stored programs, 267
comparing IF/CASE statements, 92
comparison operators, 61
complex joins, subqueries, 490
COMPRESS function, 216
computationally inferior, stored

programs, 268
CONCAT function, 208–210
concatenation

indexes, 468
table scans, avoiding, 474

CONCAT_WS function, 210
concurrency, 181
condition handler scope, 137
conditional control statements, 82–93
conditional execution of stored

procedures, 30
conditional logic, 8

best practices, 551–554
statements, 8

conditional structures, optimizing, 580
conditions

deadlock, avoiding, 195
ELSEIF, 87
error handling, 129–138

named, 139
errors

cursors, 111
last row, 128–129

NOT FOUND
nested cursor loops, 108
resetting, 564

overlapping, 86
redundancy, 88
testing, 522, 552



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 587

configuring
Hibernate, 337
IDEs, 310

ADO.NET, 386
output parameters, 272
stored programs for execution, 270

connections
attributes, 346
MySQL

ADO.NET, 387–390
JDBC, 310
mysqli extensions, 277
PDO, 290
Perl, 346
VB.NET, 389

MySQLdb extensions, 365
Connector/Net drivers

installing, 386
registering, 387–390

Container-Managed Persistence (CMP), 330,
342

CONTINUE condition handlers, 130, 132
CONTINUE statements, avoiding processing

loops, 520
controls

iterative, 8
stored programs, 8

CONV function, 219
conventions, code, 539–544
CONVERT_TZ function, 223
correlated updates, optimizing, 517
COT function, 223
covering indexes, 470
CRC32 function, 223
CREATE FUNCTION statement, 21, 171,

238
CREATE PROCEDURE statement, 21, 160,

170–171
syntax, 170

CREATE ROUTINE privilege, 422
CREATE TRIGGER statement, 21, 172, 249
createDemoTables( ) method, 316
createQuery( ) method, 335
createStatement( ) method, 312
CURDATE function, 232
CURRENT_DATE function, 224
CURRENT_TIME function, 224
CURRENT_TIMESTAMP function, 224
CURRENT_USER function, 234
cursors

applying, 34
creating, 101–112

defining, 101
DictCursor, 369
error conditions, 111
loops, 103

exiting, 111
nesting, 108–111
NOT FOUND handlers, 128
types of, 105–108

optimizing, 528
REPEAT loops, 105
statements, 102
trigger overhead, 529–531

CURTIME function, 232

D
dangling transactions, 562
Data Definition Language (see DDL)
Data Manipulation Language (see DML)
data types, 68–71
DATABASE function, 234
databases

BDB, 6
information, retrieving, 173–175
interacting with, 33
Java, 261
.NET, 261
Perl, 261, 346
PHP, 261
Python, 261
security, stored programs, 264
stored programs, 3–7
transactions

defining, 183
design, 201–203
isolation levels, 181–182
locks, 190–201
savepoints, 185–190
statements, 182
support, 180

(see also MySQL)
DataReader

applying, 393
DataSets, 395–397
dynamic result sets, 406
metadata, retrieving, 394
multiple result sets, 404
stored programs, 403

DataSets, 395–397
stored programs, 408–410

date and time functions (see functions,
built-in)

date data types, 71



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

588 | Index

DATE function, 224
date literals, 52
DATE_ADD function, 224
DATEDIFF function, 227
DATE_FORMAT function, 225
DATE_SUB function, 226
DAY function, 225, 228
DAY_HOUR function, 225
DAY_MINUTE function, 225
DAYNAME function, 228
DAYOFMONTH function, 232
DAYOFWEEK function, 228
DAYOFYEAR function, 228
DAY_SECOND function, 225
DBD::mysql driver, 344–354

executing, 354–361
DBI->connect( ) method, 346
DDL (Data Definition Language), 185
deadlocks, 193

(see also locks)
DEALLOCATE statement, 119
DECLARE CONTINUE HANDLER

statement, 127
DECLARE HANDLER statement, 129
DECLARE statement, 7, 25, 26, 50

cursors, defining, 101
declaring

blocks, 78
condition handlers, 135
multiple variables, 50
variables, 25, 27, 51

overriding, 546
DECODE function, 217
definer rights security, 421, 424, 568

policies, implementing, 427–431
defining

cursors, 101
loaders, 334
transactions, 183

DEGREES function, 223
deleting variables, 547
DELIMITER statements, 166
derived data, maintaining, 252
derived tables, 495
design, transactions, 201–203
DETERMINISTIC clause, 43, 170, 171, 240
Detron HB, 5
development process, best

practices, 533–539
dialog boxes, Eclipse, 310
DictCursor, 369

direct access to tables, 430
directives (see hints)
Directives region, 388
dirty read (see READ UNCOMMITTED

isolation level)
DIV (integer division) operator, 61
division (/) operator, 61
division of duties, stored programs, 268
DML (Data Manipulation Language),

tuning, 503–506
do( ) method, 347
drivers

Connector/.NET
installing, 386
registering, 387–390

DBD::mysql, 344–354
executing, 354–361

JDBC
installing, 310
registering, 310

DROP PROCEDURE statement, 160
DROP statement, 173
DuBois, Paul, 13
dummy ELSE clauses, adding, 91
dump_results method, 351
Dyer, Russell, 13
dynamic result sets

ADO.NET, 405–408
Perl, 356
processing, 282, 296
Python, 376

dynamic SQL
best practices, 566–569
server-side prepared statements, 118–123

dynamic variable typing (in PHP), 74

E
Eckel, Bruce, 76
Eclipse, xiii
Eclipse dialog box, 310
editing stored programs, 159

EMACs, 160
existing programs, 166–168
System Editor, 160
Toad, 165

editors, creating stored programs, 161
EJBs (Enterprise JavaBeans), 323

stored programs, applying, 329–331
else blocks, 370
ELSE clauses, 89

dummy, adding, 91



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 589

ELSEIF conditions, 87
applying with mutually exclusive

clauses, 551
ELT function, 217
Emacs, editing stored programs, 160
embedding

non-SELECT statements, 37, 100
stored programs, 7
UPDATE statements, 38

emulating SIGNAL statements, 143
enabling

mysqli extensions, 276
transactions, 183

encapsulating functions, 569
ENCODE function, 217
ENCRYPT function, 217
END IF clause, 84
END LOOP statement, 93
END statement, 77
Enterprise JavaBeans (EJBs), 323

stored programs, applying, 329–331
entity EJBs, 328
ENUM data types, 68
error conditions, cursors, 111
error handling, 10

ADO.NET, 154, 397
applying, 145–150
C#, 154
conditions, 129–138
DBD::mysql drivers, 347
deadlocks, 193
Java/JDBC, 152, 316
last row conditions, 128–129
mysqli extensions, 277
named conditions, 139
.NET, 154
overview of, 125–128
Perl, 151
PHP, 150
Python, 153
SQL, 123
stored programs, 10, 32
stored programs in calling

applications, 150–155
VB.NET, 155, 397

error messages, 78
error status methods, PDO, 291
errorInfo( ) method, 291
events, deadlocks, 193
except blocks, 370

exceptions
architecture, 534
best practices, 559–562
C#, 398
MySQLdb extensions, 366
SIGNAL statements, creating with, 141
SQLExceptions, throwing, 316

exec( ) method, 290
execute( ) method, passing parameters, 367
EXECUTE statements

PREPARE statement, 118
privileges, 422

ExecuteNonQuery( ) method, 390
executeQuery( ) method, 312
ExecuteReader( ) method, 393
executeUpdate( ) method, 312
executing

dynamic SQL, 119
Hibernate queries, 336
non-SELECT statements

mysqli extensions, 278
PDO, 290

SQL statements, MySQLdb
extensions, 367

stored procedures, JDBC, 320
stored programs, 30, 270, 272

DBD::mysql drivers, 354–361
security options, 423–434

existing stored programs, editing, 166–168
EXIT condition handlers, 130, 132
exiting

cursor loops, 111
labeled blocks, 81

EXP function, 223
EXPLAIN EXTENDED statement, 454
EXPLAIN statement, 449–459
exponential degradation, nonindexed

subqueries, 488
EXPORT_SET function, 217
expressions, 64

functions, replacing, 546
NULL, 548
parentheses ( ), applying, 542
TRUE/FALSE, 83

extensions
MySQLdb, 364–379

applying, 380–385
mysqli, 276

applying, 276–289
PEAR, 150, 276



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

590 | Index

external files, maintaining stored programs
in, 167

Extra column in EXPLAIN statement, 453
EXTRACT function, 228

F
FALSE, IF statements, 83
FETCH statements, cursors, 102
fetchall( ) method, 368
fetch_field( ) method, 288
fetching

multiple result sets, 288
single rows from cursors, 103

fetchmany( ) method, 369
fetch_object( ) method, 278, 284
fetchone( ) method, 368
fetch_row( ) method, 279
fetchrow_array method, 349
fetchrow_arrayref method, 349
fetchrow_hashref method, 349
Feuerstein, Steven, 13
Fibonacci sequences, 526
FIELD function, 217
FieldCount( ) method, 394
files, maintaining in external, 167
finder method (EJB), 331
FLOOR function, 219
flow of control, statements, 82–93
flow of execution, stored statements, 30
FORCE INDEX hint, 467, 472
<form> tag, 383
FORMAT numeric function, 219
formatting

CASE statements, 580
connections, MySQLdb extensions, 365
cursors, 101–112
exceptions, SIGNAL statements, 141
IF statements, 85, 580
indexes, 467, 578

avoiding sorts, 501
stored functions, 238–242
stored programs, 159–166
temporary tables, 117
triggers, 249–251

forms, ASP.NET, 414
FOUND error handler, 33
fragmentation, logic, 269
FROM clauses, subqueries, 495–500
FROM_DAYS function, 233
full table scans, 463, 464

functions
built-in, 64–68, 205–237

ABS, 218
ACOS, 223
ADDDATE, 232
ADDTIME, 223
ASCII, 206
ASIN, 223
ATAN, 223
BENCHMARK, 233
BIN, 218
BINARY, 216
BIT_LENGTH, 216
CEILING, 218
CHAR, 207
CHARACTER_LENGTH, 216
CHAR_LENGTH, 216
CHARSET, 208
COALESCE, 234
COMPRESS, 216
CONCAT, 208–210
CONCAT_WS, 210
CONV, 219
CONVERT_TZ, 223
COT, 223
CRC32, 223
CURDATE, 232
CURRENT_DATE, 224
CURRENT_TIME, 224
CURRENT_TIMESTAMP, 224
CURRENT_USER, 234
CURTIME, 232
DATABASE, 234
DATE, 224
DATE_ADD, 224
DATEDIFF, 227
DATE_FORMAT, 225
DATE_SUB, 226
DAY, 225, 228
DAY_HOUR, 225
DAY_MINUTE, 225
DAYNAME, 228
DAYOFMONTH, 232
DAYOFWEEK, 228
DAYOFYEAR, 228
DAY_SECOND, 225
DECODE, 217
DEGREES, 223
ELT, 217
ENCODE, 217
ENCRYPT, 217



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 591

EXP, 223
EXPORT_SET, 217
EXTRACT, 228
FIELD, 217
FLOOR, 219
FORMAT, 219
FROM_DAYS, 233
GETFORMAT, 229
GET_LOCK, 234
HEX, 219
HOUR, 225, 233
HOUR_MINUTE, 225
HOUR_SECOND, 225
IFNULL, 235
INET_ATON, 217
INET_NTOA, 217
INSERT, 211
INSTR, 212
INTERVAL, 235
IS_FREE_LOCK, 235
ISNULL, 235
LAST_DAY, 233
LCASE, 212
LEAST, 219
LEFT, 212
LENGTH, 212
LN, 223
LOAD_FILE, 213
LOCALTIME, 233
LOCALTIMESTAMP, 233
LOCATE, 213
LOG, 223
LOG2, 223
LOG10, 223
LOWER, 217
LPAD, 214
LTRIM, 214
MAKEDATE, 229
MAKETIME, 229
MICROSECOND, 233
MID, 217
MINUTE, 225, 233
MINUTE_SECOND, 225
MOD, 220
MONTH, 225, 233
MONTHNAME, 230
NOW, 230
NULLIF, 235
numeric, 218–223
OCTET_LENGTH, 217
ORD, 217

PASSWORD, 217
PERIOD_ADD, 233
PERIOD_DIFF, 233
PI, 223
POSITION, 217
POWER, 221
QUARTER, 233
QUOTE, 217
RADIANS, 223
RAND, 221
RELEASE_LOCK, 236
REPEAT, 215
REPLACE, 215
REVERSE, 217
RIGHT, 217
ROUND, 222
RPAD, 215
RTRIM, 215
SECOND, 225, 233
SEC_TO_TIME, 230
SESSION_USER, 236
SHA, 217
SHA1, 217
SIGN, 222
SIN, 223
SORT, 222
SOUNDEX, 217
SPACE, 217
STRCMP, 215
string, 205–218
STR_TO_DATE, 230
SUBDATE, 233
SUBSTRING, 215
SUBSTRING_INDEX, 217
SUBTIME, 233
SYSDATE, 233
TAN, 223
TIMEDIFF, 231
TIMESTAMP, 231
TIMESTAMPADD, 231
TIMESTAMPDIFF, 231
TIME_TO_SEC, 230
TO_DAYS, 233
TRIM, 216
UCASE, 216
UNCOMPRESS, 218
UNCOMPRESSED_LENGTH, 217
UNHEX, 218
UPPER, 218
USER, 236
UUID, 236



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

592 | Index

functions
built-in (continued)

VERSION, 236
WEEK, 231
WEEKDAY, 232
WEEKOFYEAR, 233
YEAR, 225, 232
YEARWEEK, 232

CREATE FUNCTION statement, 21,
171, 238

encapsulating, 569
expressions, replacing, 546
html_table, 384
IF statements, 67
indexes, suppressing, 473
limiting, 575
mathematical, 65
SET statements, 67
stored, 4, 6, 9

ADO.NET, 412
applying, 244–248
best practices, 565
calling, 242–244, 273
creating, 238–242
SQL statements in, 242

UDFs, 244

G
generating statistics, 513
getColumnMeta( ) method, 295
getErrorCode( ) method, 152, 317
GetFieldType( ) method, 394
GETFORMAT function, 229
GetInt32( ) method, 393
GET_LOCK function, 234
getMessage( ) method, 152, 317
GetName( ) method, 394
getNamedQuery( ) method, 335
getSQLState( ) method, 152
getStackTrace( ) method, 317
GetString( ) method, 393
global variables, 549

user variables, applying as, 59
GRANT statement, 423
GROUP BY clause, 501–502
grouping code segments, 78

H
handling, 398

dynamic result sets, Perl, 356
exceptions

best practices, 559–562
MySQLdb extensions, 366

invoker rights security, 433
multiple result sets, 299

Perl, 355
output parameters, 287, 302
output variables, Perl, 357
transactions, JDBC, 315
(see also error handling)

Harrison, Guy, 13
HEX function, 219
Hibernate, stored procedures, 332–337
hints

FORCE INDEX, 467, 472
IGNORE INDEX, 466
manually choosing an index, 466
optimizer, 455, 465
USE INDEX, 466

history of MySQL, 5–7
hostnames, Perl, 346
HOUR function, 225, 233
HOUR_MINUTE function, 225
HOUR_SECOND function, 225
HTML (Hypertext Markup Language), 381
html_table function, 384
Hypertext Markup Language (see HTML)

I
id column in EXPLAIN statement, 451
IDE (Integrated Development Environment)

ADO.NET, configuring, 386
configuring, 310

IF statements, 8, 82–88
CASE statements, comparing, 92
formatting, 580
functions, 67
optimizing, 522–526
tuning, 524

IFNULL function, 235
IF-THEN-ELSE statements, 85, 86
IGNORE INDEX hint, 466
implementing

logging, 253
security policies, 427–431

IN attribute, 53
IN operator, 62
IN parameter, 28



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 593

inclusive CASE statements, 553
increasing sort memory, 502
Indexed Sequential Access Method

(ISAM), 6
indexes

concatenating, 468
avoiding table scans, 474

covering, 470
creating, 578
FORCE INDEX hint, 467, 472
IGNORE INDEX hint, 466
joins, with/without, 481
lookups, 464
manually choosing, 466
multiple, merging, 469
overhead, 466, 503
prefixed, 467
searching, 473
selecting, 466–469, 471
selective, 449
sorts, avoiding, 501
statistics, viewing, 448
subqueries, 488
suppressing

functions, 473
substrings, 473

triggers, 531
USE INDEX hint, 466

INET_ATON function, 217
INET_NTOA function, 217
infinite loops, 94
INFORMATION_SCHEMA.ROUTINES

table, 174
INFORMATION_SCHEMA.TRIGGERS

table, 175
injection

code, stored programs, 434–440
SQL, 123

inline views, 495
inner blocks, overloading variables, 80
InnoDB

statistics, 456
transaction support, 180

INNODB_BUFFER_POOL_SIZE
parameter, 446

INOUT attribute, 53
INOUT parameter, 28
input parameters

ADO.NET, 402
binding to stored programs, 299
supplying, 319

INSERT function, 211

INSERT statements, triggers, 44
inserting AUDIT_LOG tables, 187
inserts, batching, 503
installing

Connector/Net drivers, 386
DBD::mysql drivers, 344
JDBC, 310
MySQLdb extensions, 364

instances, connecting, 310
INSTR function, 212
integers

data types, limitations of, 71
division (DIV) operator, 61

Integrated Development Environment (see
IDE)

integration, SQL, 7
interacting with databases, 33
interfaces

CallableStatement, 317
PHP, error handling, 151

Internet resources, 14
INTERVAL function, 235
INTO clauses, SELECT statements, 100
invalid data assignments, avoiding, 550
invariant expressions, moving loop, 579
invoker rights security, 422, 568

handling, 433
stored procedures, 426

is equal to (=) operator, 62
is greater than (>) operator, 62
is less than (<) operator, 62
is less than or equal to (<–) operator, 62
is not equal to (<>, !=) operator, 62
IS NULL operator, 62
ISAM (Indexed Sequential Access

Method), 6
IS_FREE_LOCK function, 235
ISNULL function, 235
isolation levels, 181–182
issuing

non-SELECT statements
ADO.NET, 390, 393
JDBC, 312

one-off queries, PDOs, 292
one-off statements, Perl, 347
queries, Perl, 348
SELECT statements

ADO.NET, 393
JDBC, 312

ITERATE statement, 95
iterative controls, 8
iterative processing, loops, 93–98, 521



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

594 | Index

J
J2EE applications, 323–332
Java, 261, 310–342

CallableStatement interface, 317
calling, 273
connections, 310
EJBs, 328–332
error handling, 152, 316
Hibernate, 332–337

queries, 335
support, 333

IDE, configuring, 310
input parameters, 319
non-SELECT statement, 312
objects, loading, 333
OUT variables, 319
output parameter values, 322
overhead, 512
persistence, 336
prepared statements, 313
procedures, executing, 320
result sets, 321

metadata, 313
retrieving, 312

servlets, 324–328
Spring, 337–342
statistics, generating, 513
transactions, handling, 315
type checking, 73

JBoss, xiii
JDBC (Java Database Connectivity)

error handling, 152
overview of, 310–317
stored functions, 244
stored programs, applying, 317–323

joins
anti-joins, tuning, 493–496
example of, 483
with indexes, 481
without indexes, 480
ordering, 482
overhead, 480
self-joins, avoiding, 515
single-sweep multi-joins, 480
SQL tuning, 480–484
subqueries

applying in complex, 490
rewriting as, 488

tables, 480

K
key caches, 446
key column in EXPLAIN statement, 453
KEY_BUFFER_SIZE parameter, 446
key_len column in EXPLAIN statement, 453
keywords

language SQL, 170
MySQLConnection object, 388
SQL SECURITY

{DEFINER|INVOKER}, 171
Kline, Kevin, 14
Krukenberg, Michael, 14

L
labels, 541

blocks, 79
exiting, 81

LAMJ (Linux-Apache-MySQL-JBoss), xiii
LAMP (Linux-Apache-MySQL-PHP/Perl/

Python), xiii, 275
LANGUAGE SQL keyword, 170
languages

built-in functions, 64–68
data types, 68–71
expressions, 64
Java, 261, 310–342
literals, 51–60
.NET, 261, 386–418
operators, 60

bitwise, 63
comparison, 61
logical, 62–63
mathematical, 61

Perl, 261, 343–363
PHP, 261, 275–308
PL/SQL, 7
Python, 261, 364-385
SQL, 7
stored programs

applying, 4
strict mode, 72–76
Transact SQL, 7
variables, 49–51
(see also specific languages)

Larsson, Allan, 5
last row conditions, error handling, 128–129
LAST_DAY function, 233
LCASE function, 212
LEAST function, 219



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 595

LEAVE statements, 94
block labels, 81
loops

avoiding processing, 520
in simple, 557

REPEAT loops, 107
LEFT function, 212
LENGTH function, 212
LIKE operator, 62
limitations

of functions, 575
of integer data types, 71

Linux, xiii
installing DBD::mysql driver, 344

literals, 50
date, 52
languages, 51–60
numeric, 51
string, 52

LN function, 223
load( ) method, 333
LOAD_FILE function, 213
loading objects, stored procedures, 333
local variables

declaring, 25, 27
SELECT INTO syntax, 33–37

LOCALTIME function, 233
LOCALTIMESTAMP function, 233
LOCATE function, 213
LOCK TABLES statement, 183
locks

best practices, 563
strategies, 197
transactions, 190–201

LOG function, 223
LOG10 function, 223
LOG2 function, 223
logging

implementing, 253
slow query logs, 458

logic, fragmentation, 269
logical operators, 62–63
lookups, indexes, 464
LOOP statements, 93
looping, 8
loop-invariant statements, 519
LOOP-LEAVE-END LOOP cursor loop, 105
loops

best practices, 555–559
cursors, 103

exiting, 111
nesting, 108–111

NOT FOUND handlers, 128
types of, 105–108

execution, restarting, 95
infinite, 94
invariant expressions, moving, 579
iterative processing, 93–98
labels, 541
nested, 97
operators, 60
optimizing, 519–522
overhead, 520
REPEAT, 95

cursors, 105
LEAVE statements, 107

REPEAT UNTIL, 8
stored procedures, 31
terminating, 94, 555
UNTIL, 95
WHILE, 8, 96

LOWER function, 217
LPAD function, 214
LTRIM function, 214

M
maintainability of stored programs, xv, xvi
maintaining

columns, 45
derived data, 252
stored programs in external files, 167

MAKEDATE function, 229
MAKETIME function, 229
management

stored programs, 170–173
transactions

ADO.NET, 398–401
C#, 398
defining, 183
design, 201–203
isolation levels, 181–182
locks, 190–201
mysqli extensions, 279
overhead, 180
PDO, 292
Perl, 353
Python, 370
savepoints, 185–190
statements, 182
support, 180
VB.NET, 400

manually choosing an index, 466
mapping query stored procedures, 335
Martelli, Ascher, 372



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

596 | Index

mathematical functions, 65
mathematical operators, 61
measuring

SHOW STATUS statement statistics, 458
SQL, 456

memory
overhead, reducing, 545
sorts, increasing, 502
SQL, caching, 446

MERGE algorithm, 498
merging

multiple indexes, 469
tables, 478–480

messages, error, 78
metadata

DataReader, retrieving, 394
Python, retrieving, 371
result sets, retrieving, 282, 295, 313, 352

methods
autocommit( ), 280, 370
bindParam( ), 294
bind_param( ), 280, 348
Class.forName( ), 310
commit( ), 280, 370
createDemoTables( ), 316
createQuery( ), 335
createStatement( ), 312
DBI->connect( ), 346
do( ), 347
dump_results, 351
errorInfo( ), 291
exec( ), 290
execute( ), passing parameters, 367
ExecuteNonQuery( ), 390
executeQuery( ), 312
ExecuteReader( ), 393
executeUpdate( ), 312
fetch_array, 349
fetch_field( ), 288
fetchmany( ), 369
fetch_object( ), 278, 284
fetchone( ), 368
fetch_row( ), 279
fetchrow_arrayref, 349
fetchrow_hashref, 349
fetechall( ), 368
FieldCount( ), 394
finder (EJB), 331
getColumnMeta( ), 295
getErrorCode( ), 152, 317
GetFieldType( ), 394
GetInt32( ), 393

getMessage( ), 152, 317
GetName( ), 394
getNamedQuery( ), 335
getSQLState( ), 152
getStackTrace( ), 317
GetString( ), 393
load( ), 333
multi_query( ), 288
MySqlDataAdaptor( ), 397
next( ), 312
nextset( ), 376
open( ), 389
prepare( ), 280
prepareCall( ), 317
printStackTrace( ), 317
query( ), 285

PDO, 292
Read( ), 393
result( ), 288
rollback( ), 280, 370
setAutocommit( ), 315
setUpdate( ), 315
store_result( ), 288

MICROSECOND function, 233
Microsoft SQL Server-based

applications, 262
MID function, 217
MINUTE function, 225, 233
MINUTE_SECOND function, 225
MOD numeric function, 220
modes

parameters, 28
strict, 72–76

Mod_python input forms, 382
modularization, 572
modules, standardizing, 571
modulus (%) operator, 61
MONTH function, 225, 233
MONTHNAME function, 230
moving loop invariant expressions, 579
multi-line comments (*/ */), 60
multiple indexes, merging, 469
multiple result sets

ADO.NET, 404
handling, 299
Perl, 355
retrieving, 287

JDBC, 320
multiple triggers, 576
multiple variables, declaring, 50
multiplication (*) operator, 61
multi_query( ) method, 288



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 597

multistatement IF statements, 84
MyISAM transaction support, 180
MySQL

connecting
ADO.NET, 387–390
JDBC, 310
mysqli extensions, 277
Perl, 346
VBNET, 389

history of, 5–7
Query Browser, creating stored

programs, 161
MySQL START TRANSACTION

statement, 353
MySQLConnection object, 388
MySqlDataAdaptor( ) method, 397
MySqlDataAdaptor object, 395
MySqlDataReader, 393
MySQLdb extension, 364–379

applying, 380–385
stored programs, 373–379

mysqli extension, 276
applying, 276–289

MyTrace.pl utility, 461

N
named conditions, error handling, 139
naming

blocks, 79
parameters, 53
variables, 52, 545

nested blocks, 79
nested CASE statements, 91
nested cursor loops, 108–111
nested IF statements, 84

redundant evaluations, avoiding, 88
nested loops, 97
nested transactions, applying savepoints, 189
nesting, avoiding, 574
.NET, 261, 386–418

ADO.NET (see ADO.NET)
calling, 273, 391
error handling, 154

networks, reducing traffic, 265
next( ) method, 312
nextset( ) method, 376
NO SQL|CONTAINS SQL|READS SQL

DATA|MODIFIES SQL
DATA, 171

nondefault delimiters, applying, 166

non-SELECT statements
ADO.NET, 390, 393
embedding, 37
JDBC, 312
mysqli extensions, 278
PDO, 290
stored programs, applying, 99–100

non-strict type checking, 74
NOT BETWEEN operator, 62
NOT DETERMINISTIC, 171
NOT FOUND condition

nested cursor loops, 108
resetting, 564

NOT FOUND handlers, 33, 91, 105
cursor loops, 128

NOT IN operator, 62
NOW function, 230
null safe equal (<=>), 62
NULL values, 55, 62

aggregate functions, 65
comparison operators, 61
condition handlers, 137
dynamic SQL, 121
ENUM data type, 69
exceptions, 138
failure points (for stored procedures), 146
functions, 66
logical operators, 62
multiple variables, 50
OUT variables, 54
variables, 50

NULL values, variables, 50
NULLIF function, 235
numbers, prime

implementing, 511
searching, 512

numeric data types, 71
numeric functions (see functions, built-in)
numeric literals, 51

O
Object-Relational Mapping (ORM)

framework, 332
objects

DataReader
dynamic result sets, 406
multiple result sets, 404
stored programs, 403

DataSets, 395–397
MySQLConnection, 388



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

598 | Index

objects (continued)
MySqldataAdaptor, 395
PDO (PHP Data Objects), 150, 276,

289–307
POJO (Plain Old Java Objects), 337
scope, controlling, 78
statements, reusing, 391
stored procedures, loading, 333

obtaining output parameters, 379
OCTET_LENGTH function, 217
ON FUNCTION clause, 423
ON PROCEDURE clause, 423
one-off queries, issuing, 292
one-off statements, issuing, 347
open( ) method, 389
OPEN statements, cursors, 102
operators, 60

bitwise, 63
comparison, 61
logical, 62–63
mathematical, 61

optimistic locking strategy, 198, 199, 202,
563

optimizer hints, 455, 465
optimizing

conditional structures, 580
correlated updates, 517
readability, 561
SQL tuning, 443

anti-joins, 493–496
DML, 503–506
examples of, 459–461
FROM clause, 495–500
GROUP BY clause, 501–502
joins, 480–484
ORDER clause, 501–502
statements, 449–459
subqueries, 486–493
table access, 463–480

stored programs, 508
CASE statements, 522–526
cursors, 528
IF statements, 522–526
loops, 519–522
recursion, 526–527
reducing traffic, 512–515
speed, 509–512
SQL statements, 515–519
trigger overhead, 529–531

table scans, 475–478, 578
options, PHP, 276
OR (|) operator, 63, 64

Oracle
applications, 262
prime number implementation, 511

ORD function, 217
ORDER clause, 501–502
ordering joins, 482
orders of magnitude, 443
ORM (Object-Relational Mapping)

framework, 332
OUT attribute, 53
OUT parameter, 28
OUT variables, registering, 319
output

EXPLAIN statements, 450, 451
parameters

ADO.NET, 410–412
configuring, 272
handling, 287, 302
obtaining, 379
retrieving, 272
retrieving values, 322

variables, Perl, 357
overhead

AUDIT_LOG table, inserting/rolling
back, 187

client/server traffic, 509
disk I/O, retrieving data from caches, 446
disk-based sorts, 501
eliminating, 509
Hibernate, 309
indexes, 466, 503
INSERT, 530
Java, 512
joins, 480
locking mechanisms, 203
loops, 520
memory, reducing, 545
merge tables, 479
network, reducing, 267
performance, 88

measuring, 506
prepared statements, 314

reducing, 119
processing, adding, 524
SQL processing, 524
statements, 91

re-executing, 280
stored programs, advantages of, 269
tables, scanning, 466, 478
transaction logs, 505
transaction management, 180
triggers, 256, 529–531



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 599

overlapping
condition handlers, 136
conditions, 86

overloading variables, 80
overriding

blocks, 80
variables, 546

P
pair programming, 536
parameters, 27–29, 53

ADO.NET, applying, 391
binding

prepared statements, 294
resisting code injection, 437

C#, applying, 392
input

ADO.NET, 402
binding to stored programs, 299
supplying, 319

output
ADO.NET, 410–412
configuring, 272
handling, 287, 302
obtaining, 379
retrieving, 272
retrieving values, 322

passing, MySQLdb extensions, 367
registering, 270
stored functions, 240
values, validating, 567
VB.NET, applying, 391

parentheses ( ), applying to expressions, 542
parsing SQL, 445
partial indexes, 467
partitioning tables, 478–480
passing parameters, MySQLdb

extensions, 367
PASSWORD function, 217
pasting SQL parameters, 391
PDO (PHP Data Objects), 45, 150, 276,

289–307
PEAR (PHP Extension and Application

Repository), 150, 276
performance

best practices, 577–581
overhead, 88
stored programs, xv

CASE statements, 522–526
cursors, 528

IF statements, 522–526
loops, 519–522
optimizing, 508
recursion, 526–527
reducing traffic, 512–515
speed, 509–512
SQL statements, 515–519
trigger overhead, 529–531

PERIOD_ADD function, 233
PERIOD_DIFF function, 233
Perl, xiii, 261, 343–363

DBD::mysql drivers
bind variables, 348
connecting, 346
dynamic result sets, 356
error handling, 347
example of, 358–361
executing stored programs, 354
installing, 344
issuing simple one-off statements, 347
multiple result sets, 355
output variables, 357
queries, 348
result set metadata, 352
retrieving rows, 349–352
reusing statements, 348
transaction management, 353

error handling, 151
stored programs

DBD::mysql drivers, 344–354
executing with DBD::mysql

drivers, 354–361
permissions

stored programs, 422
(see also security, privileges)

persistence, 330, 336, 342
stored procedures, 336

pessimistic locking strategy, 198, 202, 563
PHP, xiii, 261, 275–308

catching errors, 290
checking for errors, 277
connections, 277, 290
dynamic variable typing, 74
error handling, 150
example of, 303–308
MySQL extension (ext/mysql), 276
non-SELECT statement, 278, 290
one-off queries, issuing, 292
output parameters, 287, 302
parameters, binding, 294
prepared statements, 280, 293



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

600 | Index

PHP (continued)
result sets

dynamic, 282, 296
metadata, 282, 295
multiple, 287, 299
prepared statements, 281
retrieving, 278

result sets, retrieving from, 114–117
stored procedures, calling, 45
stored programs

binding input parameters, 299
calling, 244, 284
calling with PDO, 297
mysqli extension, 276–289
options, 276
PDO, 289–307

transaction management, 279, 292
PHP Data Objects (PDO), 45, 150, 276,

289–307
PHP Extension and Application Repository

(PEAR), 150, 276
PI function, 223
Pipes, Jay, 14
PL/SQL language (Oracle), 7, 16, 49, 163,

262
POJO (Plain Old Java Objects), 337
policies, security, 427–431
populating

databases, triggers, 45
DataSets

C#, 395
VB.NET, 396

portability, stored programs, 268, 269
ports, Perl, 346
POSITION function, 217
possible_keys column in EXPLAIN

statement, 453
POWER function, 221
precedence, condition handlers, 136
prefixed indexes, 467
prepare( ) method, 280
PREPARE statements, 118
prepareCall( ) method, 317
prepared statements

bind variables, 348
JDBC, 313
mysqli extensions, 280
overhead, reducing, 119
parameters, binding, 294
PDO, 293
result sets, retrieving, 281

prime numbers
implementing, 511
searching, 512

PrintError attribute, 346
printStackTrace( ) method, 317
privileges

ALTER ROUTINE, 422
creating stored programs, 422
EXECUTE, 422
executing stored programs, 423

procedural logic, avoiding self-joins
with, 515

procedures, 6
CREATE PROCEDURE statement, 21,

160, 170–171
stored, 4
(see also stored procedures)

processing
dynamic result sets, 282, 296
iterative, loops, 93–98
loops, 555–559
result sets

JDBC, 321
Python, 372

SELECT statements, JDBC, 312
SQL, 445–449

program construction, 569–577
programming languages, applying stored

programs, 4
programming, pair, 536
programs

checking types in Java, 73
(see also stored programs)

properties, transactions, 201–203
Python, 261, 364–385

connections, 365
error handling, 153
example of, 380–385
exception handling, 366
metadata, 371
output parameters, 379
queries, retrieving rows from, 368
result sets

dynamically processing, 372
retrieving, 374
retrieving dynamic, 376
retrieving multiple, 375

statements
executing, 367
passing parameters to, 367



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 601

stored programs
applying, 380–385
MySQLdb extension, 364–379

transaction management, 370
transactions, managing, 370

Q
QUARTER function, 233
queries

caches, 446
DataSets, 395–397
Hibernate, 335
one-off, issuing, 292
Perl, issuing, 348
result sets, retrieving, 278
rows, retrieving, 368–370
SELECT INTO syntax, 33–37
slow query logs, 458
stored procedures, mapping, 335
subqueries, tuning, 486–493

query( ) method, 285
PDO, 292

Query Browser
procedures, creating, 20–25
stored programs, creating, 161

QUOTE function, 217

R
RADIANS function, 223
RaiseError attribute, 346
RAND function, 221
Ravenscroft, Anna, 372
Read( ) method, 393
READ COMMITTED isolation level, 181
READ UNCOMMITTED isolation level, 181
readability, code, 561
recursion, optimizing, 526–527
reducing

commit frequency, optimizing DML, 504
sorts, 502
traffic, 265, 509, 512–515

redundancy
code, avoiding, 558
conditions, 88

ref column in EXPLAIN statement, 453
referencing views, 499
REGEXP operator, 62

registering
Connector/Net drivers, 387–390
JDBC drivers, 310
OUT variables, 319
parameters, 270

relative cardinality (of indexes), 449
RELEASE_LOCK function, 236
reliability of stored programs, xv
REPEAT function, 215
REPEAT loops, 95

cursors, 105
LEAVE statements, 107

REPEAT UNTIL loops, 8
REPEATABLE READ isolation level, 182
REPLACE function, 215
replacing expressions with functions, 546
resetting NOT FOUND conditions, 564
resisting code injection, 437
resources

Internet, 14
stored programs, 13–15

restarting execution of loops, 95
restricting access, 430
result( ) method, 288
result sets

DataSets, 395–397
dynamic

ADO.NET, 405–408
Perl, 356
processing, 282, 296

multiple
ADO.NET, 404
handling, 299
Perl, 355

PHP, retrieving from, 114–117
processing

JDBC, 321
Python, 372

retrieving, 272
dynamic, 376
JDBC, 312, 320
metadata, 282, 295, 313, 352
multiple, 287
Perl, 348
prepared statements, 281
Python, 371
queries, 278
stored procedures, 117, 286

stored functions, 242
stored procedures, returning from, 36



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

602 | Index

retrieving
database information, 173–175
metadata

DataReader, 394
Python, 371

output parameters, 272
ADO.NET, 410–412
values, 322

result sets, 272
dynamic, 376
JDBC, 312, 320
metadata, 282, 295, 313, 352
multiple, 287
Perl, 348
from PHP, 114–117
prepared statements, 281
queries, 278
stored procedures, 117, 286

rows, 349–352
from queries, 368–370

RETURN statements, creating stored
functions, 239

returning result sets from stored
procedures, 36

reusing
statement objects, 391
statements, 348

REVERSE function, 217
reviewing code, 534
rewriting subqueries as joins, 488
RIGHT function, 217
rollback( ) method, 280, 370
ROLLBACK statement, 183, 292, 353
ROLLBACK TO SAVEPOINT

statement, 183
rollbacks

avoiding, 202
managing, 370
transactions, 202

rolling back AUDIT_LOG tables, 187
ROUND function, 222
routines, stored programs, 267
rows

columns, in EXPLAIN statement, 453
cursors, fetching from, 103
DictCursor, 369
last row conditions, error

handling, 128–129
locking, 195
queries, retrieving, 368–370
retrieving, 349–352

RPAD function, 215
RTRIM function, 215
rules, naming variables, 52

S
SAVEPOINT statement, 183
savepoints, 185–190, 563

avoiding, 202
scalars, 68
scanning

full table scans, 464
tables

avoiding accidental, 472–475
avoiding scans, 578
optimizing, 475–478

SCCS (source code control system), 539
Schneider, Robert D., 14
scope

condition handlers, 137
variables, controlling, 78

searching
CASE statements, 90
indexes, 473
prime numbers, 512

SECOND function, 225, 233
SEC_TO_TIME function, 230
security

best practices, 568
databases, stored programs, 264
policies, implementing, 427–431
SQL injection, 123
stored programs

code injection, 434–440
execution mode options, 423–434
privileges, 422

SELECT FOR UPDATE statement, 564
SELECT INTO syntax, 33–37
SELECT statement

ADO.NET, issuing, 393
code injection, 435
cursors, creating, 101–112
EXISTS subqueries, 487
INTO clause, 100
JDBC, 312
stored procedures, returning, 36
subqueries, 486
unbounded, applying, 112–118

selecting
development tools, 534
indexes, 466–469, 471



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 603

selective indexes, 449
select_type column in EXPLAIN

statement, 451
self-documentation, comments, 543
self-joins, avoiding, 515
semicolons in code, 165
sequences, Fibonacci, 526
SERIALIZABLE isolation level, 182
servers

applications, stored programs, 261
traffic, reducing, 509

server-side prepared statements, 118–123,
314

servlets, 323
stored programs, applying, 324–328
(see also Java)

sessions, isolation levels, 181–182
SESSION_USER function, 236
SET AUTOCOMMIT statement, 184, 292
SET data types, 70
SET statement, 27

functions, 67
operators, 60
variables, assigning values to, 53

SET TRANSACTION statement, 183
setAutocommit( ) method, 315
setting values, triggers, 45
setUpdate( ) method, 315
SHA function, 217
SHA1 function, 217
SHOW CREATE FUNCTION

statement, 174
SHOW CREATE PROCEDURE

statement, 174
SHOW FUNCTION STATUS

statement, 174
SHOW PROCEDURE STATUS

statement, 174
SHOW STATUS statement, 456

statistics, 458
side-effects (in programs), avoiding, 573
SIGN function, 222
SIGNAL statement

emulating, 143
exceptions, creating, 141

SIN function, 223
single rows, fetching from cursors, 103
single-line (- -) comments, 60
single-sweep multi-joins, 480
sizing

tables, 444
transactions, 202, 563

Sleepycat Software, 6
slow query logs, 458
SORT function, 222
sorts

disk-based, overhead, 501
indexes, creating to avoid, 501
memory, increasing, 502
overhead, reducing, 502
reducing, 502

SOUNDEX function, 217
source code control system (SCCS), 539
SOURCE statement, 161
SPACE function, 217
speed, stored programs, 509–512
Spring, xiii

stored procedures, 337–342
SQL clause, 240
SQL SECURITY {DEFINER|INVOKER}

keyword, 171
SQL (Structured Query Language)

caching, 446
dynamic, best practices, 566–569
error handling, 123
injection, 123
integration, 7
measuring, 456
non-SELECT SQL statements, applying in

stored programs, 99–100
optimizer hints, 455
parsing, 445
prepared statements, 118–123
processing, 445–449
server-side prepared statements, 118–123
statements

managing stored programs, 170–173
MySQLdb extensions, 367
stored functions, 242
tuning, 449–459

stored programs
best practices, 562–566
types of, 4

tuning, 443, 578
anti-joins, 493–496
DML, 503–506
examples of, 459–461
FROM clause, 495–500
GROUP BY clause, 501–502
joins, 480–484
ORDER clause, 501–502
subqueries, 486–493
table access, 463–480



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

604 | Index

SQL:2003 specification, missing
features, 139–145

SQLCODE, 140
SQLExceptions, throwing, 316
SQLSTATE code, 133

accessing, 140
error handling, 134
named conditions, 139

stack traces, 317
standardizing modules, 571
START TRANSACTION statement, 182,

184, 292
starting

loops, returning to, 95
transactions, 562

statements
ALTER PROCEDURE/ FUNCTION, 173
ANALYZE TABLE, 449
BEGIN, 77
CALL, 38–39
CASE, 8, 88–92

comparing IF statements to, 92
formatting, 580
inclusive, 553
optimizing, 522–526
stored functions, 245

CLOSE, cursors, 102
COMMIT, 182, 292, 353
conditional control, 82–93
conditional logic, 8
CONTINUE, avoiding loop

processing, 520
CREATE FUNCTION, 21, 171
CREATE PROCEDURE, 21, 160,

170–171
syntax, 170

CREATE STATEMENT, 238
CREATE TRIGGER, 21, 172, 249
cursors, 102
DEALLOCATE, 119
DECLARE, 7, 25, 26, 50

defining cursors, 101
DECLARE CONTINUE HANDLER, 127
DECLARE HANDLER, 129
DELIMITER, 166
DROP, 173
DROP PROCEDURE, 160
END, 77
END LOOP, 93
EXECUTE

PREPARE statement, 118
privileges, 422

EXPLAIN, 449–459
EXPLAIN EXTENDED, 454
FETCH, cursors, 102
GRANT, 423
IF, 8, 82–88

formatting, 580
functions, 67
optimizing, 522–526
tuning, 524

IF-THEN-ELSE, 85, 86
INSERT, triggers, 44
ITERATE, 95
LEAVE, 94

avoiding loop processing, 520
block labels, 81
loops, 557
REPEAT loops, 107

LOCK TABLES, 183
LOOP, 93
loop-invariant, 519
MySQL START TRANSACTION, 353
non-SELECT

ADO.NET, 390, 393
embedding, 37
JDBC, 312
mysqli extensions, 278
PDO, 290

objects, reusing, 391
one-off, issuing, 347
OPEN, cursors, 102
overhead, 91
PREPARE, 118
prepared

bind variables, 348
binding parameters, 294
JDBC, 313
mysqli extensions, 280
PDO, 293
retrieving result sets, 281

RETURN, creating stored functions, 239
reusing, 348
ROLLBACK, 183, 292, 353
ROLLBACK TO SAVEPOINT, 183
SAVEPOINT, 183
SELECT

ADO.NET, 393
applying unbounded, 112–118
code injection, 435
creating cursors, 101–112
EXISTs subqueries, 487
INTO clause, 100
JDBC, 312



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 605

returning from stored procedures, 36
subqueries, 486

SELECT FOR UPDATE, 564
server-side prepared, 118–123
SET, 27

assigning values to variables, 53
functions, 67
operators, 60

SET AUTOCOMMIT, 184, 292
SET TRANSACTION, 183
SHOW CREATE FUNCTION, 174
SHOW CREATE PROCEDURE, 174
SHOW FUNCTION STATUS, 174
SHOW PROCEDURE STATUS, 174
SHOW STATUS, 456

statistics, 458
SIGNAL

creating exceptions, 141
emulating, 143

SOUCE, 161
SQL

managing stored programs, 170–173
MySQLdb extensions, 367
stored functions, 242
tuning, 449–459

START TRANSACTION, 182, 184, 292
transaction management, 182
UPDATE

embedding, 38
optimizing correlated updates, 517

statistics
indexes, viewing, 448
InnoDB, 456
Java, generating, 513
SHOW STATUS statement, 458
tables, 448

stored functions, 4, 6, 9
ADO.NET, calling, 412
applying, 244–248
best practices, 565
calling, 242–244, 273
creating, 238–242
SQL statements in, 242
tutorial, 41–43
(see also stored programs)

stored procedures, 4, 6
access, restricting, 430
ADO.NET

calling, 401

input parameters, 402
multiple result sets, 404

authorization, 430
code injection, 438
cursors, defining, 102
deadlocks, 193
error handling

applying, 145–150
last row conditions, 128–129
overview of, 125–128

Hibernate, 332–337
invoker rights security, 426, 433
JDBC, executing, 320
multiple result sets, retrieving, 287
output parameters, handling, 287
persistence, 336
result sets

retrieving, 117, 286
returning, 36

Spring, 337–342
SQL injection, 123
tables, updating, 120
tutorial, 20

calling from PHP, 45
calling stored programs, 38–39
conditional execution, 30
creating procedures, 21–23
creating procedures using MySQL

Query Browsers, 20–25
database interactions, 33
error handling, 32
loops, 31
parameters, 27–29
SELECT INTO syntax, 33–37
variables, 25, 27

stored programs
abstraction, 265
ADO.NET

applying, 401–412
DataReader, 403
DataSets, 408–410
overview of, 386–401

advice for developers, 15–19
applications, 261–264

advantages of, 264–268
calling, 270–273
disadvantages of, 268–269

appropriate use of, xv
ASP.NET, applying, 413–418



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

606 | Index

stored programs (continued)
best practices

coding style and
conventions, 539–544

conditional logic, 551–554
development process, 533–539
dynamic SQL, 566–569
exception handling, 559–562
loop processing, 555–559
performance, 577–581
program construction, 569–577
SQL, 562–566
variables, 544–551

blocks, 77–82
built-in functions, 64–68, 205–237
calling, 38–39
closing, 273
comments, 60
conditional control statements, 82–93
controls, 8
creating, 159–166

avoiding invalid data assignments, 550
granting privileges to, 422

data types, 68–71
database security, 264
editing, 159

existing programs, 166–168
System Editor, 160

error handling, 10
error handling in calling

applications, 150–155
executing, 270, 272

granting privileges to, 423
EXPLAIN statements, 451
expressions, 64
input parameters, binding, 299
Java, 310–342

J2EE applications, 323–332
JDBC, applying, 317–323
JDBC, overview of, 310–317

languages (see specific languages)
managing, 170–173
MySQLdb, applying, 373–379
.NET, 386–418
non-SELECT SQL statements, applying

in, 99–100
operators, 60

bitwise, 63
comparison, 61
logical, 62–63
mathematical, 61

optimizing, 508
CASE statements, 522–526
cursors, 528
IF statements, 522–526
loops, 519–522
recursion, 526–527
reducing traffic, 512–515
speed, 509–512
SQL statements, 515–519
trigger overhead, 529–531

overview of, 3–7
Perl, 343–363

DBD::mysql drivers, 344–354
executing with DBD::mysql

drivers, 354–361
PHP, 275–308

mysqli extension, 276–289
options, 276
PDO, 289–307

Python, 364–385
applying, 380–385
MySQLdb extension, 364–379

reasons for using, 4
resources, 13–15
savepoints, 189
security

code injection, 434–440
execution mode options, 423–434
permissions, 422

semicolons in code, 165
SQL, embedding, 7
SQL tuning, 443

anti-joins, 493–496
DML, 503–506
examples of, 459–461
FROM clause, 495–500
GROUP BY clause, 501–502
joins, 480–484
ORDER clause, 501–502
statements, 449–459
subqueries, 486–493
table access, 463–480

strict mode, 72–76
tuning, 508
viewing, 431
(see also stored functions, stored

procedures)
StoredProcedure class, 341
store_result( ) method, 288
strategies, locking, 197
STRCMP function, 215



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 607

strict mode, 72–76
string data types, 68
string functions (see functions, built-in)
string literals, 52
STR_TO_DATE function, 230
structure of stored programs, 77–82
Structured Query Language (see SQL)
styles, code, 539–544
SUBDATE function, 233
subqueries

complex joins, 490
FROM clause, 495–500
joins, rewriting as, 488
SQL tuning, 486–493

substitution variables, 348
SUBSTRING_INDEX function, 217
substrings, suppressing indexes, 473
SUBSTRNG function, 215
SUBTIME function, 233
subtraction (-) operator, 61
suppressing indexes

functions, 473
substrings, 473

SYSDATE function, 233
System Editor, creating stored programs, 160

T
tables

access, SQL tuning, 463–480
AUDIT_LOG, inserting/rolling back, 187
caches, 446
columns, in EXPLAIN statement, 452
direct access, 430
INFORMATION_

SCHEMA.ROUTINES, 174
joins, 480
merging, 478–480
partitioning, 478–480
scanning

avoiding accidental, 472–475
avoiding scans, 578
full table scans, 464
optimizing, 475–478

sizing, 444
statistics, 448
temporary, creating, 117
truth

AND operator, 62
OR operator, 63
XOR operator, 63

updating, 120
TAN function, 223

TEMPFILE algorithm, 498
templates, standardizing modules, 571
temporary tables, creating, 117
terminating loops, 94, 555
testing, 76

code, 534
conditions, 522, 552

TEXT data types, 71
text editors, creating stored programs, 161
THEN clause, 84
third-party editing tools, creating stored

programs, 163
throwing SQLExceptions, 316
time data types, 71
TIMEDIFF function, 231
timeouts, locks, 196
TIMESTAMP function, 231
TIMESTAMPADD function, 231
TIMESTAMPDIFF function, 231
TIME_TO_SEC function, 230
Toad, editing stored programs, 165
TO_DAYS function, 233
tools

Mytrace.pl, 461
third-party editing, creating stored

programs, 163
traffic

networks, 265
reducing, 509, 512–515

transactions
dangling, 562
defining, 183
design, 201–203
isolation levels, 181–182
JDBC, 315
locks, 190–201
managing

ADO.NET, 398–401
C#, 398
mysqli extensions, 279
overhead, 180
PDO, 292
Perl, 353
Python, 370
statements, 182
VB.NET, 400

savepoints, 185–190
sizing, 202, 563
starting, 562
support, 180

Transact-SQL language (SQL Server), 7, 49,
262



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

608 | Index

triggers, 4, 6, 12
actions, 250
applying, 251–256
check constraint, 254
column values, 250
CREATE TRIGGER statement, 21
creating, 249–251
data, validating, 254–256
DML performance, 506
indexes, 531
multiple, 576
overhead, 256, 529
tutorial, 43–45
(see also stored programs)

TRIM function, 216
troubleshooting

stored procedures, 32
stored programs, 10

TRUE, IF statements, 83
truth tables

AND operator, 62
OR operator, 63
XOR operator, 63

try blocks, 370
tuning (SQL), 443, 578

anti-joins, 493–496
DML, 503–506
examples of, 459–461
FROM clause, 495–500
GROUP BY clause, 501–502
IF statements, 524
joins, 480–484
ORDER clause, 501–502
statements, 449–459
stored programs, 508
subqueries, 486–493
table access, 463–480
(see also optimizing)

tutorials
stored functions, 41–43
stored procedures, 20

calling stored programs, 38–39
conditional execution, 30
creating procedures, 21–23
creating procedures using MySQL

Query Browsers, 20–25
database interactions, 33
error handling, 32
loops, 31
parameters, 27–29

PHP, calling from, 45
SELECT INTO syntax, 33–37
variables, 25, 27

triggers, 43–45
types

of built-in functions, 64–68
of columns in EXPLAIN statement, 452
of comments, 60
of condition handlers, 130
of cursor loops, 105–108
of data types, 68–71
of expressions, 64
of literals, 51
of loops, 31
of stored programs, 4

U
UCASE function, 216
UDFs (user-defined functions), 244
unbounded SELECT statements,

applying, 112–118
UNCOMPRESS function, 218
UNCOMPRESSED_LENGTH function, 217
UNHEX function, 218
Unireg, 5
Unix, xiii

installing DBD::mysql drivers, 344
unnamed views, 495
UNTIL loops, 95
UPDATE statements

correlated updates, optimizing, 517
embedding, 38

updating
Hibernate, 337
SELECT FOR UPDATE statement, 564

UPPER function, 218
USE INDEX hint, 466
USER function, 236
user variables, 57
user-defined functions (see UDFs)
utilities, MyTrace.pl, 461
UUID function, 236

V
validating

code injection, binding parameters, 437
correct behavior, 76
data (with triggers), 254–256
parameter values, 567



This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 609

values
columns

accessing, 369
triggers, 250

literals, 51–60
NULL, 50
output parameters, retrieving, 322
parameters, validating, 567
triggers, setting, 45
variables, 49–51

assigning, 52
binding, 566

(see also NULL values)
variables, 25, 27

best practices, 544–551
bind, Perl, 348
creating, 50
declaring, 51
deleting, 547
dynamic typing (in PHP), 74
global, 549
languages, 49–51
naming, 52, 545
OUT, registering, 319
output, Perl, 357
overloading, 80
overriding, 80, 546
scope, controlling, 78
SELECT INTO syntax, 33–37
stored procedures, defining cursors, 102
user, 57
values

assigning, 52
binding, 566

VB.NET
connecting to MySQL, 389
DataReader, applying, 394
DataSets, populating, 396
dynamic result sets, 407
error handling, 155, 397
multiple result sets, 405
output parameters, 410
parameters, applying, 391

stored functions, 412
stored procedures

calling, 401
calling input parameters, 403
DataReader, 403

transaction management, 400
VERSION function, 236
vertical code alignment, 542
viewing

index statistics, 448
stored procedures, 430
stored programs, 431
table statistics, 448

views
applying, 498
referencing, 499

W
walkthroughs, code, 536
Wall, Larry, 343
web sites, resources, xiii
WEEK function, 231
WEEKDAY function, 232
WEEKOFYEAR function, 233
WHILE loops, 8, 96
WHILE-END WHILE loops, 107
Widenius, Michael “Monty”, 5
Williams, Hugh, Lane, David, 13
Windows, installing DBD::mysql

drivers, 345

X
XOR operator, 63

Y
YEAR function, 225, 232
YEARWEEK function, 232

Z
Zawodny, Jeremy, 14





About the Authors
Guy Harrison has worked with relational databases for more than 15 years as a
developer, administrator, and performance expert. He is the author of many articles
for database technical journals, as well as Oracle SQL High Performance Tuning
(Prentice Hall, 1997, 2000) and Oracle Desk Reference (Prentice Hall, 2000). He is
the Chief Architect of Database Solutions at Quest Software, where he was the origi-
nator of the popular Spotlight database diagnostic product line, including Spotlight
on MySQL and Spotlight on Oracle. Guy lives in Melbourne, Australia with his wife
Jenni; children Christopher, Kate, Michael, and William; one dog; and no cats.

Steven Feuerstein is the author or coauthor of Oracle PL/SQL Programming, Oracle
PL/SQL Best Practices, Oracle PL/SQL for DBAs, Oracle PL/SQL Developer’s Work-
book, Oracle Built-in Packages, and several pocket reference books (all from O’Reilly
Media). Steven has been developing software since 1980. He spent five years with
Oracle (1987–1992) and now serves as a Senior Technology Advisor to Quest Soft-
ware. His products include utPLSQL (an open source unit-testing framework for
PL/SQL) and Qnxo (active mentoring software that helps to generate, reuse, and test
code; http://www.qnxo.com). He has won numerous awards for his writing and train-
ings, offers a PL/SQL portal at http://www.oracleplsqlprogramming.com, and can be
reached via email at steven@stevenfeuerstein.com. He lives in Chicago with his wife,
Veva, and three cats. Two sons, Eli and Chris, orbit nearby.

Colophon
The animal on the cover of MySQL Stored Procedure Programming is a middle
spotted woodpecker (Dendrocopos medius). Often mistaken for the more common
great spotted woodpecker, the middle spotted woodpecker is distinguished by its
smaller size and bright red crown. The bird can be found high among the trees in the
deciduous forests of Europe and southwest Asia. Preferring oaks, hornbeams, and
elms, the woodpecker tends to stay in the same area once it finds a patchwork of
these trees. Despite their non-migratory nature, middle spotted woodpeckers are
constantly on the move, making them difficult to spot and a rare treat for
birdwatchers.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.




	Table of Contents
	Preface
	Objectives of This Book
	Structure of This Book
	What This Book Does Not Cover
	Conventions Used in This Book
	Which Version?
	Resources Available at the Book’s Web Site
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	Part I
	Introduction to MySQL Stored Programs
	What Is a Stored Program?
	Why Use Stored Programs?
	A Brief History of MySQL
	MySQL Stored Procedures, Functions, and Triggers

	A Quick Tour
	Integration with SQL
	Control and Conditional Logic
	Stored Functions
	When Things Go Wrong
	Triggers

	Resources for Developers Using Stored Programs
	Books
	Internet Resources

	Some Words of Advice for Developers
	Don’t Be in Such a Hurry!
	Don’t Be Afraid to Ask for Help
	Take a Creative, Even Radical Approach

	Conclusion

	MySQL Stored Programming Tutorial
	What You Will Need
	Our First Stored Procedure
	Creating the Procedure
	Creating the Procedure Using the MySQL Query Browser

	Variables
	Parameters
	Parameter Modes

	Conditional Execution
	Loops
	Dealing with Errors
	Interacting with the Database
	SELECTing INTO Local Variables
	Using Cursors
	Returning Result Sets from Stored Procedures
	Embedding Non-SELECTs

	Calling Stored Programs from Stored Programs
	Putting It All Together
	Stored Functions
	Triggers
	Calling a Stored Procedure from PHP
	Conclusion

	Language Fundamentals
	Variables, Literals, Parameters, and Comments
	Variables
	Literals
	Rules for Variable Names
	Assigning Values to Variables
	Parameters
	User Variables
	Comments

	Operators
	Mathematical Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators

	Expressions
	Built-in Functions
	Data Types
	String Data Types
	The ENUM data type
	The SET data type

	Numeric Data Types
	Date and Time Data Types
	TEXT and BLOB Data Types

	MySQL 5 “Strict” Mode
	Stored Program Behavior and Strict Mode
	Program Examples

	Conclusion

	Blocks, Conditional Statements, and Iterative Programming
	Block Structure of Stored Programs
	Structure of a Block
	Nested Blocks

	Conditional Control
	The IF Statement
	TRUE or FALSE (or neither)?
	Simple IF-THEN combinations
	IF-THEN-ELSE statements
	IF-THEN-ELSEIF-ELSE statements

	The CASE Statement
	Simple CASE statement
	“Searched” CASE statement

	IF Versus CASE

	Iterative Processing with Loops
	LOOP Statement
	LEAVE Statement
	ITERATE Statement
	REPEAT … UNTIL Loop
	WHILE Loop
	Nested Loops
	Parting Comments on Loops

	Conclusion

	Using SQL in Stored Programming
	Using Non-SELECT SQL in Stored Programs
	Using SELECT Statements with an INTO Clause
	Creating and Using Cursors
	Defining a Cursor
	Cursor Statements
	Fetching a Single Row from a Cursor
	Fetching an Entire Result Set
	Types of Cursor Loops
	Nested Cursor Loops
	Exiting the Cursor Loop Prematurely
	Cursor Error Conditions

	Using Unbounded SELECT Statements
	Retrieving the Result Sets in the Calling Program
	Returning Result Sets to Another Stored Procedure

	Performing Dynamic SQL with Prepared Statements
	Handling SQL Errors: A Preview
	Conclusion

	Error Handling
	Introduction to Error Handling
	A Simple First Example
	Handling Last Row Conditions

	Condition Handlers
	Types of Handlers
	Handler Conditions
	Handler Examples
	Handler Precedence
	Scope of Condition Handlers

	Named Conditions
	Missing SQL:2003 Features
	Directly Accessing SQLCODE or SQLSTATE
	Creating Your Own Exceptions with the SIGNAL Statement
	Emulating the SIGNAL Statement

	Putting It All Together
	Handling Stored Program Errors in the Calling Application
	PHP
	Perl
	Java/JDBC
	Python
	C# .NET
	Visual Basic .NET

	Conclusion

	Part II
	Creating and Maintaining Stored Programs
	Creating Stored Programs
	Editing Stored Programs Using a System Editor
	Using the MySQL Query Browser
	Using Third-Party Tools
	Handling Semicolons in Stored Program Code

	Editing an Existing Stored Program
	Editing a Program in Place
	Maintaining Stored Programs in External Files

	SQL Statements for Managing Stored Programs
	CREATE PROCEDURE
	CREATE FUNCTION
	CREATE TRIGGER
	ALTER PROCEDURE/FUNCTION
	DROP PROCEDURE/FUNCTION/TRIGGER

	Getting Information About Stored Programs
	SHOW PROCEDURE/FUNCTION STATUS
	SHOW CREATE PROCEDURE/FUNCTION
	INFORMATION_SCHEMA.ROUTINES Table
	INFORMATION_SCHEMA.TRIGGERS Table

	Conclusion

	Transaction Management
	Transactional Support in MySQL
	Isolation Levels
	Transaction Management Statements

	Defining a Transaction
	Working with Savepoints
	Transactions and Locks
	Situations in Which Locks Arise
	Deadlocks
	Lock Timeouts
	Optimistic and Pessimistic Locking Strategies
	Pessimistic locking strategy
	Optimistic locking strategy
	Choosing between strategies


	Transaction Design Guidelines
	Conclusion

	MySQL Built-in Functions
	String Functions
	ASCII
	CHAR
	CHARSET
	CONCAT
	CONCAT_WS
	INSERT
	INSTR
	LCASE
	LEFT
	LENGTH
	LOAD_FILE
	LOCATE
	LPAD
	LTRIM
	REPEAT
	REPLACE
	RPAD
	RTRIM
	STRCMP
	SUBSTRING
	TRIM
	UCASE
	Other String Functions

	Numeric Functions
	ABS
	BIN
	CEILING
	CONV
	FLOOR
	FORMAT
	HEX
	LEAST
	MOD
	POWER
	RAND
	ROUND
	SIGN
	SQRT
	Other Numeric Functions

	Date and Time Functions
	ADDTIME
	CONVERT_TZ
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DATE
	DATE_ADD
	DATE_FORMAT
	DATE_SUB
	DATEDIFF
	DAY
	DAYNAME
	DAYOFWEEK
	DAYOFYEAR
	EXTRACT
	GET_FORMAT
	MAKEDATE
	MAKETIME
	MONTHNAME
	NOW
	SEC_TO_TIME
	STR_TO_DATE
	TIME_TO_SEC
	TIMEDIFF
	TIMESTAMP
	TIMESTAMPADD
	TIMESTAMPDIFF
	WEEK
	WEEKDAY
	YEAR
	YEARWEEK
	Other Date and Time Functions

	Other Functions
	BENCHMARK
	COALESCE
	CURRENT_USER
	DATABASE
	GET_LOCK
	IFNULL
	INTERVAL
	IS_FREE_LOCK
	ISNULL
	NULLIF
	RELEASE_LOCK
	SESSION_USER
	SYSTEM_USER
	USER
	UUID
	VERSION

	Conclusion

	Stored Functions
	Creating Stored Functions
	The RETURN Statement
	Parameters to Stored Functions
	The DETERMINISTIC and SQL Clauses

	SQL Statements in Stored Functions
	Calling Stored Functions
	Using Stored Functions in SQL
	Using SQL in Stored Functions

	Conclusion

	Triggers
	Creating Triggers
	Referring to Column Values Within the Trigger
	Triggering Actions
	BEFORE and AFTER Triggers

	Using Triggers
	Maintaining Derived Data
	Implementing Logging
	Validating Data with Triggers

	Trigger Overhead
	Conclusion

	Part III
	Using MySQL Stored Programs in Applications
	The Pros and Cons of Stored Programs in Modern Applications
	Advantages of Stored Programs
	They Enhance Database Security
	They Provide a Mechanism for Data Abstraction
	They Reduce Network Traffic
	They Allow for Common Routines Across Multiple Application Types
	They Facilitate Division of Duties
	They May Provide Portability

	Disadvantages of Stored Programs
	They Can Be Computationally Inferior
	They Can Lead to Logic Fragmentation
	They Do Not Provide Portability

	Calling Stored Programs from Application Code
	Preparing a Stored Program Call for Execution
	Registering Parameters
	Setting Output Parameters
	Executing the Stored Program
	Retrieving Result Sets
	Retrieving Output Parameters
	Closing or Re-Executing the Stored Program
	Calling Stored Functions

	Conclusion

	Using MySQL Stored Programs with PHP
	Options for Using MySQL with PHP
	Using PHP with the mysqli Extension
	Enabling the mysqli Extension
	Connecting to MySQL
	Checking for Errors
	Executing a Simple Non-SELECT Statement
	Retrieving a Result Set
	Managing Transactions
	Using Prepared Statements
	Retrieving Result Sets from Prepared Statements
	Getting Result Set Metadata
	Processing a Dynamic Result Set
	Calling Stored Programs with mysqli
	Handling Output Parameters
	Retrieving Multiple Result Sets

	Using MySQL with PHP Data Objects
	Connecting to MySQL
	Executing a Simple Non-SELECT Statement
	Catching Errors
	Managing Transactions
	Issuing a One-Off Query
	Using Prepared Statements
	Binding Parameters to a Prepared Statement
	Getting Result Set Metadata
	Processing a Dynamic Result Set
	Calling Stored Programs with PDO
	Binding Input Parameters to Stored Programs
	Handling Multiple Result Sets
	Handling Output Parameters
	A Complete Example

	Conclusion

	Using MySQL Stored Programs with Java
	Review of JDBC Basics
	Installing the Driver and Configuring Your IDE
	Registering the Driver and Connecting to MySQL
	Issuing a Non-SELECT Statement
	Issuing a SELECT and Retrieving a Result Set
	Getting Result Set Metadata
	Using Prepared Statements
	Handling Transactions
	Handling Errors

	Using Stored Programs in JDBC
	Using the CallableStatement Interface
	Registering OUT Variables
	Supplying Input Parameters
	Executing the Procedure
	Retrieving a Result Set
	Retrieving Multiple Result Sets
	Dynamically Processing Result Sets
	Retrieving Output Parameter Values

	Stored Programs and J2EE Applications
	Using Stored Programs Within Java Servlets
	Using Stored Programs from EJB

	Using Stored Procedures with Hibernate
	Hibernate Support for MySQL Stored Procedures
	Using a Stored Procedure to Load an Object
	Hibernate Queries
	Using Stored Procedures for Persistence

	Using Stored Procedures with Spring
	Conclusion

	Using MySQL Stored Programs with Perl
	Review of Perl DBD::mysql Basics
	Installing DBD::mysql
	Installing DBD::mysql on Linux or Unix
	Installing DBD::mysql on Windows

	Connecting to MySQL
	Connection attributes

	Handling Errors
	Issuing a Simple One-off Statement
	Preparing a Statement for Reuse
	Using Bind Variables
	Issuing a Query and Retrieving Results
	There’s More Than One Way To Do It
	fetchrow_arrayref method
	fetchrow_hashref method
	fetchall_arrayref method
	dump_results method
	bind_col and fetch methods

	Getting Result Set Metadata
	Performing Transaction Management

	Executing Stored Programs with DBD::mysql
	Handling Multiple Result Sets
	Handling Dynamic Result Sets
	Handling Output Variables
	A Complete Example

	Conclusion

	Using MySQL Stored Programs with Python
	Installing the MySQLdb Extension
	MySQLdb Basics
	Creating a Connection
	Handling Exceptions
	Executing a Simple Statement
	Passing Parameters to a Statement
	Retrieving Rows from a Query
	Managing Transactions
	Getting Metadata
	Dynamically Processing a Result Set

	Using Stored Programs with MySQLdb
	Calling Simple Stored Programs
	Retrieving a Single Stored Program Result Set
	Retrieving Multiple Stored Program Result Sets
	Retrieving Dynamic Result Sets
	Obtaining Output Parameters

	A Complete Example
	Conclusion

	Using MySQL Stored Programs with .NET
	Review of ADO.NET Basics
	Installing the Connector/Net Driver and Configuring Your IDE
	Registering the Driver and Connecting to MySQL
	Issuing a Non-SELECT Statement
	Reusing a Statement Object
	Using Parameters
	Issuing a SELECT and Using a DataReader
	Getting DataReader Metadata
	DataSets
	Handling Errors
	Managing Transactions

	Using Stored Programs in ADO.NET
	Calling a Simple Stored Procedure
	Supplying Input Parameters
	Using a DataReader with a Stored Program
	Processing Multiple Result Sets in a DataReader
	Dynamically Processing Result Sets
	Using DataSets with Stored Programs
	Retrieving Output Parameters
	Calling Stored Functions

	Using Stored Programs in ASP.NET
	Conclusion

	Part IV
	Stored Program Security
	Permissions Required for Stored Programs
	Granting Privileges to Create a Stored Program
	Granting Privileges to Modify a Stored Program
	Granting Privileges to Execute a Stored Program

	Execution Mode Options for Stored Programs
	The SQL SECURITY Clause
	Using Definer Rights to Implement Security Policies
	Stored Program or View?
	Handling Invoker Rights Errors

	Stored Programs and Code Injection
	Protecting Against SQL Injection with Stored Programs
	SQL Injection in Stored Programs

	Conclusion

	Tuning Stored Programs and Their SQL
	Why SQL Tuning Is So Important
	An Instructive Example

	How MySQL Processes SQL
	Parsing SQL
	Caching
	Buffer pool and key cache
	Table cache
	Query cache
	Table statistics


	SQL Tuning Statements and Practices
	EXPLAIN Statement
	EXPLAIN and Stored Programs
	Details of the EXPLAIN Output
	Extended EXPLAIN
	Optimizer Hints
	Measuring SQL and Stored Program Execution
	The Slow Query Log

	About the Upcoming Examples
	Conclusion

	Basic SQL Tuning
	Tuning Table Access
	Index Lookup Versus Full Table Scan
	How MySQL Chooses Between Indexes
	Manually Choosing an Index
	Prefixed (“Partial”) Indexes
	Concatenated Indexes
	Merging multiple indexes
	Covering indexes

	Comparing the Different Indexing Approaches
	Avoiding Accidental Table Scans
	Accidentally suppressing an index using a function
	Accidentally suppressing an index using a substring
	Creating concatenated indexes with a poor column order

	Optimizing Necessary Table Scans
	Using Merge or Partitioned Tables

	Tuning Joins
	How MySQL Joins Tables
	Joins Without Indexes
	Joins with Indexes
	Join Order
	A Simple Join Example

	Conclusion

	Advanced SQL Tuning
	Tuning Subqueries
	Optimizing Subqueries
	Rewriting a Subquery as a Join
	Using Subqueries in Complex Joins

	Tuning “Anti-Joins” Using Subqueries
	Optimizing an Anti-Join

	Tuning Subqueries in the FROM Clause
	Using Views

	Tuning ORDER and GROUP BY
	Creating an Index to Avoid a Sort
	Reducing Sort Overhead by Increasing Sort Memory

	Tuning DML (INSERT, UPDATE, DELETE)
	Batching Inserts
	Optimizing DML by Reducing Commit Frequency
	Triggers and DML Performance

	Conclusion

	Optimizing Stored Program Code
	Performance Characteristics of Stored Programs
	How Fast Is the Stored Program Language?
	Reducing Network Traffic with Stored Programs
	Stored Programs as an Alternative to Expensive SQL
	Avoid Self-Joins with Procedural Logic
	Optimize Correlated Updates

	Optimizing Loops
	Move Unnecessary Statements Out of a Loop
	Use LEAVE or CONTINUE to Avoid Needless Processing

	IF and CASE Statements
	Test for the Most Likely Conditions First
	Avoid Unnecessary Comparisons
	CASE Versus IF

	Recursion
	Cursors
	Trigger Overhead
	Conclusion

	Best Practices in MySQL Stored Program Development
	The Development Process
	DEV-01: Set standards and guidelines before writing any code
	DEV-02: Ask for help after 30 minutes on a problem
	DEV-03: Walk through each other’s code
	DEV-04: Use independent testers for functional sign-off
	DEV-05: Use source controlled files to maintain the “reference” copy of your stored routines

	Coding Style and Conventions
	STYL-01: Adopt a consistent, readable format that is easy to maintain
	STYL-02: Adopt logical, consistent naming conventions for modules and data structures
	STYL-03: Self-document using block and loop labels
	STYL-04: Express complex expressions unambiguously using parentheses
	STYL-05: Use vertical code alignment to emphasize vertical relationships
	STYL-06: Comment tersely with value-added information

	Variables
	DAT-01: Use a consistent and meaningful variable naming style
	DAT-02: Avoid overriding variable declarations within “inner” blocks
	DAT-03: Replace complex expressions with functions
	DAT-04: Remove unused variables and code
	DAT-05: Don’t assume that the result of an expression is TRUE or FALSE; it could be NULL
	DAT-06: Employ “user” variables for global data sparingly
	DAT-07: Create stored programs in strict mode to avoid invalid data assignments

	Conditional Logic
	IF-01: Use ELSEIF with mutually exclusive clauses
	IF-02: Use IF...ELSEIF only to test a single, simple condition
	IF-03: Make sure that a CASE statement is inclusive, or construct a handler to catch any unmatche...
	IF-04: Use CASE and IF consistently

	Loop Processing
	LOOP-01: Make sure the loop will terminate
	LOOP-02: Make the termination conditions of a loop obvious
	LOOP-03: Use a single LEAVE in simple loops
	LOOP-04: Use a simple loop to avoid redundant code required by a WHILE or REPEAT UNTIL loop

	Exception Handling
	EXC-01: Handle exceptions that cannot be avoided but can be anticipated
	EXC-02: Use named conditions to improve code readability
	EXC-03: Be consistent in your use of SQLSTATE and MySQL error codes in exception handlers
	EXC-04: Avoid global SQLEXCEPTION handlers until MySQL implements SIGNAL and SQLCODE features

	SQL in Stored Programs
	SQL-01: Start a transaction explicitly with the START TRANSACTION statement
	SQL-02: Don’t leave transactions “dangling”
	SQL-03: Avoid use of savepoints—they can obscure program logic and reduce program efficiency
	SQL-04: Use an appropriate locking strategy
	SQL-05: Keep transactions small
	SQL-06: Always reset the NOT FOUND variable after completing a cursor loop
	SQL-07: Use SELECT FOR UPDATE when retrieving rows for later update
	SQL-08: Avoid including SQL in functions that may be used in SQL

	Dynamic SQL
	DYN-01: Bind, do not concatenate, variable values into dynamic SQL strings
	DYN-02: Carefully validate any parameter values that might be used to construct dynamic SQL
	DYN-03: Consider the invoker rights method for stored code that executes dynamic SQL

	Program Construction
	PRG-01: Encapsulate business rules and formulas behind accurately named functions
	PRG-02: Standardize module structure using function and procedure templates
	PRG-03: Limit execution section sizes to a single page (50-60 lines) using modularization
	PRG-04: Avoid side-effects in your programs
	PRG-05: Avoid deep nesting of conditionals and loops
	PRG-06: Limit functions to a single RETURN statement in the executable section
	PRG-07: Use stored programs to implement code common to multiple triggers

	Performance
	PER-01: Concentrate on tuning SQL to improve stored program performance
	PER-02: Carefully create the best set of indexes for your application
	PER-03: Avoid accidental table scans
	PER-04: Optimize necessary table scans
	PER-05: Avoid using stored programs for computationally expensive routines
	PER-06: Move loop invariant expressions outside of loops
	PER-07: Optimize conditional structures
	PER-08: Structure IF and CASE statements so more likely expressions appear earliest in the list

	Conclusion

	Index

